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A temporal network is a directed graph in which each arc has a time label specifying 
the time at which its end vertices communicate. An arborescence in a temporal network 
is said to be time-respecting, if the time labels on every directed path from the root 
in this arborescence are monotonically non-decreasing. In this paper, we consider a 
characterization of the existence of arc-disjoint time-respecting arborescences in temporal 
networks.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Throughout this paper, we denote by N the set of pos-
itive integers. For each directed graph D , we denote by 
V (D) and A(D) the sets of vertices and arcs of D , respec-
tively. Furthermore, for each directed graph D and each 
vertex v of D , let δD(v) and �D(v) be the sets of arcs 
of D leaving and entering v , respectively. We denote by 
a = (u, v) an arc a from u to v .

A temporal network N is a pair (D, τ ) of a directed 
graph D and a time label function τ : A(D) → N. For each 
arc a of D , the time label τ (a) specifies the time at which 
its end vertices communicate. This model is used for mod-
eling communication in distributed networks and sched-
uled transportation networks. See [1] for applications of 
temporal networks. If we communicate along a directed 
path P in a temporal network, then the time labels of 
the arcs of P must be monotonically non-decreasing. For-
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mally speaking, a directed path P in a temporal network 
N = (D, τ ) is said to be time-respecting, if

τ (a1) ≤ τ (a2) ≤ · · · ≤ τ (ak),

where we assume that P passes through arcs a1, a2, . . . , ak
in this order.

Besides a directed path, an arborescences is another 
important concept in a directed graph from not only a the-
oretical point of view but also a practical point of view. 
Formally speaking, a subgraph T of a directed graph D
with a specified vertex r is called an r-arborescence or an 
arborescence rooted at r, if

1. V (T ) = V (D),
2. there exists a directed path in T from r to every vertex 

v of D , and
3. for each vertex v of D ,

∣∣�T (v)
∣∣ =

{
0 if v = r
1 otherwise.

It is not difficult to see that an r-arborescence is a span-
ning tree in D whose arcs are directed away from r.

Assume that we are given a temporal network N =
(D, τ ) with a specified vertex r. For each r-arborescence 
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Fig. 1. (a) An example of a temporal network. A time label of each arc illustrated by a real line is equal to 1. A time label of each arc illustrated by a broken 
line is equal to 2. (b, c) Two arc-disjoint time-respecting r-arborescences in the temporal network illustrated in (a).
T in N and each vertex v of D with v �= r, T is said to be 
time-respecting on v , if

∀a ∈ δT (v):τ
(
in(v)

) ≤ τ (a), (1)

where in(v) represents the unique arc in �T (v). Fur-
thermore, an r-arborescence T in N is said to be time-
respecting, if T is time-respecting on every vertex v of D
with v �= r. It is not difficult to see that an r-arborescence 
T in N is time-respecting if and only if for every vertex v
of T , the unique directed path from r to v in T is time-
respecting.

In this paper, we consider a characterization of the exis-
tence of arc-disjoint time-respecting arborescences rooted 
at a specified vertex in a temporal network (see Fig. 1). 
Packing problems are very important problems in graph 
theory and combinatorial optimization. Furthermore, it is 
practically natural to think that a network in which there 
exist many arc-disjoint arborescences has high robustness 
against troubles.

2. Problem formulation

For defining our problem, we first consider the case 
where the time label of every arc is the same, i.e., we 
consider a characterization of the existence of arc-disjoint 
arborescences rooted at a specified vertex in a directed 
graph. For this case, the following important theorem was 
proved by Edmonds [2].

Theorem 1. (See Edmonds [2].) For each directed graph D with 
a specified vertex r, there exist k arc-disjoint r-arborescences 
if and only if for every vertex v of D, there exist k arc-disjoint 
directed paths from r to v.

Theorem 1 is one of the most important theorems in 
graph theory and combinatorial optimization. Furthermore, 
it gives us the following algorithmic implication. For check-
ing the existence of k arc-disjoint r-arborescences, it is 
suffice to decide whether there exist k arc-disjoint directed 
paths from r to every vertex. Since we can decide in poly-
nomial time whether there exist k arc-disjoint directed 
paths from r to every vertex (see, e.g., [3]), Theorem 1 im-
plies that we can decide in polynomial time whether there 
exist k arc-disjoint r-arborescences. It should be noted that 
Theorem 1 was extended to various settings (see, e.g., 
[4–6]).
Fig. 2. A counterexample. A time label of each arc illustrated by a real line 
is equal to 1. A time label of each arc illustrated by a broken line is equal 
to 2.

In this paper, we consider the following extension of 
Theorem 1. “For each temporal network N = (D, τ ) with a 
specified vertex r, there exist k arc-disjoint time-respecting 
r-arborescences if and only if for every vertex v of D , there 
exist k arc-disjoint time-respecting directed paths from r
to v .” Unfortunately, it is known [1] that this statement is 
not always true. Although the counterexample given in [1]
has a directed cycle, we can construct an acyclic tempo-
ral network in which this statement is not true by slightly 
modifying the counterexample in [1] (see Fig. 2), where a 
temporal network N = (D, τ ) is said to be acyclic, if D is 
acyclic.

In this paper, we consider the above statement in 
some special case. Precisely speaking, we consider the case 
where an input temporal network satisfies the pre-flow 
condition. See the next section for the definition of the 
pre-flow condition. The pre-flow condition in a directed 
graph was introduced in [7]. Our definition is a natural 
extension of this. It should be noted that the temporal net-
work illustrated in Fig. 2 is not pre-flow.

3. Our contributions

Assume that we are given a temporal network N =
(D, τ ) with a specified vertex r. A subgraph T of D is 
called a partial r-arborescence, if r ∈ V (T ) and T is an 
r-arborescence in the subgraph of D induced by V (T ). 
Notice that V (T ) is not necessarily equal to V (D). For 
each vertex v of D with v �= r, we define λN (v) as the 
maximum number of arc-disjoint time-respecting directed 
paths from r to v in N . In addition, define λN (r) := ∞. 
A partial r-arborescence in N is said to be time-respecting, 
if (1) holds for every vertex v of T with v �= r. For each 
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vertex v of D and each positive integer i, we define 
σN(v, i) and γN (v, i) by

σN(v, i) := ∣∣{a ∈ �D(v)
∣∣ τ (a) ≤ i

}∣∣
γN(v, i) := ∣∣{a ∈ δD(v)

∣∣ τ (a) ≤ i
}∣∣,

respectively. A temporal network N = (D, τ ) with a speci-
fied vertex r is said to be pre-flow, if

σN(v, i) ≥ γN(v, i) (2)

for every vertex v of D with v �= r and every positive inte-
ger i.

The main result of this paper can be described as fol-
lows. Theorem 2 can be regarded as a variation of Corol-
lary 2.1 of Bang-Jensen, Frank and Jackson [7] in an acyclic 
temporal network.

Theorem 2. For each acyclic and pre-flow temporal net-
work N = (D, τ ) with a specified vertex r and each posi-
tive integer k, there exist k arc-disjoint time-respecting partial 
r-arborescences T1, T2, . . . , Tk such that each vertex v of D
is contained in exactly min{k, λN (v)} partial arborescences of 
T1, T2, . . . , Tk.

As a corollary of Theorem 2, we can obtain the fol-
lowing corollary. This can be regarded as a variation of 
Theorem 1 in an acyclic temporal network.

Corollary 3. For each acyclic and pre-flow temporal network 
N = (D, τ ) with a specified vertex r, there exist k arc-disjoint 
time-respecting r-arborescences if and only if for each vertex v
of D, there exist k arc-disjoint time-respecting directed paths 
from r to v.

Unfortunately, there exists a pre-flow temporal network 
with directed cycles in which the extension of Theorem 1
does not hold. See Section 5 for such a counterexample.

4. Proof of Theorem 2

Here we give the proof of Theorem 2. Assume that 
we are given an acyclic and pre-flow temporal network 
N = (D, τ ) with a specified vertex r and a positive inte-
ger k. Since removing vertices u of D with λN (u) = 0 does 
not affect λN (w) of vertices w of D with λN (w) > 0, we 
assume that λN (v) > 0 for every vertex v of D .

For each vertex v of D with v �= r, we define a bipar-
tite graph G v = (P v ∪ Q v , E v) as follows. The vertex set P v

contains a vertex p(a) for each arc a in �D(v), and the ver-
tex set Q v contains a vertex q(a) for each arc a in δD(v). 
Furthermore, the edge set E v contains an edge between a 
vertex p(a) in P v and a vertex q(b) in Q v , if τ (a) ≤ τ (b). 
These are all arcs of E v .

Lemma 4. For each vertex v of D with v �= r, there exists a 
matching Mv in G v such that it covers all vertices in Q v , i.e., for 
every vertex q in Q v , there exists an edge in Mv that is incident 
to q.
Proof. Let v be a vertex v of D with v �= r. It is known [8]
that there exists a matching Mv in G v covering all vertices 
of Q v if and only if

∀X ⊆ Q v :
∣∣Γ (X)

∣∣ ≥ |X |, (3)

where Γ (X) is the set of vertices in P v that are adjacent 
to a vertex in X . Let us fix a subset X of Q v . Define

t := max
{
τ (a)

∣∣ a ∈ δD(v) with q(a) ∈ X
}
.

Let a∗ be an arc in δD(v) with τ (a∗) = t . Since τ (a) ≤ t for 
every arc a in δD(v) such that q(a) is contained in X , we 
have

γN(v, t) ≥ |X |. (4)

It follows from the definition of E v that there exists an 
edge between p(a) and q(a∗) for every arc a in �D(a) with 
τ (a) ≤ t . So, we have

∣∣Γ (X)
∣∣ = σN(v, t). (5)

It follows from (2), (4) and (5) that (3) holds. �
In the sequel, for each vertex v of D with v �= r, we fix 

the matching Mv in Lemma 4. For each vertex v of D with 
v �= r and each arc a = (v, w) in δD(v), we denote by μ(a)

the arc b in �D(v) such that there exists an edge between 
p(b) and q(a) in Mv .

The following lemma plays an important role in the 
proof of Theorem 2.

Lemma 5. For each vertex v of D with v �= r, we have

∣∣�D(v)
∣∣ = λN(v).

Proof. Let v be a vertex of D with v �= r. Define d :=
λN (v). It follows from the definition of λN (v) that

∣∣�D(v)
∣∣ ≥ d. (6)

Assume that (6) strictly holds. Since D is acyclic, for each 
arc a in �D(v) we have a directed path Pa from r to v that 
passes through arcs

a, μ(a), μ
(
μ(a)

)
, μ

(
μ

(
μ(a)

))
, . . . ,

in the reverse order. It follows from the definition of μ(·)
that the directed paths Pa and Pb are clearly arc-disjoint 
for every distinct arcs a and b in �D(v), which implies 
that there exist more than d arc-disjoint time-respecting 
directed paths from r to v in N . This contradicts the fact 
that λN (v) = d. �

Now we are ready to prove Theorem 2. We propose an 
algorithm for finding desired arc-disjoint time-respecting 
partial r-arborescences. Let n be the number of vertices 
of D . It is well known (see, e.g., [3]) that since D is acyclic, 
there exists a bijective function π : V (D) → {1, 2, . . . , n}
such that π(u) > π(v) if there exists an arc a = (u, v)

of D . Since D is acyclic and λN (v) > 0 for every vertex 
v of D , we have that �D(r) = ∅ and π(r) = n. Since we 
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can naturally assume that k is not more than |A(D)|, Algo-
rithm 1 is a polynomial-time algorithm.

Algorithm 1.

Step 1: For each i = 1, 2, . . . , k, set A0
i := ∅. Furthermore, 

set t := 1.
Step 2: If t = n, then halt and output An−1

1 , An−1
2 , . . . , An−1

k .
Step 3: Set v be the vertex of D with π(v) = t , and do the 

following steps.
(3-a) Define

I+ := {
i = 1,2, . . . ,k

∣∣ δD(v) ∩ At−1
i �= ∅}

,

and let I− be an arbitrary subset of positive 
integers in {1, 2, . . . , k} \ I+ such that

∣∣I−
∣∣ = min

{
k, λN(v)

} − ∣∣I+
∣∣.

(3-b) For each positive integer i in I+ , find an arc 
a∗ in δD(v) ∩ At−1

i such that

τ
(
a∗) = min

{
τ (a)

∣∣ a ∈ δD(v) ∩ At−1
i

}
, (7)

and then set at
i := μ(a∗).

(3-c) For each positive integer i in I− , choose an 
arbitrary arc at

i in �D(v) such that

∀ j, j′ ∈ I− s.t. j �= j′: at
j �= at

j′ ,

∀ j ∈ I−, ∀ j′ ∈ I+: at
j �= at

j′ .

(3-d) For each i = 1, 2, . . . , k, set At
i := At−1

i ∪ {at
i }.

(3-e) Update t := t + 1, and then go to Step 2. �
We first prove that Algorithm 1 is well-defined. For 

this, we first prove that |I+| ≤ λN(v) in Step (3-a). Since 
At−1

1 , At−1
2 , . . . , At−1

k are arc-disjoint, it follows from (2)
and Lemma 5 that

∣∣I+
∣∣ ≤ ∣∣δD(v)

∣∣ ≤ ∣∣�D(v)
∣∣ = λN(v).

Furthermore, since |�D(v)| = λN (v) follows from Lemma 5, 
we have |�D(v)| ≥ min{k, λN (v)}. Thus, Step (3-c) is well-
defined.

Assume that Algorithm 1 outputs subsets An−1
1 , An−1

2 ,

. . . , An−1
k of A. For each i = 1, 2, . . . , k, let Ti be a subgraph 

of D satisfying

V (Ti) := {r} ∪ {
v ∈ V (D)

∣∣ �D(v) ∩ An−1
i �= ∅}

,

A(Ti) := An−1
i .

Notice that we can prove that for each i = 1, 2, . . . , k, ev-
ery end vertices of an arc of Ti are contained in V (Ti)

as follows. It follows from the definition of Step (3-a) that 
for every vertex v of D with v �= r, if δD(v) ∩ An−1

i is not 
empty, then �D(v) ∩ An−1

i is not empty. This implies that 
the tail of the unique arc in �D(v) ∩ An−1

i is contained in 
V (Ti) for every vertex v of D such that �D(v) ∩ An−1

i is 
not empty. Moreover, from the definition of I+ and I− , it 
follows that each vertex v of D is contained in exactly 
Fig. 3. A counterexample. A time label of each arc illustrated by a thin line 
is equal to 1. A time label of each arc illustrated by a broken line is equal 
to 2. A time label of each arc illustrated by a thick line is equal to 3.

min{k, λN (v)} graphs of T1, T2, . . . , Tk . Thus, Theorem 2
immediately follows from the following lemma.

Lemma 6. For every i = 1, 2, . . . , k, Ti is a time-respecting par-
tial r-arborescence.

Proof. For each i = 1, 2, . . . , k and each vertex v of Ti with 
v �= r, we have |�Ti (v)| = 1. Since D is acyclic, this implies 
that Ti is a partial r-arborescence for every i = 1, 2, . . . , k.

Now we prove that Ti is time-respecting. Fix a vertex 
v of Ti with v �= r, and assume that π(v) = t . Since D is 
acyclic,

∀ j = t, t + 1, . . . ,n − 1: δD(v) ∩ A j
i = δD(v) ∩ At−1

i . (8)

If δD(v) ∩ At−1
i is empty, then it follows from (8) that Ti is 

time-respecting on v . Hence, we consider the case where 
δD(v) ∩ At−1

i is not empty. Let in(v) be the unique arc in 
�Ti (v), and let a∗ be the unique arc in δTi (v) with in(v) =
μ(a∗). It follows from (7) and (8) that

τ
(
a∗) = min

{
τ (a)

∣∣ a ∈ δD(v) ∩ At−1
i

}

= min
{
τ (a)

∣∣ a ∈ δD(v) ∩ An−1
i

(= δTi (v)
)}

.

This and the definition of μ(·) imply that

τ
(
in(v)

) = τ
(
μ

(
a∗)) ≤ τ

(
a∗)

= min
{
τ (a)

∣∣ a ∈ δTi (v)
} ≤ τ (b)

for every arc b in δTi (v). This completes the proof. �
5. Counterexample

In this section, we give a pre-flow temporal network 
with directed cycles in which the extension of Theorem 1
does not hold. The pre-flow temporal network described in 
Fig. 3 is such a counterexample.

It is not difficult to see that there exist two arc-disjoint 
time-respecting directed paths from r to every vertex. 
However, we can prove that there does not exist two 
arc-disjoint time-respecting r-arborescences as follows. As-
sume that there exist two arc-disjoint time-respecting 
r-arborescences T1 and T2. Since three arcs leave r, one 
of T1 and T2 contains only one arc leaving r. Assume that 
T1 contains only one arc leaving r and it is (r, u). Note 
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that there exists no time-respecting directed path from u
to v . Thus, T1 is not a time-respecting r-arborescence. This 
completes the proof.
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