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a b s t r a c t

This paper studies the following packing problem: Given a mixed graph F with vertex
set V , a matroid M on a set S = {s1, . . . , sk} along with a map π : S → V , find k mutually
edge and arc-disjoint mixed arborescences T1, . . . , Tk in F with roots π (s1), . . . , π (sk),
such that, for any v ∈ V , the set {si : v ∈ V (Ti)} is independent and its rank reaches the
theoretical maximum. This problem was mentioned by Fortier, Király, Léonard, Szigeti
and Talon in [Old and new results on packing arborescences in directed hypergraphs,
Discrete Appl. Math. 242 (2018), 26-33]; Matsuoka and Tanigawa gave a solution to this
in [On reachability mixed arborescence packing, Discrete Optimization 32 (2019) 1-10].

In this paper, we give a new characterization for above packing problem. This new
characterization is simplified to the form of finding a supermodular function that should
be covered by an orientation of each strong component of a matroid-based rooted mixed
graph. Our proofs come along with a polynomial-time algorithm. The technique of using
components opens some new ways to explore arborescence packings.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider graphs which may have multiple edges or (and) arcs but not loops. Let D = (V , A) be a
digraph. For ∅ ̸= X ⊆ V , let d−

D (X) (or d−

A (X)) denote the arcs of D (or A) entering into X . A subdigraph T (it may not
be spanning) of D is called an r-arborescence if its underlying graph is a tree and for any u ∈ V (T ), there is exactly one
directed path in T from r to u. The vertex r is called the root of the arborescence T .

Edmonds’ arborescence packing theorem [8] characterizes digraphs containing k arc-disjoint spanning arborescences
with prescribed roots in terms of a cut condition, this is the starting point of all studies on packing arborescences. This
result has extensions in many directions. For the presentation, we introduce some terms and notations.

A mixed graph F = (V ; E, A) is a graph consisting of the set E of undirected edges and the set A of directed arcs. By
regarding each undirected edge as a directed arc in both directions, each concept in directed graphs can be naturally
extended for mixed graphs. Especially, a subdigraph P of F is a mixed path if its underlying graph is a path and one end
of P can be reached from the other. A subdigraph T (it may not be spanning) of F is called an r-mixed arborescence if
its underlying graph is a tree and for any u ∈ V (T ), there is exactly one mixed path in T from r to u. Equivalently, a
subgraph T of F is an r-mixed arborescence if there exists an orientation of the undirected edges of T such that the
obtained subgraph (whose arc set is the union of original arc set and oriented arc set of T ) is an r-arborescence.
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Let X1, . . . , Xt be disjoint subsets of V ; we call P = {X1, . . . , Xt} a subpartition (of V ) and particularly a partition of V
if V = ∪

t
j=1Xj. For a subpartition P of V , denote eE(P) = |{e ∈ E : e connects distinct Xis in P or connects some Xi and

V \ ∪
t
j=1Xj}|.

For nonempty X, Z ⊆ V , where X and Z not necessarily disjoint, let E(X, Z) and A(X, Z) denote the set of edges with
one endvertex in X and the other in Z and the set of arcs from X to Z respectively. For simplicity, denote E(X) = E(X, X)
and A(X) = A(X, X). Let Z

F
−→ X denote that X and Z are disjoint and X is reachable from Z in F , that is, there is a mixed

path in F from Z to X . We shall write v for {v} for simplicity. Let WF (X) := X ∪ {v ∈ V \ X : v
F
−→ X}.

Let R = {r1, . . . , rk} ⊆ V be a specified multiset. Let Ui be the set of vertices reachable from ri. For u, v ∈ V , we say
u ∼ v if {i : u ∈ Ui} = {i : v ∈ Ui}; this ∼ is an equivalence relation. Denote equivalence classes for ∼ by Γ1, . . . , Γl, and
we call each Γj an atom. An ri-mixed arborescence Ti is said to be maximal if V (Ti) = Ui (i.e. it spans all the vertices that
are reachable from ri in F ). A packing of maximal mixed arborescences w.r.t. R = {r1, . . . , rk} is a collection {T1, . . . , Tk} of
mutually edge and arc-disjoint mixed arborescences such that Ti has root ri and V (Ti) = Ui. Denote the set {1, . . . , k} by
[k].

The remarkable extension of Edmonds’ arborescence packing theorem by Kamiyama, Katoh and Takizawa [14] enables
us to find a packing of maximal arborescences {T1, . . . , Tk} w.r.t. R in a digraph (that is E = ∅).

Let M be a matroid on a set S with rank function rM , and π : S → V be a (not necessarily injective) map. We may
think of π as a placement of the elements of S at vertices of V and different elements of S may be placed at the same
vertex. For related definitions and properties of matroids, we refer to [11]. We say that the quadruple (F ,M, S, π ) is a
matroid-based rooted mixed graph (or a matroid-based rooted digraph if E = ∅).

The map π is called M-independent if π−1(v) is independent in M for each v ∈ V . For X ⊆ V , denote by SX the
set π−1(X). An M-based packing of mixed arborescences is a set {T1, . . . , T|S|} of pairwise edge and arc-disjoint mixed
arborescences for which Ti has root π (si) for i = 1, . . . , |S| (where S = {s1, . . . , s|S|}), and for each v ∈ V , the set
{sj ∈ S : v ∈ V (Tj)} is a base of S. An M-based packing of mixed arborescences is an M-based packing of trees when
each Ti is a tree and an M-based packing of arborescences when each Ti is an arborescence.

Katoh and Tanigawa [15] implicitly characterized undirected graphs containing an M-based packing of trees; Durand
de Gevigney, Nguyen and Szigeti [7] characterized directed graphs containing an M-based packing of arborescences.

A maximal M-independent packing of mixed arborescences is a set {T1, . . . , T|S|} of pairwise edge and arc-disjoint mixed
arborescences for which Ti has root π (si) for i = 1, . . . , |S|, the set {si ∈ S : v ∈ V (Ti)} is independent in M , and
|{si ∈ S : v ∈ V (Ti)}| = rM (SWF (v)) for each v ∈ V .

Király [16] characterized digraphs containing such a packing.

Theorem 1.1 ([16]). Let (D = (V , A),M, S, π ) be a matroid-based rooted digraph. There exists a maximal M-independent
packing of arborescences in (D,M, S, π ) if and only if π is M-independent and

d−

A (X) ≥ rM (SWD(X)) − rM (SX ) (1)

holds for each ∅ ̸= X ⊆ V .

Fortier, Király, Léonard, Szigeti and Talon [9] characterized mixed graphs containing matroid-based packing of mixed
arborescences; this theorem will be used later as the base step in the inductive proof for our main result (Theorem 1.4).

Theorem 1.2 ([9, Theorem 10], adapted). Let (F = (V ; E, A),M, S, π ) be a M-based rooted mixed graph. There exists a
matroid-based packing of mixed arborescences in (F ,M, S, π ) if and only if π is M-independent and

eE(P) ≥

t∑
i=1

(rM (S) − rM (Xi) − d−

A (Xi)) (2)

holds for each subpartition P = {X1, . . . , Xt} of V .

In [9], Fortier, et al. mentioned the following research problem: how to extend Theorem 1.1 to mixed graphs. Matsuoka
and Tanigawa [18] gave a solution to this problem, by using some recent results [17] on the maximal arborescence packing
by Király, Szigeti and Tanigawa. Since this research problem is the major topic of this paper, next we present the theorem
that is delivered by the solution in [18]. This solution uses concepts of atom and bi-set.

A bi-set Y = {YO, YI} of V is a pair of sets satisfying YI ⊆ YO ⊆ V . For bi-set Y , define d−

A (Y ) = |{uv ∈ A : u ∈ V \ YO,
v ∈ YI}|. The application of bi-sets for arborescence packings was first studied by Bérczi and Frank [1,2], see also [6,17,18].

Let F = (V ; E, A) be a mixed graph, and r1, . . . , rk ∈ V (not necessarily distinct). Let M be a matroid on [k] with
rank function rM , and π : [k] → V be a (not necessarily injective) map such that π (i) = ri for 1 ≤ i ≤ k. Let Ui ⊆ V
(i = 1, . . . , k) be the set of vertices reachable from ri in F , and Γ1, . . . , Γl be the atoms of F w.r.t. {r1, . . . , rk}.

Let P2(V ) denote all bi-sets of V , i.e. P2(V ) := {(XO, XI ) : XI ⊆ XO ⊆ V }. Define

Fj := {X ∈ P2(V ) : ∅ ̸= XI ⊆ Γj, (XO \ XI ) ∩ Γj = ∅} (1 ≤ j ≤ l), F := ∪
l
j=1Fj.

For X = (XO, XI ) ∈ F , define

IX := {i : XI ⊆ Ui, ri /∈ XI , (XO \ XI ) ∩ Ui = ∅}, JX := {i ∈ [k] : XI ⊆ Ui} \ IX .
314
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T
heorem 1.3 ([18]). The following statements are equivalent.

(i) ∃ a maximal M-independent packing of mixed arborescences in (F ,M, [k], π ).
(ii) π is M-independent; and

eE(P) +

t∑
q=1

d−

A (X
q) ≥

t∑
q=1

(rM (IXq ∪ JXq ) − rM (JXq )) (3)

holds for any family of bi-sets {X1, . . . , X t
} such that P = {X1

I , . . . , X t
I } is a vertex subpartition of some atom Γj and that

(Xq
O \ Xq

I ) ∩ Γj = ∅ for q = 1, . . . , t.

In this paper, we give a new characterization for packing of maximal independent mixed arborescences. In comparison
with Theorem 1.3, our characterization uses the concepts of strong component and bi-set. Recall that C is a strong
component of F if it is a maximal subgraph of F for which for any two vertices u, v of C , u and v are reachable from
each other in C .

The following theorem is our new characterization, it is simplified to the form of finding an intersecting supermodular
function that should be covered (to be defined at the beginning of Section 2) by an orientation of each strong component
of a matroid-based rooted mixed graph F , the simplified form is Statement (iii).

Theorem 1.4. Let (F = (V ; E, A),M, S, π ) be a matroid-based rooted mixed graph. Then the following statements are
equivalent.

(i) ∃ a maximal M-independent packing of mixed arborescences in (F ,M, S, π ).
(ii) π is M-independent; and

eE(P) +

t∑
q=1

d−

A (X
q) ≥

t∑
q=1

(rM (SWF (V (C))) − rM (SXq
O
)) (4)

holds for any family of bi-sets {X1, . . . , X t
} such that P = {X1

I , . . . , X t
I } is a vertex subpartition of some strong component

C and Xq
O \ Xq

I = WF (Y ) for some Y ⊆ WF (V (C)) \ V (C), where q = 1, . . . , t.
(iii) π is M-independent; and

eE(P) ≥

t∑
q=1

fC (Xq) (5)

holds for any strong component C of F and subpartition P = {X1, . . . , Xt} of V (C), where fC (Xq) = max{rM (SWF (V (C))) −

rM (SX ) − d−

A (X) : Xq ⊆ X and X \ Xq = WF (Y ) for some Y ⊆ WF (V (C)) \ V (C)}.

Next in Proposition 1.5, we shall give a direct proof that Theorem 1.3 (ii) deduces Theorem 1.4 (ii), therefore
Theorem 1.4 implies Theorem 1.3.

However, we cannot present a direct proof from Theorem 1.4 (ii) to Theorem 1.3 (ii). Besides the difference that
Theorem 1.4 uses ‘component’and Theorem 1.3 uses ‘atom’, there is a slight improvement on the using of bi-set. To see
this, we take a look at a special case: Suppose a strong component C is exactly an atom (this can happen if there exist no
arcs leaving C and {r1, . . . , rk} ∩ V (C) ̸= ∅), then it follows from the proof of Proposition 1.5 that (3) is exactly (4) under
the condition of Xq

O \ Xq
I = WF (Y ) for some Y ⊆ WF (V (C)) \ V (C). Note that Statement (ii) in Theorem 1.4 has some extra

constraints, this is different than its counterpart.
Indeed, the proof we can present to show that Theorem 1.3 implies Theorem 1.4 is the proof of our main result, which

is Section 2 of this paper. Then by Statement (i) of Theorems 1.3 and 1.4, these two theorems are equivalent with each
other.

Proposition 1.5. Suppose in Theorem 1.4, S = [k] and π (i) = ri for i = 1, . . . , k. If Theorem 1.3 (ii) holds, then Theorem 1.4
(ii) holds.

Proof. Suppose (3) holds. Let C be a strong component of F and X = (XO, XI ) a bi-set such that XI ⊆ V (C) and
XO \ XI = WF (Y ) for some Y ⊆ WF (V (C)) \ V (C).

Recall that Ui is the set of vertices reachable from ri in F . Then XI ⊆ Ui if and only if ri ∈ WF (V (C)). Thus
{i ∈ [k] : XI ⊆ Ui} = SWF (V (C)), that is IX ∪ JX = SWF (V (C)).

Note that WF (Y ) ∩ Ui ̸= ∅ if and only if ri ∈ WF (Y ). Since XI ⊆ V (C) and Y ⊆ WF (V (C)), WF (Y ) ⊆ WF (V (C)); thus
ri ∈ WF (Y ) implies V (C) ⊆ Ui (then XI ⊆ Ui). So

JX = {i ∈ [k] : XI ⊆ Ui} \ IX
= {i ∈ [k] : XI ⊆ Ui, ri ∈ XI} ∪ {i ∈ [k] : XI ⊆ Ui,WF (Y ) ∩ Ui ̸= ∅}

= {i ∈ [k] : ri ∈ XI} ∪ {i ∈ [k] : ri ∈ WF (Y )}

= SXO .
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Hence, we have

rM (IX ∪ JX ) − rM (JX ) = rM (SWF (V (C))) − rM (SXO ). (6)

For any two u, v ∈ V (C), u ∼ v (by definition); thus V (C) ⊆ Γj for some atom Γj.
If WF (Y ) ∩ Γj ̸= ∅, then ri ∈ WF (V (C)) implies ri ∈ WF (Y ); thus SWF (V (C)) ⊆ SWF (Y ) ⊆ SXO and

rM (SWF (V (C))) − rM (SXO ) − d−

A (X) ≤ 0. (7)

Let {X1, . . . , X t
} be a family of bi-sets such that P = {X1

I , . . . , X t
I } is a subpartition of V (C) and that Xq

O \ Xq
I = WF (Y )

or some Y ⊆ WF (V (C)) \ V (C), where q = 1, . . . , t . Then we have

eE(P) ≥ eE({X
q
I : (Xq

O \ Xq
I ) ∩ Γj = ∅})

≥

∑
(Xq

O\Xq
I )∩Γj=∅

(rM (IXq ∪ JXq ) − rM (JXq ) − d−

A (X
q)) (by (3))

=

∑
(Xq

O\Xq
I )∩Γj=∅

(rM (SWF (V (C))) − rM (SXq
O
) − d−

A (X
q)) (by (6))

≥

t∑
q=1

(rM (SWF (V (C))) − rM (SXq
O
) − d−

A (X
q)) (by (7)).

hat is, (4) holds. ■

Note that our Theorem 1.4 appears to be the first evidence to show that the concept of ‘atom’, which has been widely
sed in the study of arborescence packings, can be further divided into ‘components’under some circumstances. (Indeed,
n atom is the union of some strong components of F .) Since component is a much more common concept than the very
pecialized atom, this technique could make theorems and their proofs simpler.
The very recent paper [13] by Hörsch and Szigeti applied this technique of using ‘components’, and showed three

urprising implications: the result of Edmonds [8] on packing branchings with prescribed root sets ⇒ the result of
amiyama, Katoh, Takizawa [14] on packing maximal arborescences, the result of Durand de Gevigney, Nguyen, Szigeti [7]
n matroid-based packing of arborescences ⇒ Theorem 1.1, and hypergraphic version of Theorem 1.2 ⇒ hypergraphic
ersion of Theorem 1.4. Compared with the existing proofs, these implications of the characterization on packing maximal
rborescences [14] and Theorem 1.1 are more direct and easier. Finally, as noted in [13], our proof techniques in this paper
an be used to obtain the generalization of Theorem 1.4 to mixed hypergraphs (the remaining open problem in [9]).

. Main result

Let Ω be a set and X1, X2 ⊆ Ω . X1 and X2 are intersecting if X1 ∩ X2 ̸= ∅. A function p : 2Ω
→ Z is supermodular

intersecting supermodular) if the inequality

p(X) + p(Y ) ≤ p(X ∪ Y ) + p(X ∩ Y )

olds for all subsets (intersecting subsets, respectively) of Ω . A function b is submodular if −b is supermodular. For some
ecent work related to supermodularity in graph optimization, we refer to [3–5,12].

A family H of subsets of V is intersecting if for any X, Y ∈ H such that X ∩ Y ̸= ∅, X ∪ Y and X ∩ Y ∈ H. For a set
unction f : H → Z, a directed graph D = (V , A) (or just A) is said to cover f if d−

A (X) ≥ f (X) holds for all X ∈ H.

.1. Preliminaries

Let (D = (V , A),M, S, π ) be a matroid-based rooted digraph. Suppose (1) holds for each ∅ ̸= X ⊆ V , we say X0 ⊆ V is
tight if the equality of (1) holds. Note that the in-degree function d−

A of D and rank function of a matroid is submodular.

Lemma 2.1 ([16, Lemma 10], adapted). Let (D = (V , A),M, S, π ) be a matroid-based rooted digraph for which (1) holds for
each ∅ ̸= X ⊆ V . Let uv ∈ A and X0 be a minimal tight set such that the arc uv enters X0. Then X0 ⊆ WD(v).

Lemma 2.2. Let (D = (V , A),M, S, π ) be a matroid-based rooted digraph. There exists a maximal M-independent packing of
arborescences in (D,M, S, π ) if and only if π is M-independent and (1) holds for X ⊆ V such that v ∈ X ⊆ WD(v) for some
v ∈ V .

Proof. The necessity comes from Theorem 1.1 directly.
For the sufficiency, suppose to the contrary that D does not have such a packing. By Theorem 1.1, there exists X0 ⊆ V

such that d−

A (X0) < rM (SWD(X0)) − rM (SX0 ). Let D
′
= (V , A′) be a minimal digraph for which: (i) A ⊆ A′, (ii) WD(v) = WD′ (v)

for each v ∈ V , and (iii) d− (X) ≥ r (S ) − r (S ) for X ⊆ V . Note that such a digraph exists because we can always
A′ M WD(X) M X

316
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a
dd arcs uv with u ∈ WD(v) till Condition (iii) holds. Then d−

A′ (X0) ≥ rM (SWD(X0)) − rM (SX0 ) > d−

A (X0); and there exists an
arc u0v0 ∈ A′

\ A.
By the minimality of D′, there exists X1 ⊆ V such that d−

A′−u0v0
(X1) < rM (SWD(X1)) − rM (SX1 ). Since d−

A′ (X1) ≥

rM (SWD(X1)) − rM (SX1 ), we have d−

A′ (X1) = rM (SWD(X1)) − rM (SX1 ) (that is X1 is tight) and u0v0 enters X1. Let X2 be a minimal
tight set of D′ such that u0v0 enters X2. Then

d−

A (X2) ≤ d−

A′−u0v0
(X2) < d−

A′ (X2) = rM (SWD(X2)) − rM (SX2 ). (8)

But by Lemma 2.1, v0 ∈ X2 ⊆ WD(v0). Then by the assumption of this lemma, d−

A (X2) ≥ rM (SWD(X2)) − rM (SX2 ), a
contradiction to (8). ■

Theorem 2.3 ([10]). Let G = (V , E) be an undirected graph, H ⊆ 2V be an intersecting family with ∅ /∈ H and V ∈ H,
and f : H → R an intersecting supermodular function with f (V ) = 0. There exists an orientation of E that covers f (that is
d−

A (X) ≥ f (X) for all X ∈ H, where A is the oriented arc set of E) if and only if

eE(P) ≥

t∑
i=1

f (Vi)

holds for every collection P = {V1, . . . , Vt} of mutually disjoint members of H.

2.2. Proof of Theorem 1.4

We shall show that (i) ⇒ (ii), (ii) ⇒ (iii), and (iii) ⇒ (i), this will finish the proof. The following claim is needed in the
proof.

Claim 2.4. For mixed graph F = (V ; E, A), suppose bi-set X = (XO, XI ) satisfies that ∅ ̸= XI ⊆ V (C) for some strong component
C and XO \ XI = WF (Y ) for some Y ⊆ WF (V (C)) \ V (C). Then for any orientation A′ of E, we have

d−

A′ (XO) = d−

A′ (XI ) = d−

A′ (X), d−

A (XO) = d−

A (X). (9)

Proof. For bi-set X = (XO, XI ), by the definition of d−

A′ (X), we have

d−

A′ (XO) = d−

A′ (X) + |A′(V \ XO, XO \ XI )| = d−

A′ (X) + |A′(V \ XO,WF (Y ))|,

d−

A′ (XI ) = d−

A′ (X) + |A′(XO \ XI , XI )| = d−

A′ (X) + |A′(WF (Y ), XI )|.
Similarly, d−

A (XO) = d−

A (X) + |A(V \ XO,WF (Y ))|.
By the assumption, XO = WF (Y ) ∪ XI for some Y ⊆ WF (V (C)) \ V (C), and ∅ ̸= XI ⊆ V (C). It follows that

WF (XO) = WF (V (C)), A′(V \ XO,WF (Y )) = ∅ and A(V \ XO,WF (Y )) = ∅.
By the assumption, Y ⊆ WF (V (C)) \ V (C). Next we deduce that WF (Y ) ⊆ WF (V (C)) \ V (C). Assume to the contrary

that WF (Y ) ∩ V (C) ̸= ∅, suppose vertex u ∈ WF (Y ) ∩ V (C), then there exist vertex v ∈ Y and a mixed path P1 from u to
v. Combining that v ∈ Y ⊆ WF (V (C)) and C is a strong component, there exists a mixed path P2 from v to u. But then
V (C) ∪ P1 ∪ P2 is strongly connected, this contradicts that C is a strong component.

Note that since C is a strong component, there is no edge in E between V (C) and V \ V (C). Since XI ⊆ V (C),
WF (Y ) ⊆ WF (V (C)) \ V (C), and A′ is an orientation of E, we have A′(WF (Y ), XI ) = ∅. These prove that d−

A′ (XO) = d−

A′ (XI ) =

d−

A′ (X), d−

A (XO) = d−

A (X). ■

(i) ⇒ (ii): The proof follows from Theorem 1.3 and Proposition 1.5.
(ii) ⇒ (iii): For 1 ≤ q ≤ t , suppose Yq satisfies that fC (Xq) = rM (SWF (V (C))) − rM (SYq ) − d−

A (Yq), and Xq ⊆ Yq and
Yq \ Xq = WF (Y ) for some Y ⊆ WF (V (C)) \ V (C); define bi-set Xq

= (Yq, Xq). Note that d−

A (X
q) = d−

A (X
q
O) by Claim 2.4, it is

straightforward to check that (5) can be obtained from (4).
(iii) ⇒ (i): Let τ (F ) be the number of strong components of F . We prove that (iii) ⇒ (i) by induction on τ (F ).
For the base step, suppose τ (F ) = 1, i.e., F is strongly connected. Then, for any subpartition {X1, . . . , Xt} of V (F ), by

(5), we have

eE(P) ≥

t∑
q=1

fF (Xq) =

t∑
q=1

(rM (S) − rM (SXq ) − d−

A (Xq)).

By Theorem 1.2, there exists a matroid-based packing of mixed arborescences in (F ,M, S, π ).
For the induction step, suppose τ (F ) = n ≥ 2, and suppose that (iii) ⇒ (i) holds for τ (F ) ≤ n − 1.
Note that there exists a strong component C0 of F such that no arcs coming out of C0. Assume otherwise, then each

strong component has arcs coming out of it. But then F itself is strongly connected, a contradiction to τ (F ) ≥ 2.
Suppose C0 is such a strong component as above, F1 is the induced mixed graph on vertex set V (F1) := V (F ) \ V (C0).
Then τ (F1) = n − 1.

317



H. Gao and D. Yang Discrete Applied Mathematics 289 (2021) 313–319

T
t

Y

C

P
r

W

i

X
h

The following facts are heavily used: E(V (C0), V (F1)) = ∅, A(V (C0), V (F1)) = ∅; therefore for X0 ⊆ V (F1), WF1 (X0) =

WF (X0) ⊆ V (F1).
By the induction hypothesis, there exists a maximal M|SV (F1)-independent packing of mixed arborescences in F1; that

is, there exist pairwise edge and arc disjoint π (si)-mixed arborescences T ′

i in F1, where 1 ≤ i ≤ |SV (F1)|; and for any
v ∈ V (F1), {si : v ∈ V (T ′

i )} is independent and |{si : v ∈ V (T ′

i )}| = rM (SWF (v)). Equivalently, E(F1) can be oriented to A1 such
that there exist pairwise arc disjoint π (si)-arborescences Ti in D1 := (V (F1), A(V (F1))∪ A1), where 1 ≤ i ≤ |SV (F1)|; and for
any v ∈ V (F1), {si : v ∈ V (Ti)} is independent and |{si : v ∈ V (Ti)}| = rM (SWF (v)).

By Theorem 1.1, for any ∅ ̸= X0 ⊆ V (F1),

d−

D1
(X0) ≥ rM (SWD1 (X0)

) − rM (SX0 ). (10)

Note that if v ∈ V (Ti), then π (si) ∈ WD1 (v). Thus {si : v ∈ V (Ti)} ⊆ SWD1 (v)
, and |{si : v ∈ V (Ti)}| ≤ rM (SWD1 (v)

). Since
WD1 (v) ⊆ WF (v), we have rM (SWD1 (v)

) ≤ rM (SWF (v)). Since |{si : v ∈ V (Ti)}| = rM (SWF (v)), we have rM (SWD1 (v)
) = rM (SWF (v)).

hus rM (SWD1 (X0)
) = rM (SWF (X0)). E(V (C0), V (F1)) = A(V (C0), V (F1)) = ∅ gives that d−

D1
(X0) = d−

A∪A1
(X0). So (10) can be

ransformed to:

d−

A∪A1
(X0) ≥ rM (SWF (X0)) − rM (SX0 ). (11)

Define fC0 : 2V (C0) \ {∅} → Z, fC0 (X) = max{rM (SWF (V (C0))) − rM (SX0 ) − d−

A (X0) : X ⊆ X0 and X0 \ X = WF (Y ) for some
⊆ WF (V (C0)) \ V (C0)}. Then we have the following claim.

laim 2.5. fC0 is intersecting supermodular.

roof. Suppose X1, X2 ⊆ V (C0) are intersecting sets, Y1, Y2 ⊆ WF (V (C0)) \ V (C0) satisfy that fC0 (Xi) = rM (SWF (V (C0))) −

M (SXi∪WF (Yi)) − d−

A (Xi ∪ WF (Yi)), where i = 1, 2.
Note that WF (Y1) ∪ WF (Y2) = WF (Y1 ∪ Y2). Let Y3 = WF (Y1) ∩ WF (Y2), note that WF (Y3) = Y3; thus WF (Y1) ∩ WF (Y2) =

F (Y3). Since rM and d−

A are submodular,

fC0 (X1) + fC0 (X2) = rM (SWF (V (C0))) − rM (SX1∪WF (Y1)) − d−

A (X1 ∪ WF (Y1))
+ rM (SWF (V (C0))) − rM (SX2∪WF (Y2)) − d−

A (X2 ∪ WF (Y2))
≤ rM (SWF (V (C0))) − rM (SX1∪X2∪WF (Y1∪Y2)) − d−

A (X1 ∪ X2 ∪ WF (Y1 ∪ Y2))
+ rM (SWF (V (C0))) − rM (S(X1∩X2)∪WF (Y3)) − d−

A ((X1 ∩ X2) ∪ WF (Y3))
≤ fC0 (X1 ∪ X2) + fC0 (X1 ∩ X2). ■

□

Using Claim 2.5 and (5), by Theorem 2.3, we know that there exists an orientation A0 of E(C0) such that A0 covers fC0 ,
.e., for any ∅ ̸= Z ⊆ V (C0) and Z0 such that Z ⊆ Z0 and Z0 \ Z = WF (Y ) for some Y ⊆ WF (V (C0)) \ V (C0),

d−

A0
(Z) ≥ rM (SWF (V (C0))) − rM (SZ0 ) − d−

A (Z0). (12)

Using orientation A1 of E(F1) and A0 of E(C0), we have a directed graph D (of F ) with arc set A ∪ A0 ∪ A1.
Apply (9) to bi-set (Z0, Z), we have d−

A0∪A1
(Z0) = d−

A0∪A1
(Z); by the definition of Z and Z0, no arc of A1 enters Z or Z0;

therefore d−

A0
(Z0) = d−

A0
(Z).

Then using (12), for each Z0 ⊆ WF (V (C0)) such that Z := Z0 ∩ V (C0) ̸= ∅ and WF (Z0 \ V (C0)) = Z0 \ V (C0), we have

d−

A∪A0
(Z0) = d−

A (Z0) + d−

A0
(Z0) = d−

A (Z0) + d−

A0
(Z) ≥ rM (SWF (V (C0))) − rM (SZ0 ). (13)

Lemma 2.6. Suppose v ∈ V (C0) and v ∈ X0 ⊆ WF (v). Then we have

d−

A∪A0∪A1
(X0) ≥ rM (SWF (X0)) − rM (SX0 ). (14)

Proof. Since v ∈ V (C0), then X0 ⊆ WF (v) = WF (V (C0)), and v ∈ X0 ∩ V (C0) ̸= ∅. By (13), it suffices to consider the case
where Y := X0 \ V (C0) and Y ⫋ WF (Y ).

Since Y ⊆ V (F1), as noted before, WF (Y ) ⊆ V (F1). Then X0 ∩ WF (Y ) ⊆ X0 ∩ V (C0) ⊆ Y ⊆ X0 ∩ WF (Y ), this gives
0 ∩ WF (Y ) = Y . Let X := X0 ∩ V (C0), then X0 ∪ WF (Y ) = X ∪ WF (Y ). Combining that rM and d−

A∪A0∪A1
are submodular, we

ave
(rM (SWF (X0)) − rM (SX0 ) − d−

A∪A0∪A1
(X0))

+ (rM (SWF (Y )) − rM (SWF (Y )) − d−

A∪A0∪A1
(WF (Y )))

≤ (rM (SWF (X0)) − rM (SX∪WF (Y )) − d−

A∪A0∪A1
(X ∪ WF (Y )))

+ (rM (SWF (Y )) − rM (SY ) − d−

A∪A0∪A1
(Y )).

(15)

Note that WF (X0) = WF (V (C0)), apply (13) (with Z0 = X ∪ WF (Y )), we have

r (S ) − r (S ) − d− (X ∪ W (Y )) ≤ 0.
M WF (X0) M X∪WF (Y ) A∪A0∪A1 F
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Apply (11) to Y , we have

rM (SWF (Y )) − rM (SY ) − d−

A∪A0∪A1
(Y ) ≤ 0.

Notice that d−

A∪A0∪A1
(WF (Y )) = 0. Thus (15) gives

rM (SWF (X0)) − rM (SX0 ) − d−

A∪A0∪A1
(X0) ≤ 0.

This proves the lemma. ■

We are ready to show (iii) ⇒ (i) by applying Lemma 2.2:
Suppose X0 ⊆ V (F ), and for some v ∈ V (F ), v ∈ X0 ⊆ WF (v). If X0 ⊆ V (F1), then by (11), (1) holds. Since

V (F ) = V (F1) ∪ V (C0), the only left case is X0 ∩ V (C0) ̸= ∅. Notice that, in this case, the above v satisfies v ∈ V (C0).
(Otherwise, v ∈ V (F1); but then WF (v) ⊆ V (F1); it follows that X0 ⊆ WF (v) ⊆ V (F1); this contradicts X0 ∩ V (C0) ̸= ∅.)
Then by Lemma 2.6, (1) holds. Apply Lemma 2.2, there exists a maximal M-independent packing of mixed arborescences
in (F = (V ; E, A),M, S, π ). This finishes the proof. ■

Remarks on the complexity: Frank [10] showed that the problem of covering an intersecting supermodular function
by orienting edges can be solved in polynomial time. Hence, we can orient all strong components C of F such that
the obtained digraph D covers fC in polynomial time. Then, according to the polynomial-time algorithm given in [16],
a maximal M-independent packing of mixed arborescences in F can be found in polynomial time.
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