Ensimag 2013/2014

2A - Optimisation Combinatoire

Examen du 16 décembre 2013

Durée: 3 heures

Tous documents manuscrits et feuilles de TD autorisés.

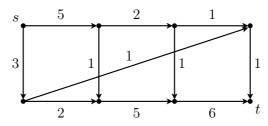
Il sera tenu le plus grand compte de la rédaction. Vous devez expliquer tout ce que vous faites.

Exercice 1. Étant donnés n entiers a_1, \ldots, a_n , on veut trouver deux indices $1 \le i \le j \le n$ tels que $\sum_{k=i}^{j} a_k$ soit minimum. Nous modélisons ce problème avec un problème de plus court chemin.

Soit
$$(G = (V, A), c)$$
 le réseau où $V = \{v_1, \dots, v_n\} \cup \{s, t\},$ $A = \{sv_\ell : 1 \le \ell \le n\} \cup \{v_\ell v_{\ell+1} : 1 \le \ell \le n-1\} \cup \{v_\ell t : 1 \le \ell \le n\},$ $c(xy) = 0$ si $x = s$ et a_ℓ si $x = v_\ell$ $(1 \le \ell \le n)$.

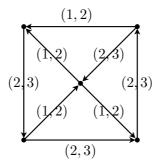
- 1. Montrer que le graphe orienté G est sans circuit.
- 2. Montrer qu'il existe une bijection entre les (s,t)-chemins dans G et les indices possibles i et j du problème ci-dessus.
- 3. Montrer que le c-coût d'un (s,t)-chemin $\{s,v_i,v_{i+1},\ldots,v_j,t\}$ dans G est égal à $\sum_{k=i}^j a_k$.
- 4. En conclure que l'algorithme de Bellmann trouve une solution optimale du problème en temps O(n). (Rappel : la complexité de l'algorithme de Bellmann est O(m) où m est le nombre d'arcs du graphe.)
- 5. Résoudre l'instance suivante de ce problème : $a_1 = 1, a_2 = -1, a_3 = 0, a_4 = -2, a_5 = 2, a_6 = -1.$

Exercice 2. Déterminer un flot réalisable de s à t de valeur maximum et une coupe séparant s de t de capacité minimum dans le réseau ci-dessous en utilisant l'algorithme d'Edmonds-Karp.



Exercice 3.

1. Trouver une circulation réalisable dans le réseau ci-dessous en utilisant la méthode vue en cours.



2. Montrer sans utiliser le théorème de Hoffmann que si dans un problème de circulation les deux capacités f et g coïncident et satisfont la condition de Hoffmann alors f(=g) est une circulation réalisable.

Exercice 4. Soient (G, m, f, g, c) une instance du problème de m-flot (f, g)-réalisable de c-coût minimum dans un graphe orienté G = (V, A) et π un vecteur sur V. $(Rappel : c^{\pi}(uv) = c(uv) + \pi(v) - \pi(u).)$

1. Montrer que pour tout m-flot (f,g)-réalisable x on a

$$\sum_{e \in A} c(e)x(e) = \sum_{e \in A} c^{\pi}(e)x(e) + \sum_{v \in V} \pi(v)m(v).$$

2. En déduire qu'un m-flot (f,g)-réalisable est de c-coût minimum si et seulement si il est de c^{π} -coût minimum.

Exercice 5. Soient G = (V, A) un graphe orienté, p et q deux vecteurs sur les sommets de G tels que $p \leq q$, f et g deux capacités sur les arcs de G telles que $f \leq g$ et g un coût sur les arcs de g. Un vecteur g sur les arcs est un g et g e

Le but de cet exercice est de démontrer que le problème de (p,q)-flot (f,g)-réalisable de c-coût minimum dans un graphe orienté G se réduit à un problème de m'-flot (f',g')-réalisable de c'-coût minimum dans un graphe orienté G'.

Soient
$$G' = (V', A')$$
 où $V' = V \cup \{s\}$ et $A' = A \cup \{vs : v \in V\}$, $m'(v) = q(v)$ pour tout $v \in V$ et $m'(s) = -\sum_{v \in V} q(v)$, $f'(e) = 0$ si $e = vs$ et $f(e)$ si $e \in A$, $g'(e) = q(v) - p(v)$ si $e = vs$ et $g(e)$ si $e \in A$, $c'(e) = 0$ si $e = vs$ et $c(e)$ si $e \in A$.

- 1. Montrer que si x est un (p,q)-flot (f,g)-réalisable dans G alors x' est un m'-flot (f',g')-réalisable dans G' où $x'(e) = q(v) (d_x^+(v) d_x^-(v))$ si e = vs et x'(e) = x(e) si $e \in A$.
- 2. Montrer que si x' est un m'-flot (f', g')-réalisable dans G' alors x'_G est un (p, q)-flot (f, g)-réalisable dans G où $x'_G(e) = x'(e)$ pour tout $e \in A$.
- 3. En déduire que x' est un m'-flot (f', g')-réalisable de c'-coût minimum dans G' alors x'_G est un (p,q)-flot (f,g)-réalisable de c-coût minimum dans G.

Exercice 6. Soit G = (V, E) un graphe non-orienté sans sommet isolé. Un sous-ensemble F de E est un recouvrement par arêtes de G si chaque sommet de V est incident à au moins une arête de F. On dénote $\rho(G)$ le cardinal minimum d'un recouvrement par arêtes de G et $\nu(G)$ le cardinal maximum d'un couplage de G. Le but de cet exercice est de démontrer que $\rho(G) + \nu(G) = |V|$.

- (a) Soit F un recouvrement par arêtes de G de cardinal minimum.
 - 1. Montrer que F est une forêt.
 - 2. Montrer que si on prend une arête de chaque composante connexe de F alors on obtient un couplage.
 - 3. En déduire que $\nu(G) \ge |V| \rho(G)$. (Rappel : le nombre d'arêtes d'une forêt est égal au nombre de sommets moins le nombre de composantes connexes.)
- (b) Soient M un couplage de G de cardinal maximum et T l'ensemble des sommets M-insaturés. Soient e_v une arête de G incidente à v pour chaque sommet v dans T et $N = \{e_v : v \in T\}$.
 - 1. Montrer que si u et v sont des sommets distincts dans T alors $e_u \neq e_v$.
 - 2. Montrer que $M \cup N$ est un recouvrement par arêtes de G.
 - 3. En déduire que $\rho(G) \leq |V| \nu(G)$.
- (c) Conclure!