Optimisation Combinatoire 2A Algorithmes d'Edmonds TD

Zoltán Szigeti

Ensimag Grenoble INP

Couplages dans les graphes généraux

Théorème de Tutte

G admet un couplage parfait $\iff c_o(G - X) \le |X| \quad \forall X \subseteq V(G).$

Problème

Trouver un couplage parfait.

Théorème de Berge

Un couplage M de G est de cardinal maximum \iff il n'existe pas de chaîne M-augmentante.

Idée 1

- Trouver une chaîne augmentante.
- Comme l'algorithme marquage utilise une arborescence pour trouver un chemin de s à t, nous allons construire un arbre alterné.

Arbres alternés

Définition : Étant donnés un graphe G et un couplage M de G,

• arbre *M*-alterné :

- un arbre F dans G,
- **2** un sommet r_F de F est M-insaturé (r_F est la racine de F),
- **3** dans F, chaque sommet de la distance impaire de r_F est de degré 2,
- chaque (r_F, v)-chaîne élémentaire unique dans F est M-alternée.
- **2** sommet impair/pair : $v \in V(F)$ tel que dist_F(r_F , v) est impairs/pairs.
- **3** A_F et D_F : L'ensemble des sommets impairs/pairs de F.

Remarque

- $F r_F$ possède un couplage parfait reliant chaque fois un sommet de A_F à un sommet de D_F ,
- $I r_F est dans D_F.$

Exemple

l'idée de construire un arbre alterné n'est pas suffisante.

Définition : Étant donné un arbre *M*-alterné *F*

fleur : le cycle impair unique C de F + uv où u et v sont deux sommets pairs de F.

Idée 2 d'Edmonds

Contracter la fleur !

- On aura les pseudo-sommets w_C !
- 2 M/C est un couplage de G/C.
- F/C est un arbre M/C-alterné.
- Chaque pseudo-sommet est un sommet pair.

Décontraction d'une fleur

Lemme

Pour tout cycle impair C et pour tout $z \in V(C)$, C - z possède un couplage parfait.

Définition

Décontraction d'une fleur : w_C est remplacé par le cycle impair C.

Lemme

Quand on décontracte une fleur, on peut étendre le couplage tel que le nombre de sommets insaturés n'augmente pas.

Algorithme de couplage parfait d'Edmonds

ENTRÉE : G = (V, E) un graphe.

SORTIE : Couplage parfait M ou $X \subset V$ qui viole la condition de Tutte.

Etape 0. Initialisation.

 $M := \emptyset, G := G.$

- Etape 1. *Condition 1 d'arrêt*. Si tous les sommets de *G* sont *M*-saturés alors arrêter avec *M*.
- Etape 2. Commencement de la construction d'un arbre alterné.

r := un sommet *M*-insaturé, $F := (r, \emptyset)$.

Etape 3. Condition 2 d'arrêt.

Si chaque arête de *G* sortant d'un sommet de D_F entre dans un sommet de A_F alors arrêter avec $X := A_F$.

Algorithme de couplage parfait d'Edmonds

OC 2A

Z. Szigeti (Ensimag)

OC 2A

Algorithme de couplage de cardinal maximum d'Edmonds

ENTRÉE : G = (V, E) un graphe.

SORTIE : Un couplage de G de cardinal maximum.

Etape 1. Construction des arbres alternés.

Tant qu'il existe un sommet insaturé faire Exécuter l'algorithme de couplage parfait avec la modification suivante :

avant s'arrêter à l'Etape 3 effacer les sommets de l'arbre alterné.

Etape 2. Décontraction des fleurs contractées en ordre inverse.

Comme dans l'algorithme de couplage parfait en ajoutant

que si $w_{C_{j-1}} = r_{F_k}$ alors $z_{j-1} := r_{F_{k-1}}$.

Etape 3. Arrêter.

Structure

- Quand l'algorithme s'arrête on a t arbres alternés F₁,..., F_t qui sont sommets disjoints et un couplage parfait M' du reste du graphe.
- Chaque sommet de D_i correspond à un graphe connexe impair dans G.
- Chaque F_i correspond à un graphe G_i dans G.

Justification de l'algorithme de couplage de cardinal max.

Théorème

- G_i possède un couplage M_i avec un seul sommet M_i -insaturé dans G_i .
- $c_o(G-X) |X| = t \text{ où } X = \bigcup_{i=1}^t A_{F_i}.$
- **3** $M = M' \cup \bigcup_{i=1}^{t} M_i$ est un couplage de cardinal maximum de *G*.
- L'algorithme s'arrête en temps polynomial.
- S Cet algorithme implique la Formule de Berge-Tutte.

OC 2A

Sujets d'exam d'OC

- Exemple couplage
- Exécution d'Edmonds-Karp
- S Exécution de Ford-Fulkerson-Dantzig
- Transformation flot coût min.
- Théorème sur les couplages
- Modélisation + Exécution de Bellmann
- Exécution d'Edmonds-Karp
- Exécution de l'algo circulation
- Transformation flot coût min.
- Transformation flot coût min.
- Théorème sur les couplages

2013

Sujets d'exam d'OC

- Exemple couplage parfait
- Exécution d'Edmonds-Karp
- Modélisation avec flots
- Exécution de l'algo flot coût min.
- Théorème sur les flots
- Théorème sur les couplages
- Exemple + théorème sur couplages
- Exécution de l'algo circulation
- Exécution de la méthode hongroise
- Modélisation + algo sur flots
- Théorème sur les couplages
 - Transformation flot coût min.

2014

2015
Sujets d'exam d'OC

- Modélisation avec flots
- Exemple couplage
- Exécution de l'algo flot coût min
- Exécution de la méthode hongroise
- Théorème sur les couplages
- Théorème sur les flots
- Exécution de l'algo sur couplages
- 2 Modélisation avec flots
- Exécution de l'algo circulation
- Exécution de la méthode hongroise
- Théorème sur les couplages
 - Transformation flot coût min.

2018

Théorème de Berge

Un couplage M de G est de cardinal maximum \iff il n'existe pas de chaîne M-augmentante.

Démonstration de suffisance

- Supposons que le couplage M n'est pas de cardinal maximum, qu'il existe donc un couplage M' tel que |M'| > |M|.
- ② Comme |M' \ M| > |M \ M'| il existe au moins une composante connexe K de G((M' \ M) ∪ (M \ M')) qui contient plus d'arêtes de M' que de M.
- Puisque K est une chaîne M-alternée et M'-alternée, on conclure que K est une chaîne M-augmentante.