Optimisation Combinatoire 2A Couplages dans les graphes généraux

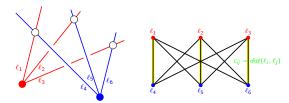
Zoltán Szigeti

Ensimag INP Grenoble

Application: couplages dans les graphes bipartis

Application : détections des objets

- On veut trouver les positions exactes de *n* objets dans l'espace 3-dimensionnel à l'aide de deux détecteurs infrarouges fixés.
- \bullet Chaque détecteur nous fournit n droites sur lesquelles les objets se trouvent.
- Ces 2n droites donnent théoriquement les positions exactes des n objets.
- À cause de problèmes techniques on n'a que des droites approximatives.
- On sait que deux droites correspondant au même objet ont une distance euclidienne très petite.
- Comment peut-on modéliser ce problème avec les couplages ?



Couplages dans les graphes généraux

Planning

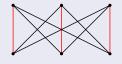
- Théorèmes d'existence et min-max,
- ② Algorithmes pour trouver un couplage parfait / de cardinal maximum.

Application : Affectation des pilotes

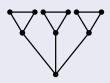
- Le directeur d'une compagnie aérienne veut maximiser le nombre de vols effectués au même moment avec les pilotes de la compagnie.
- Il a besoin de deux pilotes pour chaque vol.
- Malheureusement, certains pilotes ne peuvent pas voler ensemble.
- Le directeur connait ses pilotes, il sait donc si deux pilotes sont compatibles ou pas.
- Modéliser ce problème par un problème de couplage dans un graphe.

Exemples

Graphes avec couplage parfait



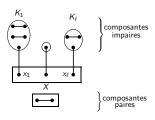
Graphes sans couplage parfait



Définitions

Définitions

- **1** Graphe impair/pair : |V(G)| est impair/pair.
- 2 $c_o(G-X)$: nombre de composantes connexes impaires de G-X.
- **3** barrière : $X \subseteq V(G)$ tel que $c_o(G X) = |X|$.



Lemme : G = (V, E) graphe, $X \subseteq V$.

- ② Si |V| est pair, alors $c_o(G X) \equiv |X|$ (2).

Démonstration

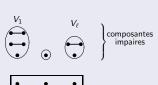
 $\{X, V_1, V_2, ..., V_k \text{ les composantes connexes de } G - X\} = \text{partition de } V.$

$$|V| = |X| + \sum_{1}^{k} |V_{i}|$$

$$= |X| + \sum_{|V_{i}| \text{ impair}} |V_{i}| + \sum_{|V_{i}| \text{ pair}} |V_{i}|$$

$$\equiv |X| + \sum_{|V_{i}| \text{ impair}} 1 + \sum_{|V_{i}| \text{ pair}} 0$$

$$= |X| + c_{o}(G - X) \quad (2).$$



 V_k paires

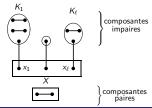
Condition nécessaire pour avoir une couplage parfait

Lemme

Si G admet un couplage parfait M alors $\forall X \subseteq V(G), c_o(G - X) \leq |X|$.

Démonstration

- **①** Soient $K_1, ..., K_\ell$ les composantes connexes impaires de G X.
- ② M est un couplage parfait et $|V(K_i)|$ est impair, il existe donc une arête de M qui relie K_i à un sommet x_i dans X.
- **3** Comme M est un couplage, $x_i \neq x_j$ si $i \neq j$.
- $c_o(G-X) = \ell = |\{x_1,...,x_\ell\}| \le |X|.$



Caractérisation de l'existence d'un couplage parfait

Théorème de Tutte

G admet un couplage parfait \iff $c_o(G - X) \le |X| \quad \forall X \subseteq V(G) \quad (T)$.

Démonstration

Soient G un graphe connexe qui satisfait (T) et X une barrière maximale.

- |V(G)| est pair.
- $\mathbf{2} \ \ X \neq \emptyset.$
- \circ G X n'a pas de composante connexe paire.
- **9** Pour chaque sommet v de chaque composante connexe impaire K de G-X, K-v satisfait (T).
- Soit $B_X = (X, Y; F)$ le graphe biparti obtenu de G en contractant chaque composante connexe impaire de G X et en enlevant toutes les arêtes dans G[X]. B_X admet un couplage parfait.
- On en déduira que G possède un couplage parfait.

Démonstration de 1.

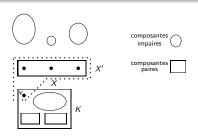
- ① Par (T) pour l'ensemble \emptyset , on a $0 \le c_o(G \emptyset) \le |\emptyset| = 0$.
- ② G n'admet donc pas de composante connexe de cardinal impair.
- \odot Puisque G est connexe, G a une composante connexe qui est paire.

Démonstration de 2.

- **1** Soit v un sommet quelconque de G.
- ② Par (T) pour $\{v\}$, on a, par parité, $1 \le c_o(G v) \le |\{v\}| = 1$.
- 3 v est donc une barrière.
- X qui est une barrière maximale n'est pas vide.

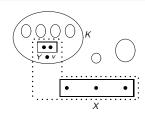
Démonstration de 3.

- **1** Supposons par l'absurde que K est une composante paire de G-X.
- ② $\forall v \in V(K)$, par parité, $c_o(K v) \ge 1$.
- **3** Par (T) pour $X' := X \cup \{v\}$, on a $|X'| \ge c_o(G X') = c_o(G X) + c_o(K v) \ge |X| + 1 = |X'|$,
- \bigcirc X' est donc une barrière.
- **6** C'est une contradiction car X était une barrière maximale.



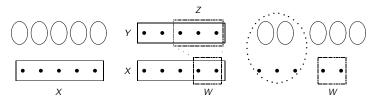
Démonstration de 4.

- **③** Supposons par l'absurde que pour une composante impaire K de G X et un sommet v de K, H := K v viole la condition (T), c'est-à-dire qu'il existe $Y \subset V(H)$ avec $c_o(H Y) > |Y|$.
- 2 Puisque |V(H)| est pair, par parité, $c_o(H Y) \ge |Y| + 2$.
- **③** Par (*T*), pour $X' := X \cup v \cup Y$, on a $|X'| \ge c_o(G X') = (c_o(G X) 1) + c_o(H Y) ≥ (|X| 1) + (|Y| + 2) = |X'|$,
- \bigcirc X' est donc une barrière.
- C'est une contradiction car X était une barrière maximale.



Démonstration de 5.

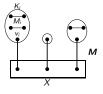
- ① Puisque X est une barrière, |X| = |Y|.
- ② On suppose par l'absurde que B_X n'admet pas de couplage parfait alors, par le Théorème de Hall, il existe un ensemble $Z \subseteq Y$ tel que pour l'ensemble $W \subseteq X$ des voisins de Z, on a |Z| > |W|.
- $\forall v \in Z$ correspond à une composante impaire de G X,
- lacktriangledown en fait, v correspond à une composante impaire de G-W.
- **3** Donc $c_o(G W) \ge |Z| > |W|$.
- Alors la condition (T) est violée, contradiction.



11 / 14

Démonstration de 6.

- Soit G un contre-exemple tel que |V(G)| soit minimum.
- 2 Soit X une barrière maximale de G. Par 2, $X \neq \emptyset$.
- **3** Par 5, B_X admet un couplage parfait M.
- Pour chaque composante impaire K_i de G X, M relie exactement un sommet v_i de K_i à X.
- **⑤** Par 4, $H_i := K_i v_i$ satisfait (T) et $|V(H_i)| < |V(G)|$, H_i admet donc un couplage parfait M_i .
- **1** Par 3, G X n'a pas de composante paire.
- $M \cup \bigcup_{K_i} M_i$ est un couplage parfait de G,
- **3** *G* n'est donc pas un contre-exemple.



Application

Théorème de Petersen

Tout graphe 2-arête-connexe, 3-régulier admet un couplage parfait.

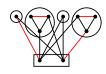
Démonstration

- Soient X un sous-ensemble de sommets de G, $\ell = c_o(G X)$,
- **3** E' l'ensemble d'arêtes entre X et $\bigcup_{i=1}^{\ell} K_i$.
- **③** Comme le graphe est 2-arête-connexe et 3-régulier, $d(K_i) \ge 2$ et par parité, $d(K_i) \ge 3$, donc $3c_o(G X) = 3\ell \le \sum_{i=1}^{\ell} d(K_i) = |E'|$.
- **3** Comme G est 3-régulier, $|E'| \leq \sum_{v \in X} d(v) = 3|X|$.
- **1** Par conséquent, $3c_o(G X) \le |E'| \le 3|X|$.
- Par le Théorème de Tutte, G admet un couplage parfait.

Couplage de cardinal maximum

Formule de Berge-Tutte

- $\max\{2|M|: M \text{ couplage de } G\} = \min\{|V| c_o(G X) + |X|: X \subseteq V(G)\}.$
- ② min{|sommets M-insaturés| : M couplage de G} = max{ $c_o(G X) |X| : X \subseteq V(G)$ }.



Démonstration (min \geq max)

Soient M un couplage de $G, X \subseteq V(G)$ et $K_1, \ldots, K_{c_o(G-X)}$ les composantes impaires de G - X.

- \bigcirc $|V(K_i)|$ impair \Rightarrow chaque K_i contient au moins un sommet tel que
 - o soit il est *M*-insaturé,
 - 2 soit il est relié à un sommet de X par une arête de M.
- ② M couplage \Rightarrow il y en a $\leq |X|$ qui sont reliés à X par une arête de M,
- 3 il y en a $\geq c_o(G-X)-|X|$ qui contiennent un sommet M-insaturé.