Critical graphs with connected complements

Matěj Stehlík

Department of Mathematics, Imperial College, London SW7 2BZ, England

Abstract

We show that given any vertex x of a k-colour-critical graph G with a connected complement, the graph $G - x$ can be $(k - 1)$-coloured so that every colour class contains at least 2 vertices. This extends the well-known theorem of Gallai, that a k-colour-critical graph with a connected complement has at least $2k - 1$ vertices. Our proof does not use matching theory. It is considerably shorter, conceptually simpler and more general than Gallai’s original proof.

1 Introduction and Basic Definitions

A graph G is k-colour-critical, or simply colour-critical, if it has chromatic number k but for any vertex x the graph $G - x$ has a $(k - 1)$-colouring. A graph G is decomposable if its complement \overline{G} is disconnected, otherwise it is indecomposable. It is not difficult to check that a decomposable colour-critical graph is the complete join of its indecomposable colour-critical subgraphs; so in a sense the indecomposable colour-critical graphs are the ‘building blocks’ of colour-critical graphs, and it is natural to study their properties.

The main result of this paper is the following.

Theorem 1 If x is any vertex of an indecomposable k-colour-critical graph G, then $G - x$ has a $(k - 1)$-colouring in which every colour class contains at least 2 vertices.

An immediate corollary is the following beautiful result of Gallai [1].

Corollary 2 (Gallai) Any indecomposable k-colour-critical graph has at least $2k - 1$ vertices.

Email address: matej.stehlik@ic.ac.uk (Matěj Stehlík).
It is worth noting that the proof of Theorem 1 presented in this paper is much simpler and shorter than Gallai’s original proof of Corollary 2. Whereas the latter is essentially an application of matching theory to the complements of colour-critical graphs, we develop new techniques that simplify the proof considerably. In fact, our proof uses no matching theory and is entirely self-contained.

Before giving an outline of our proof, a few definitions are needed. Like Gallai, we prefer to work with the complements of colour-critical graphs. A cover T of a graph G is a union of disjoint cliques of G containing all vertices of G; this corresponds to a colouring of the complement. If T is a cover with k components, it is a k-cover. The cover number $\chi(G)$ of a graph G is the minimum k for which there exists a k-cover of G, and a $\chi(G)$-cover of G is a minimal cover. A vertex $x \in V(G)$ is cover-critical if $\chi(G - x) = \chi(G) - 1$, and a graph G is k-cover-critical, or simply cover-critical, if $\chi(G) = k$ and all vertices of G are cover-critical. Given a cover-critical vertex x of G, a cover T of G is x-extreme if $T - x$ is a minimal cover of $G - x$ with the minimum number of isolated vertices. Note that if T is an x-extreme cover of G, then x must be an isolated vertex of T.

We can now give a brief outline of our proof of Theorem 1. Given two adjacent cover-critical vertices x_1 and x_2 of a graph G, we consider the union $T_1 \cup T_2$ of an x_1-extreme cover T_1 of G and an x_2-extreme cover T_2 of G. We prove the existence of a component of $T_1 \cup T_2$ that contains the vertices x_1 and x_2 but does not contain any other isolated vertices of T_1 and T_2. This crucial fact allows us to prove that, given any vertices x_1, x_2 of a connected cover-critical graph G and any x_1-extreme cover T_1 of G, there exists an x_2-extreme cover T_2 of G such that $T_1 - x_1$ has the same isolated vertices as $T_2 - x_2$. Theorem 1 follows easily from this result and the fact that the isolated vertices of a minimal cover of G form a stable set of G.

For the benefit of the interested reader, we also give a very brief outline of Gallai’s original proof of Corollary 2. Throughout the proof, G is assumed to be a graph with cover number k on at most $2k - 1$ vertices, and T is a fixed k-cover of G with the minimum number of isolated vertices. A vertex x is α-accessible if it is connected to an isolated vertex of T by a path whose edges alternately lie in and outside T, such that the edge incident with x lies in T. Using a number of results from matching theory (and proving important new results), Gallai analysed the components of the subgraph of G induced by the α-accessible vertices, and proved that each of these components is a factor-critical graph. Furthermore, he showed that if G is connected and cover-critical, then every vertex of G must be α-accessible, so in fact G is factor-critical. Hence G has exactly $2k - 1$ vertices, and Corollary 2 follows easily.
2 The Proof

It is clear that the cover number $\chi(G)$ of a graph G equals the chromatic number $\chi(\overline{G})$ of its complement \overline{G}, and that G is k-cover-critical if and only if \overline{G} is k-colour-critical. We can therefore restate Theorem 1 in terms of covers as follows.

Theorem 1 If x is any vertex of a connected k-cover-critical graph G, then G has a k-cover in which x is the only isolated vertex.

The proof is arranged as a series of lemmas. Before proving the first lemma, we need to make some definitions. The number of components and the set of isolated points of a graph G are denoted by $c(G)$ and $I(G)$, respectively. Given two graphs G, H such that $V(G) \supseteq V(H)$, we define $G - H$ to be the induced subgraph of G with vertex set $V(G) \setminus V(H)$. Given a cover T of a graph G, a subgraph $H \subseteq G$ is T-closed if $Q \subseteq H$ or $Q \cap H = \emptyset$, for every component Q of T. Note that if $H \subseteq G$ is T-closed then $G - H$ is also T-closed, with $T \cap H$ and $T - H$ being covers of H and $G - H$, respectively.

We now proceed with the formal proof of Theorem 1. We start with three simple lemmas, the first of which was also used by Gallai [1].

Lemma 3 (Gallai) If T is a minimal cover of a graph G and $H \subseteq G$ is T-closed, then $T \cap H$ is a minimal cover of H.

PROOF. Since $T \cap H$ is a cover of H, we must have $c(T \cap H) \geq \chi(H)$ by the definition of $\chi(H)$. Suppose that $c(T \cap H) > \chi(H)$. Then $T \cap H$ is not a minimal cover of H, so there exists a cover T_1 such that $c(T_1 \cap H) < c(T \cap H)$. But then consider the cover

$$T_2 = (T - H) \cup (T_1 \cap H).$$

We have

$$c(T_2) = c(T - H) + c(T_1 \cap H) < c(T - H) + c(T \cap H) = c(T),$$

contradicting the minimality of T. Hence $c(T \cap H) = \chi(H)$, as required.

Lemma 4 If T is a minimal cover of a graph G, then $I(T)$ is a stable set of G.

PROOF. Suppose $I(T)$ is not stable, for some minimal cover T of G. Say that x_1 and x_2 are vertices of $I(T)$ that are adjacent in G. Define a new cover

$$T_1 = (T - x_1 - x_2) \cup (x_1, x_2),$$

where (x_1, x_2) denotes the single-edge path from x_1 to x_2. But now

$$c(T_1) = c(T - x_1 - x_2) + c((x_1, x_2)) = c(T) - 1,$$

contradicting the minimality of T_1. Hence the result.

Lemma 5 Let x_1 and x_2 be adjacent cover-critical vertices of a graph G, and suppose that T_1 and T_2 are minimal covers of G such that $x_1 \in I(T_1)$ and $x_2 \in I(T_2)$, respectively. Then x_1 and x_2 lie in the same component of $T_1 \cup T_2$.

PROOF. Let H be the component of $T_1 \cup T_2$ containing x_1, and consider the cover

$$T_3 = (T_1 \cap H) \cup (T_2 - H).$$

By Lemma 3 and the fact that H is T_1- and T_2-closed, it follows that $c(T_1 \cap H) = c(T_2 \cap H)$ and $c(T_1 - H) = c(T_2 - H)$. Therefore

$$c(T_3) = c(T_1 \cap H) + c(T_2 - H) = c(T_1),$$

so T_3 is a minimal cover of G. If $x_2 \notin V(H)$, then $\{x_1, x_2\} \subseteq I(T_3)$, contradicting Lemma 4 because x_1 is adjacent to x_2 in G. Hence $x_2 \in V(H)$, as required.

The following important lemma essentially generalises assertions (7.2) and (7.3) of Gallai [1].

Lemma 6 Let G be a graph with a cover-critical vertex x. If T_1 is an x-extreme cover of G and T_2 is any cover of G, then any component of $T_1 \cup T_2$ contains at most 1 isolated vertex of T_1.

PROOF. Suppose some component H of $T_1 \cup T_2$ contains at least 2 isolated vertices of T_1. If $x \in V(H)$, let $x_0 = x$, otherwise let x_0 be any vertex of $I(T_1 \cap H)$. Let $P = (x_0, \ldots, x_l)$ be a path of minimum length in H connecting x_0 to some other isolated vertex $x_l \in I((T_1 - x_0) \cap H)$.

By the minimality of P, the only isolated vertices of $T_1 \cap P$ are x_0 and x_l. Also by the minimality of P, the edges of P alternately lie in T_1 and T_2. As the edges x_0x_1 and $x_{l-1}x_l$ both lie in T_2, the length l of P is odd. So $T_1 \cap P$ and $T_2 \cap P$ are covers of P with $c(T_2 \cap P) = c(T_1 \cap P) - 1$. In particular, $T_1 \cap P$ is not a minimal cover of P. By Lemma 3, P is not T_1-closed, which means that some component of T_1 containing an edge of P must have order greater than 2.

Let x_j ($0 < j < l$) be the closest vertex to x_l on P that lies in a component of T_1 of order greater than 2, and let $P_1 = (x_j, \ldots, x_l)$ be the subpath of P with endvertices x_j and x_l. By the definition of x_j, the edge x_jx_{j+1} lies in T_2, so the length $l - j$ of P_1 is odd.

Consider the cover

$$T_3 = (T_1 - P_1) \cup (T_2 \cap P_1).$$

As the length of P_1 is odd, $T_1 \cap P_1$ and $T_2 \cap P_1$ are covers of P_1 with $c(T_2 \cap P_1) = c(T_1 \cap P_1) - 1$. Moreover, as P_1 is not T_1-closed but $P_1 - x_j$ is, $c(T_1 - P_1) = c(T_1) - c(T_1 \cap P_1) + 1$. Hence

$$c(T_3) = c(T_1 - P_1) + c(T_2 \cap P_1) = c(T_1),$$

so T_3 is a minimal cover of G. By the definition of P_1, $I(T_1) \cap V(P_1) = \{x_l\}$ and $I(T_2) \cap V(P_1) = \emptyset$. Hence

$$I(T_3) = I(T_1) \setminus (I(T_1) \cap V(P_1)) \cup (I(T_2) \cap V(P_1)) = I(T_1 - x_l),$$

contradicting the x-extremenness of T_1. Therefore every component of $T_1 \cup T_2$ contains at most one isolated vertex of T_1.

Lemma 7 If x_1 and x_2 are adjacent cover-critical vertices of a graph G and T_1 is an x_1-extreme cover of G, then there exists an x_2-extreme cover T_2 of G such that $I(T_1 - x_1) = I(T_2 - x_2)$.

PROOF. Let T_3 be any x_2-extreme cover of G. By Lemma 5, there is a component H of $T_1 \cup T_3$ containing x_1 and x_2. Define the cover

$$T_2 = (T_1 - H) \cup (T_3 \cap H).$$

By Lemma 3 and the fact that H is T_1- and T_2-closed, it follows that T_2 is a minimal cover of G. By the definition of T_2, $x_2 \in I(T_2)$. By Lemma 6,
$I(T_1 \cap H) = \{x_1\}$ and $I(T_3 \cap H) = \{x_2\}$, so $I(T_1 - H) = I(T_1 - x_1)$ and $I((T_3 - x_2) \cap H) = \emptyset$. Hence

$$I(T_2 - x_2) = I(T_1 - H) \cup I((T_3 - x_2) \cap H) = I(T_1 - x_1),$$

and T_2 is x_2-extreme as required.

Lemma 8 If $P = (x_0, \ldots, x_l)$ is a path in a graph G and x_0, \ldots, x_l are cover-critical vertices, then for every x_0-extreme cover T_0 of G there exists an x_l-extreme cover T_l of G such that $I(T_0 - x_0) = I(T_l - x_l)$.

Proof. The case $l = 0$ is trivial, so assume $l > 0$. Using Lemma 7, there exist x_i-extreme covers T_i ($i = 1, \ldots, l$) such that $I(T_i - x_{i-1}) = I(T_i - x_i)$ for all $1 \leq i \leq l$. Hence

$$I(T_0 - x_0) = I(T_1 - x_1) = \ldots = I(T_l - x_l),$$

which proves the lemma.

We are now ready to prove Theorem 1.

Proof of Theorem 1 Suppose T is an x-extreme cover of G such that $I(T - x) \neq \emptyset$. Let $x_2 \in I(T - x)$ and let x_1 be any vertex adjacent to x_2. The vertex x_1 must exist because G is connected, and by Lemma 4 $x_1 \notin I(T)$, so $x_1 \neq x$. By Lemma 8 and the hypothesis that G is connected and cover-critical, there exists an x_1-extreme cover T_1 of G such that $I(T - x) = I(T_1 - x_1)$. But then $\{x_1, x_2\} \subseteq I(T)$, contradicting Lemma 4. Hence $I(T) = \{x\}$, as required.

Finally, let us remark that Lemmas 4 and 8 can also be used to prove the following slight extension of Theorem 1.

Theorem 9 If x is a cover-critical vertex of a graph G, then G has a minimal cover T such that x is an isolated vertex of T, and x is not connected to any other isolated vertex of T by a path containing only cover-critical vertices.

Acknowledgements

The author would like to thank Oliver Pretzel for his valuable advice and comments.
References