Optimization and Approximation ENS Lyon

Lecture 1
Lecturer: Alantha Newman September 14, 2016

1 Optimization

What is an Optimization Problem? Optimize (minimize or maximize) an objective function over a set
of feasible solutions (defined by a set of constraints).

1.1 Example: Polly’s Diet

Suppose we are given the following nutrition table:

Chicken | Eggs | Bread | Milk
Protein 1 1 2 1
Fat 2 3 0 1
Sugar 0 1 1 1
Calories 4 5 2 3

A daily diet should obey the following guidelines.
It should contain the following recommended amounts:

— at least 10 units of protein,
— at least 15 units of fat,

— and at least 6 units of sugar.
It should not contain the following:

— more than 4 units of chicken,

— more than 5 units of milk.
Problem: Find a diet with the minimum calories.

Solution: Model this problem mathematically.

Define variables: let x1, x2, x3, 24 denote units of chicken, egg, bread and milk, respectively.
(The number of units for each foood may be fractional.)

Translate the diet requirements into constraints.

Define the objective function (minimize calories).

min 4x; + 5x9 + 223 + 314

r1+x2+2x3+24 = 10
201 +3x2+x4 > 15
Tot+x34+2T4 > 6

T < 4

Ty < 5

T1,%o, 3,24 > 0.

[t

1.2 A Generalized Diet Problem

Suppose there are n different foods and m different nutrients. The following table shows the nutritional
content in a unit of each food.

food1 ... foodn
nutrient 1 ail o ain
nutrient 2 a1 . aon
nutrient m Am1 ... Amn

Let A be the m x n matrix with entries {a;;}. The j'" column A; represents the nutritional content
of the j! food. Let b be a vector with the requirements of an ideal diet. (For this problem, it makes
sense to assume that the entries in both A and b are non-negative.)

1. Does there always exist an ideal diet? In other words, does there always exist a solution x > 0
such that Ax = b?

No. Why? Give an example. Suppose food 7 is the only food with non-zero nutritional content
for nutrients j and j’. In other words, ap; = ap; = 0 for all h # i. Then z; = b b

-)
ag; a;jr

which may not be the case. Such an instance would be infeasible.
2. If Ax > b and x > 0, say that x represents a good diet. Does there always exist a good diet?

No. Why? Suppose the entries in row j are all zero (i.e. there is some nutrient not contained
in any food), but the corresponding entry b; is positive, then we can not meet nutrient
requirement b;.

3. Suppose that all the entries in A and b are strictly positive. Then is there always a good diet?

Suppose that we are also given the following caloric information for the n foods:

food1 ... foodn
calories c - Cn

From the set of good diets, find the diet with the minimum calories. This is an example of a linear
program.

2 Linear Programming

A linear program is a problem where the objective is to minimize or maximize a linear function of a set
of variables subject to linear inequalities and/or equalities, called constraints.

Given an m X n matrix A, an m-dimensional vector b and an n-dimensional vector c, all with entries
in R, the linear programming problem is to find a solution x € R™ for the following:

n
min E CiT;
i=1

n
subject to: Zajixi > by, j:1<j<m,
i=1

x; > 0, 1:1 <1 <n.

Abbreviate this as follows:

min ¢Tx

Ax > Db
x > 0. (P)

Equivalent to allowing = and < constraints. (Prove as exercise.)

Linear programming was studied in the 1930’s by Kantorovich. In the 1940’s, George Dantzig
invented the simplex algorithm to solve linear programs. Shor, Nemirovski and Judin invented the
ellipsoid algorithm in the 1960’s and 70’s. And in 1979, Khachiyan showed that the ellipsoid algorithm
has polynomial complexity. In other words, he proved that linear programming is in the complexity
class P.

Thus, we can use linear programming to find Polly’s optimal diet. Can we use linear programming
to solve more challenging problems, i.e. classical problems in discrete optimization?

2.1 Minimum Cut

Given a graph G = (V, E), a cut is defined as a subset of vertices, S C V, S # (). The value of a cut S is
denoted by (S, S). The minimum s-t-cut problem is to find the cut S such that s € S and t ¢ S that
minimizes the value of §(S, S).

In the following linear program, we have the following variables corresponding to edges and vertices:

e /: FE — R, where £(i,) is the length of an edge ij,

e p:V — R, where p(i) is the potential of a vertex i.

min Z 0(ij)

ijEE

subject to: £(ij) > p(i) —p(j), ij € E,
p(s) =1,
p(t) =0
g(l]) Z 07 Z.] S E. (Pmin—cut)

Lemma 1. The optimal value of (Puin—cut)) equals the value of the minimum s-t-cut.

Proof. Suppose G has a minimum s-t-cut with value k. This means that G is k-edge connected.

= Assign all vertices in S value 1 and all those in S value 0. This shows that the solution to
(Ppin—cutl) is at most k.

< By Menger’s Theorem, there exist k edge-disjoint paths between s and ¢. Each path has value at
least 1. Thus, the solution to (Pin—cut)) is at least k. O

2.2 Maximum Cut

Given a graph G = (V, E), the mazimum cut problem is to find a cut S such that §(5,S) is maximized.
How can we model this problem?

max E (Zij —|—Zji)
ijeE

Zij < x4,

Zij <1- Zj,

xT; € {0,1} (Pl

maxfcut)

(Ppaz—cus) is an exact formulation for the maximum cut problem, but it is not a linear program, and thus
not necessarily solvable in polynomial time. Suppose we relax the constraint x; € {0,1} to 0 < z; < 1.
Then we will obtain a linear program whose value is at least that of the maximum cut. Relaxing an
integer constraint to obtain a linear program is called a linear programming relaxation.

Does this linear program model that maximum cut problem, as in the case of the minimum s-t-cut
problem? No, because the maximum cut problem is NP-hard.

Why restrict ourselves to linear programs? Maybe we can use quadratic programs? Let us consider
the following relaxation, i.e. non-integer program:

subject to: 0<x; <1, 1€V. (P2

maazfcut)
Lemma 2. The optimal value of (Pgay_cui) €quals the value of the mazimum cut.

Proof. Suppose the max-cut has size k.

= Assign all vertices in S value 1, and the rest 0. Then the value of is at least k.

< For any vertex z;, try setting x; to both 0 and 1. One of these choices does not decrease the
objective function. Thus, the final result is a cut that is at least as large as (P ,,_..), which by
definition, can not be greater than k. O

Since this is an exact relaxation, quadratic programming can not have a polynomial time algorithm!
This is why we stick to linear programming for now. In future lectures, we will see other (vector)
relaxations of quadratic programming called semidefinite programming.

3 Approximation

Some desirable properties for an algorithm are:
1. runs in polynomial time,
2. finds exact optimal solution,

3. robust: works for any input instance of a problem.

Most natural optimization problems are NP-hard (e.g. set cover, chromatic number). We can find
exact solutions using techniques from mathematical programming, for example. But we do not know
how to do so with a guarantee of efficiency or polynomial running time. In this class, we study algorithms
that satisfy the first and third properties—fast algorithms for every input—and so we must relax the
second property.

3.1 What is an Approximation Algorithm?

An c-approximation algorithm A for a problem P is an algorithm that:
1. runs in polynomial time,

2. for any instance of problem P, algorithm A produces a solution with value val4(P) such that:

(a) ga]i‘}((i)) < « (if P is a minimization problem),

la(P
(b) &FHr)

> « (if P is a maximization problem).

3.2 Why Approximation Algorithms?

Approximation algorithms give us a metric to compare techniques and problems. Someone who designs,
say, a 1.333-approximation algorithm for a problem probably has a better understanding of the problem
than someone who can only design a 1.5-approximation algorithm for that problem. Sometimes, approx-
imation algorithms are easier to implement than exact algorithms, since we have relaxed the objective
of providing an exact solution. Additionally, approximation algorithms can provide ideas for heuristics,
which we could implement to obtain exact solutions and sacrifice the guarantee of polynomial running
time.

3.3 Lower Bounds for Minimization Problems

How can we design an a-approximation algorithm for a problem P if we can not efficiently compute the
value of an optimal solution? In other words, if problem P is NP-hard, it may be hard to determine the
optimal value of P on an input instance I. If we can not compute this value, how do we know that the
output of our supposed a-approximation algorithm is actually within factor « of the value of an optimal
solution?

The main idea is that, although it is often the case that computing the value of an optimal solution
is infeasible, we can nevertheless often efficiently compute a lower bound (for a minimization problem)
on the value of an optimal solution. Then, if we prove that our algorithm outputs a solution within
factor « of this lower bound, then we can guarantee that our solution is within factor o of the value
of an optimal solution. Analogously, we need to find efficiently computable upper bounds in order to
design efficient approximation algorithms for maximization problems.

3.3.1 Example 1: Traveling Salesman Problem

Given n cities with costs c;; to go between city ¢ and j, the problem is to find a minimum cost tour that
visits each city at least once. We can think of this problem on a graph, G = (V, E), where the n cities
are represented by vertices in V' and each edge has weight c;;. We can assume the triangle inequality: for
all 4,7,7 € V, ¢ij < ik + cxj, and with this assumption, our goal is to find the minimum cost tour that
visits each vertex exactly once. We will refer to this problem as the metric traveling salesman problem
or metric TSP.

What is a polynomial-time computable lower bound on the cost of an optimal solution for the metric
TSP problem?

Lemma 3. The cost of a minimum spanning tree is at most that of an optimal tour.

Proof. Consider an optimal tour. Removing one edge results in a spanning tree with cost at most that
of the tour. Since the minimum spanning tree has cost at most the cost of any tree, it follows that the
cost of the minimum spanning tree is at most the cost of an optimal tour. O

ALGORITHM “DOUBLE”
Input: A G = (V, E) with edge costs {c;;}.

1. Find a minimum spanning tree of G with cost ¢(MST).
2. Double each edge in the spanning tree.
3. Take an Eulerian tour 7" of the doubled spanning tree.

4. Delete each previously visited vertex in the Eulerian tour T'.

Output: Tour of the vertices, T

Note that in Step 2. of Algorithm “Double”, we obtain a graph in which each vertex has even degree.
It is well known that such a graph has an Eulerian tour, i.e. a tour that visits each edge exactly once,
and there are many efficient ways to compute such a tour. The resulting tour can be viewed as an
ordering of the vertices in V' in which each vertex appears at least once but may appear multiple times.
The last step of Algorithm “Double” (Step 4) is to go through the vertices in the order determined by
the Eulerian tour and delete an occurence of a vertex if it appeared previously in the order. Note that
this step does not increase the cost of the tour due to the assumed triangle inquality on the edge costs.

Lemma 4. Algorithm “Double” is a 2-approzimation algorithm for metric TSP.

Proof. Call the cost of the final output tour of the vertices ¢(T"). Since Step 3 produces a tour that covers
each vertex at least once, and Step 4 removes only repeated occurences of a vertex, the output tour T’
is a feasible solution. Moreover, the Eulerian tour computed at Step 3 has cost at most 2 - ¢(MST). As
mentioned earlier, due to the triangle inequality, we do not increase the cost of the tour in Step 4. Thus,
for the cost of the output tour 7', applying Lemma [] we have:

o(T) <2-¢(MST) <2-OPT.
O

The best known approximation guarantee for the metric TSP problem is 1.5. This is due to
Christofides and dates to 1976. There is a famous conjecture that there exists an efficient algorithm that
produces a tour of cost at most 4/3-optimal.

3.3.2 Example 2: Vertex Cover

Given a graph G = (V, E), a vertex cover is a subset S of vertices such that for each edge ij € F, either
i or j belongs to S. The vertex cover problem is to find a vertex cover of minimize size. Vertex cover
is NP-hard. How well can it be approximated? What is a good lower bound? One natural method for
obtaining efficiently computable lower bounds for NP-hard problems is to use the linear programming
relaxation of an integer program.

Consider the following linear programming relaxation for vertex cover:

min g xT;

i€V
2, >0, i€V (P,.)

Note that since this is a relaxation of the original (discrete) problem, an integral solution (valid vertex
cover) is a feasible solution for . Thus, the value of is a lower bound on the value of an
optimal vertex cover.

Now we would like to use to obtain a feasible vertex cover (i.e. integer solution to) Our
goal is to round the fractional values x1,x2,...,x, to obtain a vertex cover whose size is not too much
larger than the value of . To do this,

How can we round this LP to obtain a feasible vertex cover with a solution that is not too much
larger than this lower bound? For this problem, we can take all the vertices whose corresponding x; > %
and put them into the vertex cover. Since for each edge ij € F, it is the case that at least one of z;
or z; has value at least half, this is solution is a valid vertex cover. Finally, note that this solution has
value at most twice the value of , since each vertex contributes at most 2x; to the vertex cover.

References

[Chv83] Vasek Chvatal. Linear programming. Macmillan, 1983.

[Stid5] George J. Stigler. The cost of subsistence. Journal of Farm Economics, 27(2):303-314, 1945.

These lecture notes are partly based on the following sources: lectures notes by Stéphan Thomassé from
previous versions of the same course, and lectures notes from a course on Approximation Algorithms
at EPFL (http://theory.epfl.ch/osven/courses/Approx13)). The example in Section is from

[Chv83], and the example in Section [1.2]is from [Sti45].

http://theory.epfl.ch/osven/courses/Approx13

	Optimization
	Example: Polly's Diet
	A Generalized Diet Problem

	Linear Programming
	Minimum Cut
	Maximum Cut

	Approximation
	What is an Approximation Algorithm?
	Why Approximation Algorithms?
	Lower Bounds for Minimization Problems
	Example 1: Traveling Salesman Problem
	Example 2: Vertex Cover

