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1 Triangle Transversals

Let G = (V,E) be a simple, undirected, unweighted graph. A triangle in G is an induced subgraph on
the vertex set {i, j, k} that contains the edges {ij, jk, ik}. Let T denote the set of triangles in G. Some
well-studied questions are:

1. What is the maximum number of edge disjoint triangles in G?

2. What is the minimum size of a set of edges that intersects all triangles in G?

The first question is a packing problem and the second is a covering problem and a set of edges that
intersects or covers all triangles is sometimes called a transversal.

1. ν(G) denotes the size of a maximum triangle packing of G.

2. τ(G) denotes the size of a minimum triangle transversal of G.

Observe that ν(G) ≤ τ(G).
The problem of finding a minimum triangle transversal has an easy 3-approximation algorithm: We

can greedily find a triangle t in G, add all edges in t to the solution set F (and remove them from
E), and continue until G contains no more triangles. The set of edge disjoint triangles T ′ ⊆ T that
we have found at the end of this process is a lower bound on the size of any triangle transversal (i.e.,
|T ′| ≤ ν(G) ≤ τ(G)). Our solution set F has size |F | = 3|T ′| ≤ 3ν(G) ≤ 3τ(G). Therefore, this greedy
procedure is a 3-approximation algorithm.

1.1 Linear Programming Relaxation

Consider the following linear programming relaxation for the minimum triangle transversal problem.
This is a covering LP.

min
∑
e∈E

xe∑
e∈t

xe ≥ 1 for all triangles t ∈ T ,

xe ≥ 0. (Ptri-cover)

The dual linear program is a relaxation of the triangle packing problem. This is a packing LP.

max
∑
t∈T

yt∑
t:e∈t

yt ≤ 1 for all edges e ∈ E,

yt ≥ 0. (Dtri-pack)

We use the following notation for the optimal values of these linear programming relaxations on G.

1. ν∗(G) denotes the value of (Ptri-cover).

2. τ∗(G) denotes the optimal value of (Dtri-pack).

Observe that ν∗(G) = τ∗(G) by strong duality. Therefore, we have

ν(G) ≤ ν∗(G) = τ∗(G) ≤ τ(G).
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1.2 A 2-Approximation Algorithm

Before we present the algorithm, we need some lemmas.

Lemma 1. G has a triangle transversal F ⊂ E such that

1. |F | ≤ |E|2 , and

2. F can be found efficiently.

Proof. Let S ⊂ V denote a subset of vertices and let S̄ = V \ S. Note that the set of edges E \E(S, S̄)
is a triangle transversal. (In fact, it intersects all of the odd cycles in G.)

Now let’s show that there exists a set of vertices S ⊂ V such that

|E(S, S̄)| ≥ |E|
2
.

Assign each vertex v ∈ V to the set S with probability 1
2 . Then

E[|E(S, S̄)|] =
∑
ij∈E

(Pr(i ∈ S and j /∈ S) + Pr(i /∈ S and j ∈ S))

=
∑
ij∈E

(
1

4
+

1

4

)
=
|E|
2
.

Therefore, the expected size of F = E \ E(S, S̄) is at most |E|/2.

Lemma 2. Let x∗ be an optimal solution for (Ptri-cover) on G = (V,E). If x∗e > 0 for all e ∈ E, then

ν∗(G) ≥ |E|
3
.

Proof. Our goal is to show that when x∗e > 0 for all e ∈ E, we can obtain a large lower bound on ν∗(G).
By complementary slackness, we have that for each edge e ∈ E,

∑
t:e∈t yt = 1. In other words,

|E(G)| =
∑
e∈E

1 =
∑
e∈E

∑
t:e∈t

yt =
∑
t∈T

∑
e∈t

yt = 3
∑
t∈T

yt.

This implies: ∑
t∈T

yt =
|E|
3

= ν∗(G).

Combining Lemmas 1 and 2, we have the following.

Lemma 3. Let x∗ be an optimal solution for (Ptri-cover) on G = (V,E) such that x∗e > 0 for all e ∈ E.
Then we can efficiently find a triangle transversal F such that

ν(G) ≤ |F | ≤ |E|
2

=
|E|
3

3

2
=

3

2
ν∗(G).

Now we present an algorithm for finding a triangle transversal.
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Triangle-Cover(G)

1. F ← ∅.

2. Solve (Ptri-cover) on G and let x∗ denote an optimal solution.

3. If x∗e > 0 for all e ∈ E, find a triangle cover F such that |F | ≤ |E|2 .

4. Otherwise:

(a) For all e ∈ E such that x∗e ≥ 1
2 ,

i. Add e to F , and
ii. Delete e from E.

(b) For all e ∈ E such that x∗e = 0,

i. Delete e from E.

(c) Go to Step 2.

5. Return F .

Theorem 4. Triangle-Cover(G) returns a triangle transversal F such that |F | ≤ 2ν∗(G).

Proof. Let E≥ 1
2

= {e | x∗e ≥ 1
2} and let E0 = {e | x∗e = 0}. Now consider the graph E′ = E \(E0 ∪ E≥ 1

2
).

We claim that every triangle in G containing an edge e ∈ E0 also contains an edge in E≥ 1
2
. It remains

to find a triangle transveral for triangles with all edges e where 0 < x∗e <
1
2 , which are exactly the edges

in E′. Note that x∗ restricted to E′ is a feasible solution for (Ptri-cover) on G′ = (V,E′). Thus, the
optimal solution for (Ptri-cover) on G′ is at most that of x∗ restricted to E′. In other words,

ν∗(G′) ≤ x∗(E′).

Then we have
|E≥ 1

2
| ≤ 2(x∗(E≥ 1

2
)− x∗(E′)) ⇒ |E≥ 1

2
| ≤ 2(ν∗(G)− ν∗(G′)).

We can re-solve for the optimal solution of (Ptri-cover) on G′ to obtain a new optimal solution x∗

and repeat the procedure of adding edges for which x∗e ≥ 1
2 to E≥ 1

2
and deleting edges with x∗e = 0 from

the graph. Let F denote the union of the sets E≥ 1
2

over all of these iterations and suppose that on the
last iteration, we either have an empty graph or we have a graph G′ = (V,E′) such that x∗e > 0 for
all e ∈ E′. Then |F | ≤ 2(ν∗(G) − ν∗(G′)). Applying Lemma 3 to G′, we obtain a triangle transversal
F ′ for G′ such |F ′| ≤ 3

2ν
∗(G′). Combining F and F ′ results in a triangle transversal of size at most

2ν∗(G).

Theorem 4 implies that τ(G) ≤ 2ν∗(G). The following famous conjecture is due to Tuza.

Conjecture 1. τ(G) ≤ 2ν(G).

This conjecture, if true, is best possible as can be seen by considering G = K4 or G = K5. As we saw
earlier, τ(G) ≤ 3ν(G). Haxell proved that τ(G) ≤ (3− 3

23 )ν(G) [Hax99]. For more on triangle packing
and covering, see [Kri95].

2 Feedback Arc Set on Tournaments

Let T = (V,A) be a tournament, which is a complete graph in which each edge is oriented in one direc-
tion. The goal of the feedback arc set problem is to find a minimum cardinality subset of arcs F ⊂ A
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such that T ′ = (V,A \ F ) is acyclic. The primal linear program and its dual are shown below. Let C
denote the set of directed cycles in T . Here (i, j) denotes the directed edge or arc from vertex i to vertex j.

Primal (Covering) LP:

min
∑

(i,j)∈A
xij

subject to:
∑

(i,j)∈c
xij ≥ 1, ∀ c ∈ C

xij ≥ 0.

Dual (Packing) LP:

max
∑
c∈C

yc

subject to:
∑

c:(i,j)∈c
yc ≤ 1, ∀ (i, j) ∈ A

yc ≥ 0.

We consider the following algorithm for the feedback arc set problem on tournaments. Note that
this problem is equivalent to finding an ordering of the vertices that minimizes the number of backward
edges (i.e., the set F comprises the backward edges in the ordering).

Algorithm: RandomFAS
Input: T = (V,A).
Output: Ordering of vertices in V .

• Choose i ∈ V at random.

• if (j, i) ∈ A, ⇒ j → L.

• if (i, j) ∈ A, ⇒ j → R.

• return (RandomFAS(L,A(L)),RandomFAS(R,A(R))).

We now prove that RandomFAS is a 3-approximation algorithm for the problem of feedback arc set on
tournaments.

Let T be the set of directed triangles: a triangle t = {i, j, k} belongs to T if {(i, j), (j, k), (k, i)} ∈ A.
Note that T ⊂ C. Let At be the event that one vertex of t = {i, j, k} is chosen before triangle t is broken
by the algorithm (i.e., when {i, j, k} occur in same recursive call). Let pt be the probability of event At.
Then, we have:

E[cost of solution] = E[number of backward edges] =
∑
t∈T

pt.

In the next lemma, we will show that setting y′c = 0 for all c ∈ C, where c is not a triangle (i.e. c /∈ T ),
and y′t = pt

3 for all t ∈ T yields the dual feasible solution {y′c}.

Lemma 5. Setting y′c = y′t = pt

3 , if c = t ∈ T and 0 otherwise is dual feasible.

Proof. Let Be be the event that edge e is backwards in the output ordering. Let Be ∧ At be the event
that edge e is backwards due to At. For example, suppose vertices i, j, k form triangle t which is yet
unbroken when vertex k is chosen as the pivot. Then we say that edge e = (i, j) is backwards due to

4



event At. Since, given event At, each edge in t is equally likely to be a backwards edge, we have:

Pr(Be ∧At) = Pr(Be|At)Pr(At)

=
1

3
× pt

=
pt
3
.

Note that for any t 6= t′ ∈ T such that e ∈ t and e ∈ t′, Be ∧At and Be ∧At′ are disjoint events. Hence,∑
t:e∈t

Pr(Be ∧At) ≤ 1. This implies that, for all e ∈ A:

∑
c:e∈c

y′c =
∑
t:e∈t

pt
3
≤ 1.

We can therefore conclude that {y′c} is a dual-feasible solution.

Thus, we obtain a 3-approximation algorithm for the problem of feedback arc set on tournaments.

Theorem 6. The approximation guarantee of RandomFAS is 3.

Proof.

E[cost of solution] =
∑
t∈T

pt =
∑
c∈C

3yc = 3 ·
∑
c∈C

yc ≤ 3 ·OPT.

Since we have shown that the values {y′c} = {pt/3} are dual-feasible, it follows from weak duality that∑
t∈T pt/3 =

∑
c∈C y

′
c is a lower bound on the size of minimum feedback arc set.

2.1 Covering Cycles versus Triangles

Let {y∗t } denote an optimal fractional (directed) triangle packing for a tournament. Note that the
argument we presented shows:

FAS ≤ 3 ·
∑
t∈T

y∗t .

Let FTS denote the a subset of arcs that intersects all directed triangles in a tournament T . By the
arguments from Section 1.2, we can show that:

FTS ≤ 2 ·
∑
t∈T

y∗t .

This follows from the fact that we can prove an analogue of Lemma 1 for directed triangles in a tour-
naments: If we take any ordering of the vertices, both the set of forward arcs and the set of backwards
arcs intersects each directed triangle, and at least one of these sets contains at most half the arcs.
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