Homework 2 Solutions

- Exercise 1 - Private Vectors

Alice has two unit vectors, \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n \). Bob wants to know the value \(\mathbf{x} \cdot \mathbf{y} \). He is allowed to choose any vector \(\mathbf{v} \in \mathbb{R}^n \), send \(\mathbf{v} \) to Alice and she will send him \(\mathbf{v} \cdot \mathbf{x} \) and \(\mathbf{v} \cdot \mathbf{y} \).

a. Can Bob compute \(\mathbf{x} \cdot \mathbf{y} \) using fewer than \(n \) queries?

Solution: It seems impossible for Bob to compute \(\mathbf{x} \cdot \mathbf{y} \) using fewer than \(n \) queries. For example, if \(n = 2 \), and we make one query corresponding to the following equations,

\[
\begin{align*}
v_1 x_1 + v_2 x_2 &= a, \\
v_1 y_1 + v_2 y_2 &= b,
\end{align*}
\]

then even using the fact that \(\mathbf{x} \) and \(\mathbf{y} \) are unit vectors, we cannot uniquely determine \(\mathbf{x} \cdot \mathbf{y} \). This can be generalized for \(n > 2 \).

b. Suppose Bob wants to estimate\(^1\) the dot product \(\mathbf{x} \cdot \mathbf{y} \). Design an algorithm for Bob that uses the fewest possible queries to Alice to estimate \(\mathbf{x} \cdot \mathbf{y} \).

Solution: Bob can make \(k \) queries and each time, choose each entry in \(\mathbf{v} \) according to the normal distribution \(\mathcal{N}(0, \frac{1}{k}) \). Then the queries \(\mathbf{v} \cdot \mathbf{x} \) and \(\mathbf{v} \cdot \mathbf{y} \) are random projections of \(\mathbf{x} \) and \(\mathbf{y} \). Let \(\mathbf{x}' \in \mathbb{R}^k \) and \(\mathbf{y}' \in \mathbb{R}^k \) denote these \(k \) random projections. Then by the Johnson-Lindenstrauss Lemma, \(\mathbf{x}' \cdot \mathbf{y}' \) is a good estimate for \(\mathbf{x} \cdot \mathbf{y} \) when \(k = O\left(\frac{1}{\epsilon^2}\right) \) (since we only need to union bound over a constant number of dot products).

- Exercise 2 - Jaccard Distance

Let \(U \) denote a universe of \(N \) items. Let \(A \subseteq U \) and \(B \subseteq U \) denote two sets, each containing \(n \) unique items, where \(n < N \). The Jaccard distance between \(A \) and \(B \) is defined as

\[
\frac{|A \Delta B|}{|A \cup B|},
\]

where \(A \Delta B \) is the symmetric difference of the sets \(A \) and \(B \) (i.e., the number of elements in \(A \setminus B \) plus the number of elements in \(B \setminus A \)).

1. Suppose that \(A \) and \(B \) are each constructed by (independently) choosing an \(n \)-item subset of \(U \) uniformly at random among all such subsets. What is the expected value of the Jaccard distance between \(A \) and \(B \)?

2. Prove or disprove: The Jaccard distance obeys the triangle inequality. (The triangle inequality holds if \(d(A, B) \leq d(A, C) + d(B, C) \) for any three sets \(A, B, C \subseteq U \).)

- Exercise 3 - Small-Set Expansion on the Hypercube

A graph \(G = (V,E) \) is a \((\delta, \epsilon)\)-small-set expander if for all subsets of vertices \(S \subset V \) such that \(|S| = \delta |V|\),\(^2\)

\[
\frac{E(S, \bar{S})}{\sum_{v \in S} \deg(v)} \geq 1 - \epsilon.
\]

\(^1\)By estimate, we mean compute a multiplicative \(1 \pm \epsilon \) or an additive \(\pm \epsilon \) approximation, whichever is larger.

\(^2\)If you prefer to use the constraint \(|S| \leq \delta |V|\) rather than \(|S| = \delta |V|\), you are free to do so.
A hypercube is a graph on 2^n vertices, where each vertex corresponds to a (distinct) length-n binary string. Two vertices are connected by an edge if their respective binary strings differ in exactly one bit. For what values of ϵ, δ is the hypercube a (δ, ϵ)-small-set expander?

- Exercise 4 - Unique Games and Cycle Covers

Suppose we are given a cubic graph $G = (V, E)$ and a constraint $x_i - x_j \equiv c_{ij} \mod p$ for each edge $ij \in E$. Our objective is to find an assignment from $[0, p)$ to the variables $\{x_i\}$ that maximizes the number of satisfied constraints.

a. Give a $\frac{2}{3}$-approximation algorithm for this problem.

b. Suppose that G has a cycle cover containing at least $\frac{n}{10}$ cycles. Give an approximation algorithm for this problem with the best approximation factor you can find. (A cycle cover is a subgraph of G with vertex set V and edgeset $F \subset E$ such that each vertex $v \in V$ has degree exactly two.)

- Exercise 5 - Spectral Partitioning

a. Give an example of a d-regular graph G in which the spectral partitioning algorithm (Lecture 8) has an output close to its upper bound.

b. Give an example of a d-regular graph G in which the spectral partitioning algorithm has a output close to the lower bound (i.e., close to $\lambda_2(G)/2$).

- Exercise 6 - Local Connectivity

Assume that $G = (V, A)$ is an directed, unweighted graph such that the solution for the linear programming relaxation for ATSP on G has value $|V|$. Give an algorithm for Local-Connectivity ATSP that is 2-light.