- Exercise 1 - Triangle Transversals

Given an undirected graph $G = (V,E)$, a triangle transversal is a subset of edges, $F \subseteq E$, such that $G' = (V,F')$ contains no triangles. In Lecture 3, we presented a 2-approximation for the problem of finding a minimum cardinality triangle transversal. In class, someone suggested the following algorithm:

\begin{algorithm}
\textsc{Remove-Edge-From-Triangle}(G)
\begin{enumerate}
\item $F \leftarrow \emptyset$.
\item Repeat until G contains no triangles:
\begin{enumerate}
\item Find any triangle t in G.
\item Let e be any edge in t.
\begin{enumerate}
\item Add e to solution set F.
\item Remove e from E (i.e., from G).
\end{enumerate}
\end{enumerate}
\end{enumerate}
3. Return F.
\end{algorithm}

Prove or disprove: The algorithm \textsc{Remove-Edge-From-Triangle} is a 3-approximation algorithm for the minimum triangle transversal problem.

- Exercise 2 - Tournaments

A tournament $T = (V,A)$ is an oriented complete graph: for each pair of distinct vertices i and j in V, there is either an arc ij or ji (but not both). A tournament is strongly connected if for each pair of distinct vertices i and j in V, there is a directed path from i to j and a directed path from j to i.

a. Prove or disprove: A strongly connected tournament on at least three vertices contains a directed triangle. (A directed triangle consists of the arcs ij, jk and ki where i, j and k are three distinct vertices.)

b. Prove or disprove: A strongly connected tournament on at least three vertices contains a directed Hamilton cycle. (A Hamilton cycle is a cycle that visits each vertex exactly once.)

- Exercise 3 - Semi-Kernels in Digraphs

A semi-kernel in a digraph $D = (V,A)$ is a subset of vertices, $S \subseteq V$, such that S is a stable set and for every vertex $v \in V$, either $v \in N^+[S]$ or there is some vertex w such that $v \in N^+(w)$ and arc $(u,w) \in A$ for some $u \in S$. In other words, $N^{++}[S] = V$.

Prove or disprove: every digraph has a semi-kernel.

1Homework submitted by email must be written using \LaTeX{} and attached in .pdf format.
- Exercise 4 - Duality

Let $G = (V, E)$ be an undirected graph and let \mathcal{S} be the set of all stable sets. The indicator vector x consists of the entries x_S for each stable set $S \in \mathcal{S}$. In Lecture 4, we gave the following linear programming relaxation for the graph coloring problem.

$$
\min \sum_{S \in \mathcal{S}} x_S \\
\text{subject to:} \sum_{S : v \in S} x_S \geq 1, \quad \text{for all } v \in V, \\
x_S \geq 0. \\
\tag{P_{frac-color}}
$$

a. Write the dual linear program for $(P_{frac-color})$.

b. For which discrete optimization problem is the dual a relaxation?

c. What is the integrality gap of this relaxation?

- Exercise 5 - Red and Blue Tournaments

Let $T = (V, A)$ be a tournament (i.e., an oriented complete graph K_n on n vertices). Suppose that each arc is colored either red or blue. For two vertices u and v, we say that there is a red path from u to v if there exists a directed path from u to v consisting of only red arcs. We define a blue path from u to v analogously. (Note that if $u = v$, then there is trivially a red and a blue path from u to v.

Prove or disprove: There is a vertex u in V such that for each vertex v in V, there is either a red path or a blue path from u to v.