Final Exam: January 26, 2018

Duration 3 hours. One 8.5×11 inch sheet of paper allowed.

Exercise 1.

Figure 1: Each edge shown has unit cost. This graph has 21 vertices and 24 edges.

- 1. What is the cost of a minimum cost traveling salesman tour of the graph shown in Figure 1?
- 2. What is the value c_{ij} (i.e. the cost of edge (i, j)) in the metric completion of the graph shown in Figure 1?
- 3. **True** or **False**: The following set of constraints describes an integer program for the traveling salesman problem on the metric completion of a graph.

$$\min \sum_{e \in E} c_e \cdot x_e$$

$$x(\delta(i)) = 2, \quad \text{for all } i \in V,$$

$$x(\delta(S)) \ge 1, \quad \text{for all } S \subset V \text{ such that } S \neq \emptyset,$$

$$x_e \ge 0, \quad \text{for each edge } e. \qquad (P_{TSP})$$

If your answer is **False**, give correction(s).

(Recall that for a vertex subset, $S \subset V$, $\delta(S)$ denotes the set of edges that have exactly one endpoint in S.)

Exercise 2.

Recall that the maximum cut problem is to find a subset $S \subset V$ such that the number of edges crossing the cut $(S, V \setminus S)$ is maximized. Let G = (V, E)be an undirected, unweighted graph. Consider the following relaxation of the maximum cut problem on G.

$$\max \sum_{(i,j)\in E} \frac{1 - v_i \cdot v_j}{2}$$

subject to: $v_i \cdot v_i = 1$
 $v_i \in \mathbb{R}^n$ (P_{cut})

Suppose that there exists an optimal solution for (P_{cut}) on G in which for every edge $ij \in E$, it is the case that $v_i \cdot v_j = -\frac{1}{2}$.

- a. What is an upper bound on the size of a maximum cut of G in terms of |E|? (Give the smallest upper bound you can find.)
- b. What is a lower bound on the size of a maximum cut of G in terms of |E|? (Give the largest lower bound you can find.)

Exercise 3.

Let G = (V, E) be a simple, bridgeless, cubic graph.¹ Suppose that G has a cycle cover $C \subset E$ such that each cycle in C contains at least eight edges. Moreover, suppose we are given the cycle cover C.

- a. Describe how to find a spanning tree of G and a perfect matching in G that intersect in at most $\frac{n}{8}$ edges.
- b. Let $J \subseteq V$ denote that set of vertices that have odd degree in the spanning tree T from Part a. Give an upper bound on the weight of a perfect matching of the vertices in J in the metric completion of G.
- c. What is the smallest upper bound you can prove on the cost (i.e. cardinality) of a TSP tour in G?

 $^{^1 \}rm Recall$ that bridgeless means 2-edge-connected and cubic means each vertex is adjacent to exactly three edges. A simple graph does not contain multi-edges or self-loops.

Exercise 4.

Let G = (V, E) be an undirected, unweighted, 5-edge-connected graph. Our goal is to find subset of edges, $F \subset E$, such that F forms a 3-edge-connected, spanning subgraph of G and |F| is minimum. Consider the following linear programming relaxation for this problem:

$$\min \sum_{ij \in E} x_{ij} x(\delta(S)) \ge 3, \quad \text{for all } S \subset V \text{ such that } S \neq \emptyset, x_{ij} \ge 0, \quad \text{for all edges } ij \text{ in } E.$$
 (P_{3EC})

Give a polynomial-time separation oracle for (P_{3EC}) .

Exercise 5.

Let T = (V, A) be a tournament and let n = |V|. Let $w : V \to \mathbb{R}^+$ denote a nonnegative weight function on the vertices of T. The minimum weight dominating set problem is to find a subset of vertices, $S \subset V$, such that:

- (i) for each vertex $j \in V$, either j belongs to S or there exists a (directed) edge $(i, j) \in A$ such that $i \in S$, and
- (ii) $\sum_{i \in S} w_i$ is minimum.
- a. Write an integer program for the minimum weight dominating set problem.
- b. Write its linear programming relaxation.
- c. Show how to round the relaxation from Part b. to obtain a log *n*-approximation algorithm for the minimum weight dominating set problem.

Exercise 6.

Let G = (V, E) be an undirected, bipartite graph. Let n denote the number of vertices in G, and let \mathbf{A} denote the adjacency matrix of G. (Recall that $\mathbf{A} = \{a_{ij}\}$ is a symmetric matrix, and $a_{ii} = 0$ for all $i \in V$, and $a_{ij} = 1$ for all $ij \in E$.) Define $\tau(G)$ as follows.

$$\tau(G) = \min_{|\mathbf{x}|=n} \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$$

True or **False**: $\tau(G) \leq -2 \cdot |E|$. Justify your answer.

Exercise 7.

Let G = (V, E) be a simple cycle on n vertices. Note that G is an undirected and unweighted graph. Let $S_1 \subset V$ and $S_2 \subset V$ denote two distinct, nonempty subsets of vertices, each corresponding to a minimum cut of G.

True or **False**: Cut S_1 and cut S_2 are equally likely to be output by the routine RANDOM-CONTRACT(G).

Justify your answer. For your convenience, the following subroutines are provided.

RANDOM-CONTRACT(G)

- 1. Iterate n-2 times:
 - (a) Pick edge ij uniformly at random from E.
 - (b) $G \leftarrow \text{CONTRACT}(G, ij)$.

Contract $(G, ij \in E)$

- 1. Merge vertices i and j to form a single vertex u.
- 2. Let $V' = \{V \setminus \{i, j\}\} \cup \{u\}.$
- 3. Let $E' = \{E \setminus \{\delta(i), \delta(j)\}\}.$
- 4. For each $k \neq i, j$:

(a) If $ik \in E$, add edge uk to E'.

- (b) If $jk \in E$, add edge uk to E'.
- 5. Output (multigraph) G' = (V', E').