
Advanced Heuristic and Approximation Algorithms Grenoble-INP (ORCO)

Lecture 9
Lecturer: Alantha Newman December 8, 2017

1 Randomized LP Rounding

Many of the discrete optimization problems that we want to (approximately) solve can be viewed as
hitting set problems. For example, vertex cover falls into this category. Let U = {e1, . . . , en} denote a
universe of n elements, and let T = {T1, T2, . . . , Tm} denote a family of m sets such that Tj ⊆ U for all
j ∈ {1, 2, . . . ,m}. Each element in U is equipped with a cost function c : U → R

+. The goal is to find
a subset A ⊆ U with minimum cost c(A) such that Tj ∩ A 6= ∅ for all j ∈ {1, 2, . . . ,m}. The hitting set
problem can be modeled with the following linear program.

min

n∑
i=1

c(ei) · xei

subject to:
∑
ei∈Tj

xei ≥ 1, for all sets Tj ,

xei ≥ 0. (PHit−Set)

Suppose that each set Tj has size at most k, i.e. |Tj | ≤ k. If we consider the solution set S =
{ei ∈ U | xei ≥ 1/k}, then S is a hitting set and the cost of S is at most k times the optimal value of
(PHit−Set). Note that this is a generalization of the 2-approximation algorithm we saw for the vertex
cover problem in Lecture 3. However, since k could be very large, this deterministic method might not
yield a good approximation guarantee.

The problems that we will study in this lecture and the next can all be viewed as hitting set problems,
e.g. maximum satisfiability, set cover and dominating set. A common approach to finding feasible
solutions for such problems is to interpret the variables xei as probabilities, i.e. the probability of
adding element ei to the solution set. This is the main idea behind randomized rounding of linear
programs.

2 Maximum Satisfiability

In the maximum satisfiability problem, we are given a formula in conjunctive normal form and the goal
is to find a boolean assignment for the variables that satisfies the maximum number of clauses.

Input: A formula F on n variables, {x1, x2, . . . , xn}, and m clauses, {C1, . . . , Cm}. Each clause
Cj has a nonnegative weight wj and consists of some subset of positive and negative variables (a.k.a.
literals). For example, F = (x1 ∨ x̄2)∧ (x3)∧ (x1 ∨ x2 ∨ x̄3)∧ (We assume that each clause contains
only one copy of each variable.)
Output: An assignment xi ∈ {0, 1} for each variable maximizing the total weight of the satisfied

clauses.

The maximum satisfiability problem can be viewed as a hitting set problem. We can construct a
set system whose sets correspond to the clauses in F as well as pairs of literals {xi, x̄i}. A satisfying
assignment corresponds to one in which at least one literal from each of these sets is included in the hitting
set. We note that the maximum satisfiability problem is NP-hard since it generalizes the decision problem
3-SAT: If m is the maximum number of clauses that can be satisifed, then the formula is satisfiable. If
each clause contains exactly two literals, then this problem is known as MAX-2-SAT and is NP-hard

1

(even though the decision problem has an efficient algorithm). We now consider a simple randomized
algorithm for the maximum satisfiability problem.

Algorithm 1

For i = 1 to n:

Set each variable xi → 1 with probability 1
2 .

The expected value of the assignment output by the algorithm is:

E[W] =

m∑
j=1

wj · Pr[Cj is satisfied].

Lemma 1. If the clause Ci has size k (i.e. k variables), then:

Pr[Cj is satisfied] = 1− 1

2k
.

Proof. Pr[Cj is not satisfied] = 1
2k

. So Pr[Cj is satisfied] = 1− 1
2k

.

If all clauses have size ≥ 2, Algorithm 1 has an approximation guarantee of 3
4 . But can we achieve an

approximation ratio of 3
4 when there are also unit clauses? Algorithm 1 has good performance when

the clause lengths are long. We now consider another algorithm that performs well when the clauses are
short and show that combining these two algorithms yields a 3

4 -approximation algorithm.

2.1 LP Relaxation for Maximum Satisfiability

For each clause Cj , we let S+
j denote the positive variables and S−j denote the negated variables. The

following integer program exactly models (i.e. is equivalent to) the maximum satisfiability problem.

max

m∑
j=1

wjzj

subject to:
∑
i∈S+

j

yi +
∑
i∈S−

j

(1− yi) ≥ zj , for j ∈ {1, 2, . . . ,m},

yi, zj ∈ {0, 1}.

We consider the corresponding linear programming relaxation. Now the variable zj denotes the fraction
of clause Cj that is satisfied and yi is the fractional truth value of variable xi.

max

m∑
j=1

wjzj

subject to:
∑
i∈S+

j

yi +
∑
i∈S−

j

(1− yi) ≥ zj , for j ∈ {1, 2, . . . ,m},

0 ≤ yi ≤ 1,

0 ≤ zj ≤ 1. (PMax−Sat)

2

Algorithm 2

Find an optimal solution {y∗, z∗} for (PMax−Sat).
For i = 1 to n:

Set each variable xi → 1 with probability y∗i .

To analyze the performance of Algorithm 2, we need some useful inequalities.

Fact 2. [Arithmetic-geometric mean inequality] For any nonnegative a1, . . . , ak,(
k∏

i=1

ai

) 1
k

≤ 1

k

k∑
i=1

ai.

Fact 3. If a function f(x) is concave on the interval [0, 1] (that is, f ′′(x) ≤ 0 on [0, 1]), and f(0) = 0
and f(1) = b, then f(x) ≥ bx for x ∈ [0, 1].

Theorem 4. Algorithm 2 is a (1− 1
e)-approximation for maximum satisfiability.

Proof. What is the probability that clause Cj is satisfied by the assignment given by Algorithm 2?
Let `j denote the length of clause Cj .

Pr[Cj is not satisfied] =
∏
i∈S+

j

(1− y∗i)
∏
i∈S−

j

y∗i

≤

 1

`j

∑
i∈S+

j

(1− y∗i) +
∑
i∈S−

j

y∗i

`j

(1)

=

1 +
1

`j

−`j +
∑
i∈S+

j

(1− y∗i) +
∑
i∈S−

j

y∗i

`j

=

1− 1

`j

∑
i∈S+

j

y∗i +
∑
i∈S−

j

(1− y∗i)

`j

≤
[
1− 1

`j
z∗j

]`j
.

Line (1) follows from Fact 2. Thus, we have:

Pr[Cj is not satisfied] ≤
[
1− 1

`j
z∗j

]`j
.

This implies:

Pr[Cj is satisfied] ≥ 1−
[
1− 1

`j
z∗j

]`j
≥

[
1−

(
1− 1

`j

)`j
]
z∗j . (2)

3

Line (2) follows from Fact 3. So we can compute the expected value of the solution:

E[W] =

m∑
j=1

wj · Pr[Cj is satisfied]

≥
m∑
j=1

wj · z∗j

[
1−

(
1− 1

`j

)`j
]

≥ min
k≥1

[
1−

(
1− 1

k

)k
]

m∑
j=1

wj · z∗j

≥ min
k≥1

[
1−

(
1− 1

k

)k
]
·OPT.

Using the fact that 1 + x ≤ ex for all x, we have:

1− 1

k
≤ 1

e
1
k

⇒(
1− 1

k

)k

≤ 1

e
.

This implies:

min
k≥1

[
1−

(
1− 1

k

)k
]
≥

(
1− 1

e

)
,

which implies that E[W] ≥ (1− 1
e) ·OPT .

Now we combine both algorithms. Namely, we run both algorithms and output the assignment that
satisfies the most clauses. To analyze this, we consider the expected value of an assignment if we run
each algorithm with probability 1

2 . (Note that we can run Algorithm 1 with probability α ≥ 0 and
Algorithm 2 with probability β ≥ 0 as long as α + β = 1.) Let W1 and W2 denote the outputs of
Algorithm 1 and Algorithm 2, respectively.

E [max{W1,W2}] ≥ E

[
W1

2
+
W2

2

]
= E

[
W1

2

]
+E

[
W2

2

]
≥

m∑
j=1

wj · z∗j

[
1

2

(
1−

(
1− 1

`j

)`j
)

+
1

2

(
1− 1

2`j

)]
.

Proving the following claim proves that the best of the two algorithms is a 3
4 -approximation algorithm.

Claim 5. [
1

2

(
1−

(
1− 1

`j

)`j
)

+
1

2

(
1− 1

2`j

)]
≥ 3

4
.

Proof. Note that `j is always an integer with value at least one. For `j = 1, we can see that the claim
is true. Similarly for `j = 2. For `j ≥ 3, the value is actually at least .753.

Remark: There is a randomized algorithm achieving an approximation ratio of 3
4 for the maximum

satisfiability problem that does not use a linear program [PS11]. There is also a deterministic rounding
algorithm that achieves an approximation guarantee of 3

4 and does use a linear program [VZ11]. However,
it is not known whether or not there is a 3

4 -approximation algorithm that is both combinatorial and
deterministic.

4

References

[GW94] Michel X. Goemans and David P. Williamson. New 3/4-approximation algorithms for the
maximum satisfiability problem. SIAM Journal on Discrete Mathematics, 7(4):656–666, 1994.

[PS11] Matthias Poloczek and Georg Schnitger. Randomized variants of Johnson’s algorithm for MAX
SAT. In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 656–663. SIAM, 2011.

[Vaz13] Vijay V. Vazirani. Approximation Algorithms. Springer, 2013.

[VZ11] Anke Van Zuylen. Simpler 3/4-approximation algorithms for MAX SAT. In International
Workshop on Approximation and Online Algorithms, pages 188–197. Springer, 2011.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cam-
bridge University Press, 2011.

These lecture notes are based on Chapter 5 of [WS11] and Chapter 16 of [Vaz13]. The original
presentation of the algorithm for maximimum satisfiability can be found in [GW94].

5

	Randomized LP Rounding
	Maximum Satisfiability
	LP Relaxation for Maximum Satisfiability

