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The path, the wheelbarrow, and the bicycle inequalities have been shown by Cornuéjols, Fonlupt, and Naddef to be facet-
defining for the graphical relaxation of STSP�n�, the polytope of the symmetric traveling salesman problem on an n-node
complete graph. We show that these inequalities, and some generalizations of them, define facets also for STSP�n�. In
conclusion, we characterize a large family of facet-defining inequalities for STSP�n� that include, as special cases, most of
the inequalities currently known to have this property as the comb, the clique tree, and the chain inequalities. Most of the
results given here come from a strong relationship of STSP�n� with its graphical relaxation that we have pointed out in
another paper, where the basic proof techniques are also described.
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1. Introduction. “The most spectacular success of the cutting plane technique has certainly been achieved
for the traveling salesman problem” Grötschel and Lovász observe in their survey on combinatorial optimization
(Grötschel and Lovász [8]). This success is due mostly to the exploitation of the current (partial) knowledge of
the structure of the traveling salesman polytope and is the main motivation for pushing this knowledge a bit
further.
Cornuéjols et al. [5] define a class of valid inequalities for the symmetric traveling salesman polytope on

a graph with n nodes �STSP�n�� known as the path, the wheelbarrow, and the bicycle inequalities (the PWB
inequalities for short). They show that these inequalities are facet-defining for a relaxation of STSP�n�, namely,
the graphical relaxation polyhedron �GTSP�n��.
The main result of this paper is that these inequalities, and many of their generalizations, are facet-defining for

STSP�n�. This result was contained in the research report of Naddef and Rinaldi [16], which had the same title
as this article and was widely referenced in the literature, both in research and in survey articles. However, it
was very technical and difficult to read and, thus, was never submitted for publication. This paper is a substantial
revision of that report.
The motivation for adding the PWB inequalities to the list of those defining facets of STSP�n�, in addition to

the fact that they provide a huge and natural generalization of the comb inequalities, comes from the fact that
they are useful in a polyhedral cutting plane algorithm for the solution of the traveling salesman problem, as
shown by Naddef and Thienel [19, 20] (see also Clochard and Naddef [4]). This experimental evidence confirms
the theoretical expectation expressed by Goemans [6], where he addresses the problem of measuring the quality
of a class of inequalities. As a measure, he proposes the ratio of the lower bound for the graphical traveling
salesman problem obtained by using all the inequalities of a given class along with the subtour elimination
inequalities and the lower bound produced with only the subtour elimination inequalities. The best value, among
all the inequalities of GTSP�n� known to date, is obtained for the PWB inequalities.
In Naddef and Rinaldi [18] we show how the two polyhedra STSP�n� and GTSP�n� are very tightly related.

On this basis, we develop a technique to prove that some given facet-defining inequalities for GTSP�n� are
also facet-defining for STSP�n�. Moreover, we state sufficient conditions under which the composition of facet-
defining inequalities that we introduced in Naddef and Rinaldi [17] for GTSP�n� also applies to the case of
STSP�n�. Finally, we show how to apply several kinds of liftings to the inequalities that define facets of STSP�n�.
In this paper we first use the technique of Naddef and Rinaldi [18] to prove that the path, the wheelbarrow,

and the bicycle inequalities are facet-defining for STSP�n� (§2). Since these inequalities contain the comb
inequalities as a special case, as a byproduct we get another proof that the comb inequalities define facets of
STSP�n�. Another such proof for comb inequalities can be found in Naddef and Wild [21], and also, of course,
in the original proof of Grötschel and Padberg [9, 10].
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In Naddef and Rinaldi [18], we define an edge cloning operation to extend an inequality to a higher dimen-
sional space, and we state sufficient conditions under which the application of such operation preserves the
facet-defining property of an inequality. Here we apply this operation to the PWB inequalities. The so-called
chain inequalities of Padberg and Hong [24] are a particular case of the inequalities obtained in this way.
We finally prove that the repeated 2-sum composition of PWB inequalities yields facet-defining inequalities.

Clique trees, with at least one node outside all handles and teeth, are a special case of these inequalities.
Therefore, we get an alternative proof that they are facet-defining; the original one was given by Grötschel and
Pulleyblank [11].
Let G = �V � E� be a graph on n nodes. By e = �u� v� we denote the edge of G having u and v as end nodes,

and we let �E be the set of all real vectors whose components are indexed by the edge set E. For every real
vector x in �E , by xe, or by x�u� v�, we denote the component of x indexed by e = �u� v�. For a subset F ⊆ E,
we let x�F � be the sum

∑
e∈F xe. When G is complete, we denote it by Kn = �V � En�.

With every Hamiltonian cycle H of Kn we associate a unique incidence vector �H in �En . The components
of �H indexed by the edges of H have value 1 while all the other components have value 0. The symmetric
traveling salesman polytope (also called the Hamiltonian cycle polytope) associated with Kn is denoted by
STSP�n� and is the convex hull of the set of the incidence vectors of all the Hamiltonian cycles of Kn.
The description of STSP�n� with linear inequalities is a classical topic of polyhedral combinatorics and has

attracted a lot of interest. For the fundamentals of polyhedral combinatorics we refer the reader to the book
of Nemhauser and Wolsey [22]. While for small values of n (n ≤ 9) a complete description of the system of
inequalities defining facets of STSP�n� has been generated by means of a computer program (see, e.g., Christof
and Reinelt [2]), for arbitrary values of n the knowledge of such a system is far from being complete, and it
is very unlikely that it will ever be. In the last 40 years many papers appeared in which new valid or facet-
defining inequalities for STSP�n� were introduced. We refer to Jünger et al. [12], Lawler et al. [13], Naddef [14],
and Naddef and Pochet [15] for a list of them and for further details on the traveling salesman polytope. As
new inequalities are discovered, it becomes more and more difficult to keep track of all of them in a unifying
framework; moreover, the proof techniques are usually specific for each class of inequalities.
This paper aims at giving a compact combinatorial description for a large family of facet-defining inequalities

that includes most of the known ones, as well as at providing a standard proof technique to show that an
inequality defines a facet of STSP�n�. As STSP�n� is not full-dimensional, to study its polyhedral structure it
is customary to embed it into a full-dimensional polyhedron called a relaxation, which is obtained by dropping
some conditions on the solution set, and then to find sufficient conditions for an inequality facet-defining for the
relaxation to maintain such a property for STSP�n�.
The two major relaxations that have been considered in the study of the polyhedral structure of STSP�n� are

the monotone traveling salesman polytope, introduced by Grötschel [7], and the graphical traveling salesman
polyhedron. Sufficient conditions for a facet-defining inequality for the monotone relaxation to be facet-defining
for STSP�n� are given by Balas and Fischetti [1].
A desirable property of a relaxation R is that every facet of STSP�n� be contained in exactly one of the

facets of R that do not contain the entire polytope STSP�n�. If this property holds, then there is a one-to-one
correspondence between a subset of the facets of R and all facets of STSP�n�. Unfortunately, the monotone
traveling salesman polytope does not have such a property. On the contrary, the graphical traveling salesman
polyhedron does. For this reason and for some nice connections with STSP�n�, which will be mentioned later,
this polyhedron appears to be the most natural and useful relaxation for studying the polyhedral structure of
STSP�n�.
We exploit here such connections between STSP�n� and the graphical traveling salesman polyhedron. The

latter polyhedron has been studied by Cornuéjols et al. [5] and by Naddef and Rinaldi [17]. In Naddef and
Rinaldi [18] we studied its connections with STSP�n�. Most of our proofs are based on the results of these three
papers.
To formally define the graphical traveling salesman polyhedron, we need the following definitions.
A multiset of edges of G = �V � E� is a collection F of elements of E that may contain several copies of the

same element. For every element e of E, we call multiplicity of e in F the number of times e appears in F .
Clearly, a set of edges of G is a multiset where every element has multiplicity 1. Let F1 and F2 be two multisets
of edges of G and let F1 + F2 denote the multiset for which the multiplicity of every element is given by the
sum of its multiplicities in F1 and F2. By F + e and, if e ∈ F , by F − e we denote the multisets for which
the element e has multiplicity one more and one less than in F , respectively. Finally, t�e� denotes the multiset
containing only the element e with multiplicity t.
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Figure 1. Example of a closed walk W in a graph G.

Let F be a multiset of edges of G = �V � E�. By G�F � we denote the multigraph having node set V and
having, for every pair of distinct nodes u and v in V , as many edges with end nodes u and v as the multiplicity
of �u� v� in F . For every node v in V , the degree of v in F is the degree of v in the multigraph G�F �, and
the neighbors of v in F are the neighbors of v in the multigraph G�F �. With every multiset F of edges of G
we associate a unique representative vector �F ∈�E by setting �F

e equal to the multiplicity of e in F for every
e ∈ E. If c is a vector in �E , the c-length of F , also denoted by c�F �, is defined as c�F � = c�F . For any two
multisets F1 and F2 of edges of G, if �F1 ≤ �F2 we say that F1 is contained in F2.
A spanning closed walk of a graph G = �V � E� is a multiset W of edges of G such that
(i) the degree in W of every v ∈ V is positive and even;
(ii) G�W � is connected.
We simply use the term walk for a spanning closed walk since all our walks are of this kind.
Thus, a Hamiltonian cycle in G is a walk where every node has degree 2, while a walk is not, in general,

a Hamiltonian cycle.
Figure 1 shows a graph and a closed walk which is not a Hamiltonian cycle.
The graphical traveling salesman polyhedron associated with the graph G, denoted by GTSP�G� or GTSP�n�

when G = Kn, is the convex hull of the set of the representative vectors of all the walks of G and is the
polyhedron associated with the graphical traveling salesman problem.
If G is connected, then 2T = �2�e� � e ∈ T � is a walk for any spanning tree T of G. Moreover, W + 2t�e�

is a walk for any walk W , for any edge e of G, and for any nonnegative integer t. Therefore, GTSP�G� is
a full-dimensional unbounded polyhedron. Clearly, GTSP�n� is a relaxation of STSP�n� (the degree of each
node is no longer required to be 2 but only positive and even) and STSP�n� = �x ∈GTSP�n� � x�E� = n� (see
Cornuéjols et al. [5]). Therefore, STSP�n� is a face of GTSP�n�.
For any inequality fx ≥ f0 and for each node u ∈ V , we define the edge set �f �u� = ��v� w� ∈ En � u 	= v�

u 	= w� f �v� w� = f �u� v�+ f �u� w��.
Definition 1.1. An inequality fx ≥ f0 defined on �En is said to be tight triangular (abbreviated TT ) or in

tight triangular form (abbreviated TT form) if:
(a) The coefficients fe satisfy the triangular inequality, i.e., f �u� v� ≤ f �u� w� + f �w� v� for every triple u,

v, w of distinct nodes in V ;
(b) �f �u� 	= 
 for all u in V .
In Naddef and Rinaldi [18] we prove that, except for the trivial inequalities xe ≥ 0 and for the degree

inequalities x����u��� ≥ 2, all facet-defining inequalities of GTSP�n� are in TT form (here and in the following,
by ��U� = ��u� v� ∈ E � u ∈ U� v ∈ V \U� we denote the cocycle of a subset U of V in the graph G = �V � E�).
Moreover, we show that every nontrivial inequality cx ≥ c0 facet-defining for STSP�n� has a unique equivalent
inequality fx ≥ f0 in TT form, up to scaling by a nonnegative constant �, where f and f0 are defined as follows:

f �u� v� = ���u +�v + c�u� v�� for all �u� v� ∈ E

f0 = �

(
2
∑
u∈V

�u + c0

)
�

(1)

where � ∈�V satisfies

�u =
1
2
max�c�v� w�− c�u� v�− c�u� w� � u� v� w ∈ V � u 	= v 	= w� for all u ∈ V  (2)

We now show the TT form of the comb inequality, probably the best-known inequality of the linear description
of STSP�n�. We consider the simplest comb inequality, the one with three teeth. Such an inequality is defined
on a subset of vertices H called the handle and on three mutually disjoint subsets of vertices T1, T2, and T3,
called the teeth, which intersect H (see Figure 2).
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Figure 2. A 3-tooth comb and the coefficients of the inequality in TT form.

When first defined by Chvátal [3] and then by Grötschel and Padberg [9], the inequality, where k is odd and
stands for the number of teeth (in our example k = 3) and where "�U� denotes the edge set ��u� w� � u� w ∈ U�,
was given as

x�"�H��+
k∑

i=1
x�"�Ti�� ≤ �H � +

k∑
i=1

��Ti� − 1�− �k+ 1�/2 

After multiplying both sides of the inequality by −1 and applying (2), one obtains for �u a value given by
half the number of sets (handle and teeth) to which u belongs. Then, by applying (1) (with � = 2 to produce
integral coefficients), one obtains the following version of the inequality in TT form:

x���H��+
k∑

j=1
x���Tj�� ≥ 3k+ 1 

In the right-hand side part of Figure 2 some edges of G are drawn with their coefficients in the TT -form of the
comb inequality defined by the sets in the left-hand side. The coefficient of any edge e is given by the number of
sets whose border is crossed by e. To unclutter the figure, only a few examples of such coefficients are shown.
In Naddef and Rinaldi [18] we show that the TT form of any facet-defining inequality for STSP�n� is also

facet-defining for GTSP�n�.1 Finally, we give sufficient conditions for an inequality facet-defining for GTSP�n�
to define a facet of STSP�n�.
Based on these results, the process of finding new valid inequalities for STSP�n� and of proving that they are

facet-defining can go along the following four steps.
1. One first restricts the attention to a (possibly sparse) spanning graph �G = �V � �E� and proves that an

inequality, say cx ≥ c0, defines a facet of GTSP� �G�. This task may take advantage from the sparsity of �G and
from the fact that using walks, rather than Hamiltonian cycles, simplifies the proofs considerably. Note that �G
only has to be connected to have a full-dimensional polyhedron GTSP� �G� and actually may not be Hamiltonian
at all. The graph �G is called the skeleton of the inequality (see Naddef and Rinaldi [17, pp. 373–374]).
2. Using a standard sequential lifting procedure, one then extends the inequality cx ≥ c0 to become a facet-

defining inequality for GTSP�n�. This is done by choosing an ordering e1� e2� & & & � er� of the edges of the
set En\ �E and then, for each l = 1� & & & � r , by assigning the smallest coefficient to el such that the length of
the shortest walk in Gl = �V � �E ∪⋃l

t=1 et� is c0. The resulting inequality is facet-defining for GTSP�n� by
construction. Different orderings of the edges in En\ �E yield, in general, different inequalities. When this is not
the case, we say that the skeleton is stable (see Naddef and Rinaldi [17]). Examples of a skeleton that is stable
and of one that is not are given in §2.
3. Once a facet-defining inequality for GTSP�n� has been obtained, one tries to show that it defines also a

facet of STSP�n� by proving that one of the mentioned sufficient conditions is satisfied.
4. To describe in a compact way a large family of facet-defining inequalities, one can apply some operations

that we describe in Naddef and Rinaldi [17, 18] that generate new inequalities from known ones, using the
inequalities produced at Step 3 as building blocks.
It is easy to see that a TT inequality cannot have negative coefficients. However, it can have coefficients

with value zero. A TT inequality cx ≥ c0 defined on �En with ce > 0 for all e ∈ En is called simple. Simple
inequalities have a peculiar geometric property. They define all bounded facets of GTSP�n�.
Let �U * W � denote the edge set ��u� w� � u ∈ U� w ∈ W �. Suppose we are given a TT inequality cx ≥ c0

which is not simple. It is easy to see that V can be partitioned into p sets V 1� & & & � V p such that:

1 Until very recently, no examples were known of facet-defining inequalities for GTSP�n� that are provably not facet-defining for STSP�n�.
Some of such inequalities are exhibited by Oswald et al. [23].
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(a) ce = 0 for all e ∈ "�V i�, i = 1� & & & � p;
(b) for all i 	= j ∈ �1� & & & � p�, ce = cf > 0 for e� f ∈ �V i * V j�.

Since the edges linking two vertices contained in a same subset V i have a zero coefficient, these edges do not
play any structural role in the definition of the inequality, only the edges linking the various subsets do. In fact,
as far as GTSP�n� is concerned, given a facet-defining inequality, one can add as many vertices as desired to
any subsets V i and obtain a facet-defining inequality for GTSP�n′�, n′ > n. This suggests to first study the case
in which �V i� = 1 for all i, i.e., to study first simple facet-defining inequalities.
The subgraph of G induced by the set obtained by taking one representative node for each of the sets Vi for

i = 1� & & & � p is a complete graph Kp on p nodes. The simple inequality associated with cx ≥ c0 is the inequality
c̄x̄ ≥ c0 defined by it on the complete graph Kp with

c̄�ui� uj� = ce� e ∈ �V i * V j� for all 1≤ i < j ≤ p 

From now on, every time we refer to an inequality of type � without using the attribute “simple” we mean that
the inequality may have zero coefficients and that it is associated with a simple inequality of type �.
The paper is organized as follows. In §2 we show that the simple path, wheelbarrow, and bicycle inequalities

(simple PWB for short), proved by Cornuéjols et al. [5] to be facet-defining for GTSP�n�, define also facets of
STSP�n�.
In §3 we extend the result to all PWB inequalities. In §4 we prove that the same holds for a generalization

of these inequalities, which we call extended PWB inequalities. PWB and extended PWB are obtained from
the simple PWB inequalities by applying the operations mentioned at step 4 of our “facet-hunting” process
described above. In §5 we study some compositions of PWB inequalities that yield a large superclass of the
clique-tree inequalities.

2. The simple PWB inequalities. The PWB inequalities were first defined by Cornuéjols et al. [5]. We
give here the alternate definition proposed by Naddef and Pochet [15] that has been more widely used in the
recent literature on the traveling salesman problem and, being based on handles and teeth, is more similar to the
classical definition of the comb inequalities, of which the PWB are a generalization.
Definition 2.1. A k-PWB configuration is a quadruple ��� � -� .�, where � = �Hr � r = 1� & & & � h� and

� = �Ti � i = 1� & & & � k� are two collections of subsets of V called the handles and the teeth of the configuration,
respectively, and - and . are integer vectors of h and k components, respectively. Each handle Hr has associated
the component -r and each tooth Ti has associated the component .i. The vectors - and . satisfy the equality
interval property (see Definition 2.2 below); moreover, the handles and the teeth satisfy the following conditions:

Hr ⊂ Hr+1 for 1≤ r ≤ h− 1 (3)

H1 ∩ Ti 	= 
 for i = 1� & & & � k (4)

Ti\Hh 	= 
 for i = 1� & & & � k (5)

Ti ∩ Tj =
 for 1≤ i < j ≤ k (6)

�Hr+1\Hr�
∖ k⋃

i=1
Ti =
 for 1≤ r ≤ h− 1 (7)

The above conditions state that the handles are linearly nested (3), that the innermost handle intersects all
teeth (4), that each tooth has at least one node not contained in any handle (5), that the teeth are pairwise
disjoint (6), and, finally, that the node of each handle is contained either in H1 or in a tooth (7).
In Figure 3, an example of a PWB configuration with three teeth and six handles is shown. The black-filled

points in the figure represent nonempty sets of nodes while the white filled points represent possibly empty sets
of nodes. The union of all these node sets gives V . It is easy to verify that the handles and the teeth satisfy
the conditions (3)–(7). In particular, by Condition (7), the nodes that are not contained in any tooth can either
belong to H1 (in the figure, the set of these nodes is marked as Y ) or belong to the complement of Hh (the set
of these nodes is marked as Z).
To complete Definition 2.1, we have to define the equality interval property. To this purpose, we need the

notion of handle interval relatively to a given tooth Ti. A handle interval relatively to a given tooth Ti of a
k-PWB configuration is the index set R ⊆ �1� & & & � h� of a maximal set of handles that have the same intersection
with Ti. By definition, a handle interval is made of consecutive indices. Moreover, the index set �1� & & & � h� is
partitioned into si handle intervals relatively to a tooth Ti. For example, in the PWB configuration of Figure 3,
the handle intervals relative to T1 are �1�2�3� and �4�5�6�; those relative to T3 are �1�, �2�3�, �4�5�, and �6�.
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Figure 3. Example of a PWB configuration.

Definition 2.2. The vectors - and . of a k-PWB configuration ��� � -� .� satisfy the equality interval
property if

∑
r∈R -r = .i holds for each tooth Ti and for each handle interval R relative to Ti.

It is easy to check that the integers associated with each handle and tooth in Figure 3 define vectors - and .

that do satisfy the equality interval property; thus, the one shown is indeed a PWB configuration.
Definition 2.3. A k-PWB inequality associated with the k-PWB configuration ��� � -� .� is the

inequality

h∑
r=1

-rx���Hr��+
k∑

i=1
.ix���Ti�� ≥ �k+ 1�

h∑
r=1

-r + 2
k∑

i=1
.i (8)

Note that the coefficient of any edge e is easily computed by adding up the coefficient of all the sets whose
border is crossed by e.
The coefficient vector of inequality (8) is the positive weighted sum of incident vectors of cocycles in G.

Thus, each coefficient satisfies the triangular inequality. It is not difficult to verify that also condition (b) of
Definition 1.1 is satisfied, hence (8) is in TT form.
A comb inequality is a special case of a PWB-inequality. Its configuration has �� � = 1, and the components

of - and . have all value 1.
Remark 2.1. If the number of teeth k is even, then the inequality (8) is not valid for the STSP�n�.
Definition 2.4. A k-PWB configuration (inequality) is called a k-path, a k-wheelbarrow, or a k-bicycle con-

figuration �inequality�, depending on whether both the subsets H1\
⋃k

i=1 Ti and �V \H1�\
⋃k

i=1 Ti are nonempty,
or only one of two is empty, or they are both empty.
The equality handle interval property is very binding, and for an arbitrarily chosen quadruple ��� � -� .� that

satisfies the conditions (3)–(7) there are very few chances that it is satisfied. For generating all possible k-PWB
configuration, a different approach might be more useful where the elements of the quadruple �� -�� � .� are
generated by the following simple procedure.

Procedure 2.1. Input: any odd k ≥ 3, any k-tuple of positive integers �n1� & & & � nk�, with ni ≥ 2 for i ∈
�1� & & & � k� and any partition of V into the sets SY , SZ, S11 � & & & � S1n1 , S21 � & & & � S2n2� & & & , Sk

1 � & & & � Sk
nk
, where only

SY and SZ are allowed to be empty. Output: a quadruple ��� � -� .� satisfying the equality handle interval
property and (3)–(7).

(i) Let 4 be the least common multiple of the integers n1− 1� & & & � nk − 1;
(ii) for i = 1� & & & � k, let Ti =

⋃
�Si

j � j = 1� & & & � ni� and .j = 4/�ni − 1�;
(iii) let H1 =

⋃
�Si

1 � i = 1� & & & � k�∪ �Y � and -1 =min�.i � i = 1� & & & � k�;
(iv) for i = 1� & & & � k, let ji = 1 and .′

i = .i −-1;
(v) let l = 1;
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(vi) while ji < ni − 1 for some i ∈ �1� & & & � k� do the following:
(a) increment l by 1;
(b) for any i such that .′

i = 0, let .′
i = .i and increment ji by 1;

(c) let Hl = Hl−1 ∪
⋃

�Si
ji
� i = 1� & & & � k� and -l =min�.′

i � i = 1� & & & � k�;
(d) for i = 1� & & & � k, decrement .′

i by -l;

In the case of Figure 3, let us set k = 3 and consider the partition of V given by the sets represented by
the black- and white-filled points. Let SY and SZ be the sets marked as Y and Z, respectively. Finally, for
j = 1� & & & � k, let S

j
1� & & & � Sj

nj
be the sets contained in the tooth Tj and ordered from the top to the bottom. It is

easy to verify that the above procedure generates the teeth, the handles, and the coefficients - and . as those
shown in the drawing.
If the end nodes of an edge of G belong to the same handles and teeth of a k-PWB configuration, then the

coefficient of this edge is zero in (8). On the contrary, if there is a handle or a tooth that contains only one of
the end nodes, then the edge belongs to one of the cocycles of the handles and of the teeth, and its coefficient is
positive in (8). Consequently, if there are no two nodes of G that are contained in the same handles and teeth of
a k-PWB configuration, the corresponding k-PWB inequality is simple. We call simple the k-PWB configuration
in this case. For example, the PWB configuration of Figure 3 is simple if each black-filled point represents a
single node of V and each white-filled point represents a single node of V or the empty set. In this section we
only consider simple k-PWB configurations and inequalities.
A simple k-PWB configuration induces a labeling of the nodes of G that will be widely used throughout

the paper. If H1\
⋃k

i=1 Ti is nonempty, its only node is labeled Y ; similarly, if �V \H1�\
⋃k

i=1 Ti is nonempty, its
only node is labeled Z. The ni nodes of a tooth Ti can be linearly ordered in such a way that w ∈ Ti precedes
v ∈ Ti if it is contained in more handles than v. Each node of Ti is labeled ui

j , where j is the position of the
node in such an ordering. Therefore, ui

1 is the node contained in H1 and ui
ni
is contained in no handles. In what

follows, paths (teeth) indices are taken modulo k. Therefore, the value of the superscript of a label ui
j is defined

as ��i − 1�modk� + 1; thus, for example, uk+i
j = ui

j . Note that this labeling is in agreement with the names
given to the sets Si

j in Procedure 2.1. Consequently, given any odd k ≥ 3 and any k-tuple of positive integers
�n1� & & & � nk�, with ni ≥ 2 for i ∈ �1� & & & � k� and the labeling

�Y � Z�∪ �ui
j � j ∈ �1� & & & � ni�� i ∈ �1� & & & � k�� (9)

Procedure 2.1 uniquely identifies a k-PWB configuration � , � , -, .�. Consequently, we refer to the labeling (9)
as to a k-PWB configuration.
Depending on whether a k-PWB is a k-path (labels Y and Z are present), a k-wheelbarrow (only label Z

is present), or a k-bicycle (Y and Z are missing) configuration, the labeling (9) is denoted by P�n1� & & & � nk�,
W �n1� & & & � nk�, or B�n1� & & & � nk�, respectively.
For convenience we label ui

0 = Y , and ui
ni+1 = Z, for all i = 1� & & & � k. Following the terminology used by

Cornuéjols et al. [5], we call the nodes Y and Z the odd nodes of the configuration, and we call all the other
nodes even (see Figure 4).
In the following, to simplify the notation, by �i we denote the edge set

�i = ��ui
j � ui

j+1� � j ∈ �1� & & & � ni − 1�� for i ∈ �1� & & & � k� 

An edge of any set �i or any edge �ui
0� ui

1� or �ui
ni

� ui
ni+1� for i ∈ �i� & & & � k� is called a path edge. By CY and

CZ we denote the cycles whose edge sets are ��ui
1� ui+1

1 � � i ∈ �1� & & & � k�� and ��ui
ni

� ui+1
ni+1� � i ∈ �1, & & & � k��,

Y = u0
i

u1
k

u2
k

unk

k

u2
1 u2

2

un1

1 un2

2

u1
1 u1

2

Z = uni +1
i

Figure 4. The labeling induced by the 3-path configuration of Figure 3 and the skeleton of the corresponding 3-path inequality.
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respectively. An edge of any of these two cycles is call a cycle edge. An edge of the type �ui
1� ur

1� or �ui
ni

� ur
nr

�
with 2≤ ��r − i�modk� ≤ k−2 is called a chord (a short chord if one of the two inequalities holds with equality)
of the cycle CY or CZ, respectively.
Now it is easy to relate the definition above to the following original definition of the path inequality given

by Cornuéjols et al. [5]:
Definition 2.5. The simple k-path inequality associated with P�n1� & & & � nk� is the following inequality

on �En , with n = 2+∑k
i=1 ni, in which 8i = 1/�ni − 1� for i ∈ �1� & & & � k�:

cx ≥ c0 = k+ 1+ 2
k∑

i=1
8i� (10)

where

ce =




�j − q�8i for e = �ui
j � ui

q�� j 	= q� i ∈ �1� & & & � k��

j� q ∈ �0� & & & � ni + 1��

8i +8r + ��j − 1�8i − �q − 1�8r � for e = �ui
j � ur

q�� i 	= r� i� r ∈ �1� & & & � k��

j ∈ �1� & & & � ni�� q ∈ �1� & & & � nr��

1 for e = �Y � Z�

(11)

The coefficient vectors of the simple k-wheelbarrow and of the simple k-bicycle inequalities are restrictions
of the coefficient vector of a simple k-path inequality, obtained by removing all the edges incident with Y and
all the edges incident with Y and Z, respectively.
The coefficients of the Equation (8) are exactly those of Definition 2.5 multiplied by the least common

multiple of the numbers ni −1, i = 1� & & & � k. Therefore, the two inequalities of the Definitions 2.4 and 2.5 define
the same face of STSP�n�.
If ni = p for i ∈ �1� & & & � k�, the simple path, wheelbarrow, and bicycle configurations and their corresponding

inequalities are called p-regular. The 2-regular PWB inequalities are the comb inequalities.
For the special case of regular configurations, the coefficients of the associated inequalities can be written as

follows:

c0 = �k+ 1��p+ 1�− 2� (12)

ce =




�j − q� for e = �ui
j � ui

q�� i ∈ �1� & & & � k�� j 	= q� j� q ∈ �0� & & & � p+ 1��

�j − q� + 2 for e = �ui
j � ur

q�� i 	= r� i� r ∈ �1� & & & � k�� j� q ∈ �1� & & & � p��

p− 1 for e = �Y � Z� 

(13)

2.1. The GTSP case. Cornuéjols et al. [5] show that the k-path, the k-wheelbarrow, and the k-bicycle
inequalities define facets of GTSP�G�, provided that G has a stable skeleton of the inequality as a subgraph.
The stable skeleton for a k-path is given by the union of all the path edges (see an example in Figure 4), for
the k-wheelbarrow it is given by the union of all the path edges and CY , and for the k-bicycle it is given by the
union of all the path edges, CY , CZ, and the short chords of these two cycles.
We give here a proof that the k-bicycle inequalities define facets of GTSP�n�, which is slightly different from

that of Cornuéjols et al. [5] as it also specifies a special set of tight walks that is used in the following proofs.
We make use the following result proven by Cornuéjols et al. [5, Theorem 3.4]:

Theorem 2.2. The simple bicycle inequalities are valid for GTSP�n�.

To prove the next theorem we need a few more definitions and a simple lemma.
A walk W is said to be minimal if it does not contain another walk. For every inequality fx ≥ f0 in �En , valid

for STSP�n� or for GTSP�G�, we call tight the Hamiltonian cycles and the minimal walks whose representative
vectors satisfy the inequality with equality. The set of tight Hamiltonian cycles and tight walks for f are denoted
by �=

f and � =
f , respectively. The dimension of GTSP�G� is �E� (i.e., GTSP�G� is full-dimensional) as long as

G is connected. A walk basis of an inequality cx ≥ c0 defining a facet of GTSP�G� is any set �c of �E� walks
in � =

c whose representative vectors are linearly independent. Note that linear and affine independence of the
representative vectors are equivalent since the zero vector does not belong to GTSP�G�. A Hamiltonian cycle
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basis of an inequality cx ≥ c0 defining a facet of STSP�n� is a set �c of �En� − �V � Hamiltonian cycles in �=
c

whose representative vectors are linearly independent.
If z is a vector in �En , by z �E we denote its restriction (projection) to the subspace �

�E for �E ⊂ En.

Lemma 2.1. Let G = �V � �E� be a graph with �E ⊂ En, let e∗ be an edge in En\ �E and fx ≥ f0 be a valid
inequality for GTSP�n�. If f �Ex �E ≥ f0 is facet-defining for GTSP�G� and there exists a walk of � =

f containing
e∗ and only edges of �E, then the inequality fE′xE′ ≥ f0 is facet-defining for GTSP�G′�, where E ′ = �E ∪ �e∗� and
G′ = �V � E ′�.

Proof. Let � be a walk basis of f �Ex �E ≥ f0 and let W be a walk of � =
f containing e∗ and only edges of �E.

Then �∪ �W � is a set of walks whose representative vectors are linearly independent, i.e., it is a walk basis for
fE′xE′ ≥ f0. �

The use of Lemma 2.1 is quite evident in our context. Given the stable skeleton �G, once we prove that the
inequality is facet-defining for GTSP� �G�, it is straightforward to prove that it is facet-defining for GTSP�n�.
In the following theorem and quite often throughout the paper we make use of some special walks given by

the following
Definition 2.6. For i ∈ �1� & & & � k� and j ∈ �1� & & & � ni − 1�, we define (see Figure 5)

W i
A = 2�i ∪ ��us

ns
� us+1

ns+1� � s ∈ �i� i+ 2� & & & � i+ k− 1��

∪ ��us
1� us+1

1 � � s ∈ �i+ 1� i+ 3� & & & � i+ k− 2��

∪ ��l � l ∈ �1� & & & � k�� l 	= i��

(d)

(e)

(a)

WB:i

WE:i

WA:i

(b)

uj
i

uj+1
i

uj
i

uj+1
i

uj
i

uj+1
i

uj
i

uj+1
i

(c)

WD( j ):i

WC( j ):i

i

i

i

i

i

i –1

i –1

ii

i

i

Figure 5. The tight walks of Definition 2.6. In (c)–(d) and in (e) the paths of (a)–(b) are circularly permuted to the left and to the right,
respectively.
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W i
B = 2�i ∪ ��us

1� us+1
1 � � s ∈ �i� i+ 2� & & & � i+ k− 1��

∪ ��us
ns

� us+1
ns+1� � s ∈ �i+ 1� i+ 3� & & & � i+ k− 2��

∪ ��l � l ∈ �1� & & & � k�� l 	= i��

W i
C�j� = W i

A − �ui−2
1 � ui−1

1 �− 2�ui
j � ui

j+1�+ �ui−2
1 � ui

1�+ �ui−1
1 � ui

1��

W i
D�j� = W i

A − �ui+1
1 � ui+2

1 �− 2�ui
j � ui

j+1�+ �ui
1� ui+2

1 �+ �ui
1� ui+1

1 ��

W i
E = W i

B − �ui
1� ui+1

1 �− �ui+2
1 � ui+3

1 �+ �ui
1� ui+2

1 �+ �ui+1
1 � ui+3

1 � 

The walks W i
A, W i

B, W i
C�2�, W i

D�2�, and W i
E are shown in Figures 5(a), (b), (c), (d), and (e), respectively,

for both the case k = 3 and k ≥ 5. Observe that all the edges of these walks are either path edges, or cycle
edges, or short chords of the cycle CY . To unclutter the figures, all the edge sets �i have cardinality 1 in most
of them. However, any path edge may be replaced by a path with an arbitrary number of edges. The nodes ui

1

for i ∈ �1� & & & � k� are those at the top of the drawings. Moreover, we have operated in the figures a circular
permutation of the paths (teeth). For example, in the Figure 5(a and b) the teeth are ordered from left to right
with the indices i − 1� i� & & & � k�1� & & & � i − 2. In Figure 5(d and e) the order is i� i + 1� & & & � k�1� & & & � i − 1. To
extend the walks shown in the figures to the case when k is greater than 5, split a cycle edge into three edges,
then remove the central edge (marked with a cross in the figures), and finally connect its end nodes by the
path marked by dotted lines in the figures. In the following we will use the same convention for all the figures
involving PWB configurations.
Remark 2.2. The walks of Definition 2.6 satisfy a bicycle inequality at equality. For the sake of simplicity,

in the following we refer to these walks also dealing with wheelbarrow and path inequalities. In these cases,
though, we will always assume that each of these walks be modified by inserting each required odd node, by
removing any cycle edge (of the cycle associated to the odd node) from the walk, and by adding an edge from
each of its end nodes to the odd node.

Theorem 2.3. A simple bicycle inequality cx ≥ c0 associated with the simple k-bicycle configuration
B�n1� & & & � nk� is facet-defining for GTSP�n� and has a walk basis �c with the following properties:
(a) Every walk of �c intersects the edge set of the cycle CY .
(b) Every walk of �c intersects the edge set of the cycle CZ.
(c) For each edge e ∈ CY there exists e′ ∈ CY and a walk W ∈�c containing both e and e′.
(d) For each edge e ∈ CZ there exists e′ ∈ CZ and a walk W ∈�c containing both e and e′.

Proof. We prove first that the inequality cSxS ≥ c0 is facet-defining for GTSP�G�, where G = �V � S� is the
subgraph of Kn whose edges are all the path edges, all the cycle edges, and all the short chords of the cycle CY .
The inequality cSxS ≥ c0 is valid by Theorem 2.2 and is supporting since all the walks of Definition 2.6

belong to � =
c . We show that the set of all these walks constitutes a basis �1 for cSxS ≥ c0.

Let fx ≥ c0 be an inequality defining a facet of GTSP�G� that contains the face defined by cSxS ≥ c0, i.e.,
such that � =

c ⊆� =
f .

From f �W i
C�j ′�� = f �W i

C�j ′′�� for j ′ 	= j ′′ ∈ �1� & & & � ni − 1� it follows that
f �ui

j ′ � ui
j ′+1� = f �ui

j ′′ � ui
j ′′+1� = gi for i ∈ �1� & & & � k�� j ′ 	= j ′′ ∈ �1� & & & � ni − 1� (14)

For notational convenience we set bi = f �ui
ni

� ui+1
ni+1�, di = f �ui

1� ui+1
1 �, ei = f �ui

1� ui+2
1 �, for i ∈ �1� & & & � k� (see

Figure 6). From f �W i
A� = f �W i+1

B � for i ∈ �1� & & & � k�, it follows that

�ni − 1�gi + bi = �ni+1− 1�gi+1+di for i ∈ �1� & & & � k� (15)

i bi

di

ei

gi

Figure 6. The coefficients of some relevant edges.
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From f �W i
B� = f �W i+1

A � for i ∈ �1� & & & � k− 1�, it follows that
�ni − 1�gi +di = �ni+1− 1�gi+1+ bi for i ∈ �1� & & & � k− 1� (16)

The Equations (15) and (16) imply

bi = di for i ∈ �1� & & & � k− 1� (17)

and

gi =
h

ni − 1
for i ∈ �1� & & & � k− 1� (18)

From f �W i+1
A � = f �W i+1

C � for i ∈ �1� & & & � k� it follows that

ei−1 = di−1−di +
2h

ni+1− 1
for i ∈ �1� & & & � k�� (19)

and from f �W i+1
C � = f �W i−1

D � for i ∈ �2� & & & � k� we have

di = di−1+
h

ni + 1
− h

ni − 1
for i ∈ �2� & & & � k� (20)

If k = 3 then d1 = e2, otherwise from f �W 1
E� = f �W 1

B� it follows that d1+d3 = e1+ e2 and from (19) we have

di =
h

ni − 1
+ h

ni+1− 1
for i ∈ �1� & & & � k� (21)

If for the bicycle inequality cx ≥ c0 we use the Definitions 2.1 and 2.3, with the vectors - and . computed with
Procedure 2.1, then setting h = r4 , where 4 is as defined in Procedure 2.1, one can see that fe = rce, for e in
the skeleton. Since we chose the same right-hand sides for both the inequalities, we have r = 1. Similarly, if
we use Definition 2.5, then setting r = 1/4 , i.e., setting h = 1, we obtain the same result. Therefore, f ≡ cS , the
inequality cSxS ≥ c0 is facet-defining for GTSP�G�, and the �S� walks of the set �1 are linearly independent.
To complete the proof, we take a sequence e1� e2� & & & � es� of the edges in En\S and we construct the

sequences of nested edge sets F0� F1� & & & � Fs , with F0 = S and Fl = Fl−1 ∪ �el�, for l = 1�2� & & & � s. Then for
every el we exhibit a walk of �

=
c containing el and only edges in Fl−1. Consequently, by Lemma 2.1, cx ≥ c0

defines a facet of GTSP�n�. We describe now these walks.
Let e = �ui

j � ur
q� be any edge of En\S and let d�e� k� =min��i − r�modk� �r − i�modk�. Depending on the

value of d�e� k� we have different kinds of walks. Clearly, 0≤ d�e� k� ≤ �k− 1�/2.
For an edge e = �ui

j � ui
j+q� the value of d�e� k� is zero, and we consider the walk

W0�e� = W i
A\��ui

j+t� ui
j+t+1� � t = 1� & & & � q − 1�+ e 

All the edges of W0�e�, except e, belong to S.
For d�e� k� = 1� & & & �4 the corresponding walks W1�e�� & & & � W4�e� are shown in Figure 7�a�� & & & � �d�, respec-

tively. The reader should not be confused by the fact that in the figures the end nodes of e = �ui
j � ur

q� always
have 1< j < ni and 1< q < nr . Actually, the walks shown can be easily modified to accommodate the cases
for all possible values of j and q in the sets �1� & & & � ni� and �1� & & & � nr�, respectively, as long as the inequality
�q − 1�8r ≥ �j − 1�8i is satisfied. If this is not the case, one can consider the mirror images of the walks of
Figure 7, which would correspond to take the opposite orientation of the cycles CY and CZ to draw the walks.
The walks corresponding to a chord of the cycle CY (when j = q = 1) and to a chord of the cycle CZ (when

j = ni and q = nr ) are of the kind of those shown in Figure 7. All walks Wl�e�, for l = 0� & & & �4 have the edge e
and only edges in S.
If k ≤ 9, then d�e� k� is never greater than 4. Therefore, the above walks are sufficient to complete the proof

that the inequality is facet-defining, no matter how the sequence of the edges in the set En\S is chosen.
It is easy to verify that if d�e� k� ≥ 5, it is not possible to construct a walk that uses only e and edges in S.

However, it is always possible to construct a walk W5�e� that contains e, some edges in S, and short chords of
the cycle CZ. Such a walk is shown in Figure 8, where k has any value greater than 11 and d�e� k� has any
value greater than 5. To apply Lemma 2.1, the edges of En\S have to be ordered in such a way that any edge e
with d�e� k� ≥ 5 follows all of the short chords of cycle CZ in the sequence e1� e2� & & & � es�.
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uj
i

uj
i

uj
i

uj
i

d(e, k) = 1

d(e, k) = 2

d(e, k) = 3

d(e, k) = 4

uq
r

uq
r

uq
r

uq
r

(a)

(b)

(d)

(c)

Figure 7. Tight walks containing an edge across two paths and only edges of a stable skeleton.

The union of �1 and all of the walks associated with the edges e1� e2� & & & � es is a walk basis �c of the
inequality cx ≥ c0. It is easy to verify, by inspection, that all its walks intersect both the cycles CY and CZ.
Finally, for any edge e = �ui

1� ui+1
1 � of the cycle CY , the walk W i

B contains e and the edge �ui−1
1 � ui

1�, which
also belongs to CY . Analogously, for any edge e = �ui

ni
� ui+1

ni+1� of the cycle CZ, the walk W i
A contains e and the

edge �ui−1
ni−1� ui

ni
�, which also belongs to CZ. �

Remark 2.3. As a by-product of Theorem 2.3, we have that a simple bicycle inequality is facet-defining
for GTSP�G�, where G = �V � S� is the subgraph of Kn, whose edges are all of the path edges, all of the cycle
edges, and all of the short chords of the cycle CY . This result is a bit stronger than that given by Cornuéjols
et al. [5], where G is required to have also all of the short chords of the cycle CZ.
As it is claimed in the proof of Theorem 2.3, the skeleton �V � S� (where S is the union of the path edges, the

edge cycles, and the short chords of CY ) is stable only for k ≤ 9. One may wonder what happens for k ≥ 11,
or, more precisely, what happens if the lifting sequence described in the proof of the theorem starts with an
edge e with d�e� k� ≥ 5. If the edge e is a chord of CY , then it is still possible to find a tight walk of the bicycle
inequality made of e and of edges in S (see Figure 9a). This implies that the lifting coefficient resulting for e
is the same as that given in Definition 2.5. The same is true if e is a chord of CZ but only for k = 11 (see
Figure 9b). However, this is no longer true in general; e.g., take the case where ni = 2 for all i and k = 11.
If one starts the lifting sequence with e = �u11� u62�, then the result is ce = 1; if �u111 � u62� is the second edge
in the sequence, the coefficient is again 1. At this point, no matter how the remaining edges are ordered, the

uq
r

uj
i

d(e, k) ≥ 5

Figure 8. Tight walk made of an edge across two paths, edges of a stable skeleton and short chords of CZ .
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(a)

(b)

Figure 9. Tight walks containing a long chord and only edges of a stable skeleton.

coefficients they get either are the same as in Definition 2.5, or have value 4. The edges having a coefficient
that differs from the one of Definition 2.5 are shown in Figure 10, where the edges with coefficient equal to 1
and 4 are drawn with dashed and solid lines, respectively (note that, to unclutter Figure 10, the arrangement of
the nodes has been changed with respect to Figure 9). Thus, the inequality in this way described by Figure 10
and Definition 2.5 is a new facet-defining inequality for STSP�22� that shares the same skeleton �V � S� with the
bicycle inequality. On the other hand, �V � S ∪ ��u11� u62�� �u111 � u62��� is a stable skeleton for the new inequality.

2.2. The STSP case. For u ∈ V , we say that a walk W is almost Hamiltonian in u if u has degree 4 in W
and every other node of V has degree 2 in W .
A basis �c of an inequality cx ≥ c0, defining a facet of GTSP�n�, is called canonical if it contains �En� − n

Hamiltonian cycles and n almost Hamiltonian walks (i.e., one for each u ∈ V ).
The following notion of a set of edges being c-connected in a given node is the key for the sufficient

conditions, which we give in Naddef and Rinaldi [18], for an inequality facet-defining for GTSP�n� to preserve
such a property for STSP�n�. The notion of c-connectedness is explained in more details in that paper.
Let e = �u� v� and f = �w� y� be two distinct edges in En. We say that e and f are c-adjacent if they belong

to a tight Hamiltonian cycle H ∈�=
c . Let z be a node in V ; we say that e and f are c-adjacent in z if:

(i) e and f belong to �c�z�;
(ii) there exists a walk Wz ∈ � =

c almost Hamiltonian in z that contains the edges �z� u�, �z� v�, �z� w�,
and �z� y�;
(iii) Wz − �z� u�− �z� v�+ e is a Hamiltonian cycle (and such is also Wz − �z� w�− �z� y�+ f ).

A set of edges J ⊆ En is said to be c-connected if for every pair of distinct edges f1 and f2 ∈ J there exists a
sequence of t edges e1� & & & � et in J , with e1 ≡ f1 and et ≡ f2, where ei is c-adjacent to ei+1, for i = 1� & & & � t−1.
A set of edges J ⊆ En is said to be c-connected in z if for every pair of distinct edges f1 and f2 ∈ J there exists
a sequence of t edges e1� & & & � et in En (not necessarily belonging to J ), with e1 ≡ f1 and et ≡ f2, where ei and
ei+1 are c-adjacent in z, for i = 1� & & & � t − 1. Observe that the notion of c-connectedness in z is “weaker” than
the one of c-connectedness, in the sense that, contrary to what happens for the usual concept of connectivity, in
this case every subset of a set c-connected in z is also c-connected in z.
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Figure 10. Edges in which a new facet-defining inequality differs from that of an 11-bicycle.



Naddef and Rinaldi: The Symmetric Traveling Salesman Polytope: New Facets from the Graphical Relaxation
246 Mathematics of Operations Research 32(1), pp. 233–256, © 2007 INFORMS

Lemma 2.2 (Naddef and Rinaldi [18, Lemma 2.14]). Let cx ≥ c0 be a TT inequality defining a facet
of GTSP�n�. If �c�u� is c-connected in u for every u ∈ V , then cx ≥ c0 has a canonical basis; thus it is
facet-defining for STSP�n�.

For every ordered triple u� v� w� of distinct nodes in V , we call shortcut on u� v� w� the vector suvw ∈�En

defined by

suvw�e� =




1 if e = �v� w�

−1 if e ∈ ��u� v�� �u� w��

0 otherwise.

Adding a shortcut to a walk that is tight for an inequality can produce a new tight walk with fewer edges.
More precisely, we have the following

Lemma 2.3 (Naddef and Rinaldi [18, Lemma 2.5]). Let cx ≥ c0 be a tight triangular inequality that is
supporting for GTSP�n�, and let W ∈� =

c be a walk having t > n edges and containing the edge e. For every
node u ∈ V with degree k ≥ 4 in W , there exists a shortcut suvw such that the edge multiset having representative
vector �W + suvw is a walk with t − 1 edges belonging to � =

c and containing the edge e. Necessarily, the edge
�v� w� belongs to �c�u�.

The sets �c�u� may contain several edges; therefore, the application of Lemma 2.3 may require a lengthy
procedure. The following lemma requires a weaker condition that is also easier to verify.

Lemma 2.4 (Naddef and Rinaldi [18, Lemma 2.15]). Let cx ≥ c0 be a TT inequality defining a facet of
GTSP�n�. If there exists a basis �c of cx ≥ c0 such that for every u ∈ V there exists a nonempty set of edges
Ju ⊆ �c�u� c-connected in u and every walk W ∈�c can be reduced to an element of �=

c by using only shortcuts
in the set �suvw � �v� w� ∈ Ju� u ∈ V �, then cx ≥ c0 has a canonical basis; hence, it is facet-defining for STSP�n�.

We use now Lemma 2.4 to prove that the simple bicycle inequality defines a facet of STSP�n� and to derive
some properties of one of its canonical bases that will be used in the following to prove a similar theorem for
the simple wheelbarrow inequality.

Theorem 2.4. A simple bicycle inequality cx ≥ c0 associated with the simple k-bicycle configuration
B�n1� n2� & & & � nk� is facet-defining for STSP�n� and has a Hamiltonian cycle basis �c with the following
properties:
(a) Every Hamiltonian cycle of �c intersects the edge set of the cycle CY .
(b) Every Hamiltonian cycle of �c intersects the edge set of the cycle CZ.
(c) For each edge e ∈ CY there exists e′ ∈ CY and a Hamiltonian cycle H ∈�c containing both e and e′.
(d) For each edge e ∈ CZ there exists e′ ∈ CZ and a Hamiltonian cycle H ∈�c containing both e and e′.

Proof. Let �c the walk basis constructed in the proof of Theorem 2.3. For every node w ∈ V we define a
set of edges Jw ⊆ �c�w� such that, by using shortcuts in the set �swyz � �y� z� ∈ Jw�, every walk in �c where w
has degree 4 can be reduced to a walk where w has degree 2. Then we show that Jw is c-connected in w for all
w ∈ V . By Lemma 2.4, this implies that the inequality defines a facet of STSP�n�.
For w = ui

j , i = 1�2� & & & � k, j = 2� & & & � ni − 1 we set Jw = ��ui
j−1� ui

j+1��. In these cases Jw ⊆ �c�w� and has
cardinality 1, and so it is c-connected in w.
For w = ui

1, i = 1�2� & & & � k, we set Jw = ��ui−1
1 � ui

2�� �ui+1
1 � ui

2�� �ui−2
1 � ui

2�� ⊆ �c�w�. If ni = 2 let W i
F be the

walk W i
B of Definition 2.6. If ni ≥ 3 we define W i

F = W i
B − 2�ui

2� ui
3� − �ui−1

ni−1� ui−2
ni−2� − ��ui

j � ui
j+1� � j = 3, & & & �

ni −1�+ �ui−1
ni−1� ui

3�+ �ui
ni

� ui−2
ni−2�, where the set ��ui

j � ui
j+1� � j = 3� & & & , ni −1� is empty if ni = 3 (see Figure 11,

WF:iWB:i
u3

iu3
i

w

Figure 11. The tight walk W i
F built from W i

B .
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WF:i WG:iu3
i u3

i

Figure 12. The tight walk W i
G built from W i

F .

where the edges to be removed in W i
B and those to be added to obtain W i

F are represented by dotted and thick
lines, respectively). The walk W i

F belongs to � =
c , as it can be checked using (11), and contains the edges

�w� ui−1
1 � and �w� ui+1

1 � and two copies of edge �w� ui
2�. Moreover, the edge sets W i

F − �w� ui−1
1 � − �w� ui

2� +
�ui−1

1 � ui
2� and W i

F − �w� ui+1
1 �− �w� ui

2�+ �ui+1
1 � ui

2� are both Hamiltonian cycles. This implies that �ui−1
1 � ui

2� and
�ui+1

1 � ui
2� are c-adjacent in w. Similarly, to show that the edges �ui−2

1 � ui
2� and �ui+1� ui

2� are c-adjacent in w,
we have to exhibit a suitable walk that is almost Hamiltonian in w. We can assume that k ≥ 5, since for k = 3
the edges �ui−2

1 � ui
2� and �ui+1� ui

2� coincide. Consider the walk W i
G obtained from W i

F by replacing two edges
of the cycle CY with two of its short chords, i.e., W i

G = W i
F − �ui−1

1 � ui
1�− �ui−2

1 � ui−3
1 �+ �ui

1� ui−2
1 �+ �ui−1

1 � ui−3
1 �

(see Figure 12, where we used dotted and thick lines with the same convention as in Figure 11). From W i
G we

construct, as before, two Hamiltonian cycles to show that �ui−2
1 � ui

2� and �ui+1� ui
2� are c-adjacent in w. It follows

that the set Jw is c-connected in w.
For w = ui

ni
, i = 1�2� & & & � k, we set Jw = ��ui−1

ni−1� ui
ni−1�� �ui+1

ni+1� ui
ni−1�� ⊆ �c�w�. The proof that in this cases

the two edges of Jw are c-adjacent in w goes like for the cases w = ui
1, i = 1�2� & & & � k; for each i only one walk

is used, actually the walk W i
G taken “upside down.”

It is easy to verify that each of the walks of the basis �c constructed in the proof of Theorem 2.3 can be
reduced to an Hamiltonian cycle using the shortcuts defined by the sets Jw, w ∈ V . An example of such a
reduction is shown in Figure 13 for the walk W3��u

1
1� u41�� of Figure 7(c). Again, for the dotted and the thick

lines we follow the convention used for Figure 11. Observe how the sets Jw have three edges for w belonging
to the cycle CY , while have only two edges for the nodes of the cycle CZ. This is because, for all the walks
of �c, if a node w of CZ has degree four, then the walk has a path edge and an edge of CZ that are incident
to w, which is not always the case if w belongs to CY .
Finally, by Theorem 2.3, all the walks of �c intersect the cycles CY and CZ. It is easy to check that also

the Hamiltonian cycles of �c obtained by shortcuts from those walks share this property. This proves that the
properties (a) and (b) of the statement hold for �c. To prove that �c has also the properties (c) and (d), consider
the walk W i

C�1� of Figure 5 for i = 1�2� & & & � k. This walk contains the two cycle edges �ui
1� ui−1

1 � and �ui
1� ui+1

1 �
of CY whose end nodes have both degree 2. Therefore, the Hamiltonian cycle of �c obtained by shortcuts from
this walk also contains these two edges. Analogously, the Hamiltonian cycle of �c obtained from the walk
W i

D�ni − 1� contains both of the cycle edges �ui
ni

� ui−1
ni−1� and �ui

ni
� ui+1

ni+1� of CZ. �

2.3. The 1-node lifting. We have seen in §2 that a simple bicycle inequality is the restriction of a simple
wheelbarrow inequality obtained by removing the coefficients of the edges incident with the node Z. On the other
hand, one can view a simple wheelbarrow as the extension of a simple bicycle inequality obtained by adding
a node to its corresponding configuration. The operation of adding one node (and the edges incident with it)
to the configuration of a generic facet-defining inequality is called 1-node lifting in Naddef and Rinaldi [18],
where we investigate the conditions on the coefficients of the new edges for the new inequality to preserve the
facet-defining property. In particular, the theorem that follows states sufficient conditions for this to happen.
When one of the edges incident with the new node has a zero coefficient, we have a special case of 1-node
lifting, called zero-lifting, that is exploited in §3.

Figure 13. Example of reduction by shortcuts.
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Theorem 2.5 (Naddef and Rinaldi [18, Theorem 4.4]). Let cx ≥ c0 be a TT inequality that is facet-
defining for STSP�n�; an inequality c∗x∗ ≥ c0, which is obtained by 1-node lifting of cx ≥ c0 is facet-defining
for STSP�n + 1� if it is tight triangular and there exist an edge set F ⊆ �c∗�un+1� and a Hamiltonian cycle
basis �c of cx ≥ c0 such that:

(i) F ∩H 	= 
 for all H ∈�c;
(ii) for all e ∈ F there exist e′ 	= e, e′ ∈ �c∗�un+1� and H ∈�=

c such that e and e′ belong to H;
(iii) every connected component of the graph �V � F � contains at least one odd cycle;
(iv) F is c∗-connected in un+1.

Remark 2.4. In Naddef and Rinaldi [18] we prove Theorem 2.5 by showing that a set of walks, obtained
by first removing one or two edges of the set F from some walk of the canonical basis �c of cx ≥ c0, and then
connecting the end nodes of the removed edges to the node un+1 contains a canonical basis �c∗ of the inequality
c∗x∗ ≥ c0. Therefore, each walk of �c∗ shares all the edges of some walk of �c, except some of those that
intersect the set F .
Using Theorem 2.5 and Remark 2.4 we can now show that the simple wheelbarrow inequalities define facets,

of STSP�n� and we can derive some properties of one of their canonical bases that will be used in the following
to prove a similar theorem for the simple path inequalities.

Theorem 2.6. A simple wheelbarrow inequality cx ≥ c0 associated with the simple k-wheelbarrow configu-
ration W �n1� n2� & & & � nk� is facet-defining for STSP�n� and has a Hamiltonian cycle basis �c with the following
properties:
(a) Every Hamiltonian cycle of �c intersects the edge set of the cycle CZ.
(b) For each edge e ∈ CZ there exists e′ ∈ CZ and a Hamiltonian cycle H ∈�c containing both e and e′.

Proof. A simple wheelbarrow inequality with the coefficients given in (11) is in TT form, since it is facet-
defining for GTSP�n� (see Naddef and Rinaldi [18, Proposition 2.2]). As it has been already observed, it can
be obtained by 1-node lifting of a bicycle inequality ĉx̂ ≥ c0. To prove that it is facet-defining for STSP�n�, we
use Theorem 2.5. Let the set F , required by that theorem, be defined as follows:

F = CY ∪ ��ui
1� ui+1

j � � i ∈ �1�2� & & & � k�� j ∈ �2� & & & � ni+1�� 

The set F belongs to �c�Y � and satisfies the conditions (i), (ii), and (iii) due to the properties (a) and (c) of
Theorem 2.4 and due to the fact that the cycle CY has odd length. We only need prove that F is c-connected
in Y . For i = 1�2� & & & � k, consider the walk W i

C�1� of Figure 5. Such a walk is tight for the bicycle inequality
ĉx̂ ≥ c0. This walk contains the two cycle edges e = �ui

1� ui−1
1 � and e′ = �ui

1� ui−2
1 � of CY , whose end nodes have

both degree 2. Therefore, the Hamiltonian cycle H ∈ �=
ĉ , obtained by shortcuts from this walk, also contains

these two edges. The walk obtained by removing e and e′ from H and adding the four edges that connect the
end nodes of the removed edges to Y is almost Hamiltonian in Y , belongs to � =

c , and implies that the two
edges e and e′ are c-adjacent in Y . Repeating this argument for the walk W i−2

D �1�, we see that �ui−2
1 � ui−1

1 � and
�ui

1� ui−2
1 � are c-adjacent in Y as well. Consequently, the edge set CY is c-connected in Y . To show that any edge

e ∈ F \CY is c-adjacent in Y to some edge of CY , it is sufficient to start with a Hamiltonian cycle H ∈�=
ĉ that

contains e and an edge e′ ∈ CY . Such a Hamiltonian cycle exists by Property (a) of Theorem 2.4. By removing
e and e′ from H and adding the edges that connect their end nodes to Y we produce a walk almost Hamiltonian
in Y , implying that e and e′ are c-adjacent in Y . Since the cycle CZ has empty intersection with the edge set F ,
the property (a) and (b) of the Hamiltonian cycle basis �c follow from Remark 2.4 and the properties (b) and
(d) of Theorem 2.4. �

Theorem 2.7. A simple path inequality cx ≥ c0 associated with the simple k-path configuration
P�n1� n2� & & & � nk� is facet-defining for STSP�n�.

Proof. A simple path inequality with the coefficients given in (11) is in TT form, since it is facet-defining
for GTSP�n� (see Naddef and Rinaldi [18, Proposition 2.2]). In addition it can be obtained by 1-node lifting of a
simple wheelbarrow inequality ĉx̂ ≥ c0. To prove that it is facet-defining for STSP�n�, we use again Theorem 2.5.
Let the set F required by that theorem be defined as follows:

F = CZ ∪ ��ui
ni

� ui+1
j � � i ∈ �1�2� & & & � k�� j ∈ �1� & & & � ni+1− 1��∪ ��Y � u1n1�� 

The set F belongs to �c�Z� and satisfies the conditions (i), (ii), and (iii) due to the properties (a) and (b) of
Theorem 2.6 and due to the fact that the cycle CZ has odd length. We only need prove that F is c-connected
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in Z. For i = 1�2� & & & � k, consider the walk obtained from W i
D�ni −1� of Figure 5 by deleting an edge belonging

to CY and connecting its end nodes to Y . Such a walk is tight for the simple wheelbarrow inequality ĉx̂ ≥ c0.
This walk contains the two cycle edges e = �ui

ni
� ui−1

ni−1� and e′ = �ui
ni

� ui+1
ni+1� of CZ, whose end nodes have both

degree 2. Therefore, the Hamiltonian cycle H ∈ �=
ĉ , obtained by shortcuts from this walk, also contains these

two edges. The walk obtained by removing e and e′ from H and adding the four edges that connect the end
nodes of the removed edges to Z is almost Hamiltonian in Z, belongs to � =

c , and implies that the two edges e
and e′ are c-adjacent in Z. Consequently, CZ is c-connected in Z. To show that any edge e ∈ F \CZ and some
edge of CY are c-adjacent in Z, it is sufficient to start with a Hamiltonian cycle H ∈�=

ĉ that contains e and an
edge e′ ∈ CZ. Such a Hamiltonian cycle exists by Property (a) of Theorem 2.6. By removing e and e′ from H
and adding the edges that connect their end nodes to Z, we produce a walk almost Hamiltonian in Z that implies
that e and e′ are c-adjacent in Z. �

The Theorems 2.4, 2.6, and 2.7 are summarized in the following.

Theorem 2.8. The simple PWB inequalities are facet-defining for STSP�n�.

3. The PWB inequalities. As we have seen in §1, the configuration of a PWB inequality c∗x ≥ c0 is
obtained from the configuration of a simple one cx ≥ c0 (same right-hand side) by replacing each nodes i with a
node set V i of arbitrary size. As the edges in "�V i� have a zero coefficient, the operation of replacing a node i
by a set V i in a configuration is called zero-lifting of i.
The following theorem, which we prove in Naddef and Rinaldi [18], gives a sufficient condition to derive the

facet-defining property of an inequality from the facet-defining property of its simple archetype.

Theorem 3.1 (Naddef and Rinaldi [18, Theorem 4.9]). A TT inequality cx ≥ c0 is facet-defining for
STSP�n� if its associated simple inequality c̄x̄ ≥ c0 is nontrivial and facet-defining for STSP�p� and for every
v ∈ Vp the set ��v� in Kp is c̄-connected.

We first apply this theorem to the bicycle inequalities.

Theorem 3.2. The bicycle inequalities are facet-defining for STSP�n�.

Proof. Let c∗x∗ ≥ c0 be a bicycle inequality and cx ≥ c0 be its associated simple bicycle inequality. By
converting the walks of the Figures 5, 7, and 8 to Hamiltonian cycles using shortcuts, it is easy to verify the
following:
(a) For i = 1�2� & & & � k and for each edge e incident with ui

1 with e 	= �ui
1� ui

2�, there exists a Hamiltonian
cycle of �=

c containing both e and �ui
1� ui

2�.
(b) For i = 1�2� & & & � k and for each edge e incident with ui

ni
with e 	= �ui

ni−1� ui
ni

�, there exists a Hamiltonian
cycle of �=

c containing both e and �ui
ni−1� ui

ni
�.

(c) For i = 1�2� & & & � k with ni ≥ 3 and for each edge e incident with ui
j with 1< j < ni, e 	= �ui

j � ui
j−1�, and

e 	= �ui
j � ui

j+1�, there exists a Hamiltonian cycle of �
=
c containing either the pair of edges e and �ui

j � ui
j−1� or the

pair e and �ui
j � ui

j+1�.
(d) For i = 1�2� & & & � k with ni ≥ 3, there exists a Hamiltonian cycle of �=

c containing both �ui
j � ui

j−1� and
�ui

j � ui
j+1�.

From (a), (b), (c), and (d) it follows that ��ui
j� is c-connected for i = 1�2� & & & � k and for j = 1� & & & � ni. Therefore,

by Theorem 3.1, the theorem follows. �

Now we make use of the following lemma to extend the facet-defining property to all the PWB inequalities.

Lemma 3.1 (Naddef and Rinaldi [18, Lemma 4.8]). Let cx ≥ c0 be a TT inequality facet-defining for
STSP�n�, c∗x∗ ≥ c0 be an inequality obtained by 1-node lifting of cx ≥ c0 and F be a subset of �c∗�un+1� that
satisfies the conditions of Theorem 2.5. Then the following hold:
(a) The edge set ��un+1� ⊆ En+1 is c∗-connected if the graph �V � F � is connected.
(b) For every v ∈ V the edge set ��v� ⊆ En+1 is c∗-connected if the edge set ��v� ⊆ En is c-connected.

Theorem 3.3. The PWB inequalities are facet-defining for STSP�n�.

Proof. It follows from Theorem 3.2, from Lemma 3.1 and from the connectivity of the graph induced by
the edge set F defined in the Theorems 2.6 and 2.7. �

Many of the inequalities known to define facets of STSP�n� are special cases of PWB inequalities, as it can
be easily verified by putting them in TT form. In particular,

(i) the 2-matching inequalities, introduced by Edmonds, are 2-regular PWB inequalities obtained from a
simple inequality possibly by zero-lifting of the nodes Y and Z;
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Figure 14. Cloning edge �un−1� un� one time.

(ii) the Chvátal comb inequalities, introduced by Chvátal, are 2-regular PWB inequalities obtained from a
simple inequality possibly by zero-lifting of Y , Z, and of the nodes of the cycle CY ;
(iii) the comb inequalities, introduced by Grötschel and Padberg, are 2-regular PWB inequalities.

4. The extended PWB inequalities. Some simple inequalities can be obtained by extending other simple
inequalities by simultaneously adding two nodes to their configuration. In Naddef and Rinaldi [18] we call edge
cloning an example of such an extension, and we define it as follows:
Definition 4.1. Let cx ≥ c0 be a TT inequality defined on �En and e be an edge in En. We say that the

inequality c∗x∗ ≥ c∗
0 defined on �

En+2t , with t ≥ 1, is obtained from cx ≥ c0 by cloning t times edge e = �un−1� un�
if (see Figure 14, in which t = 1):

c∗
0 = c0+ 2tce

c∗�ui� un+j � = c�ui� un−1� for 1≤ i ≤ n− 2� 1≤ j ≤ 2t − 1 and j odd�

c∗�ui� un+j � = c�ui� un� for 1≤ i ≤ n− 2� 2≤ j ≤ 2t and j even�

c∗�un+i� un+j � = 2ce for − 1≤ i < j ≤ 2t and j − i even�

c∗�un+i� un+j � = ce for − 1≤ i < j ≤ 2t and j − i odd 

The nodes un+j for 1≤ j < 2t and j odd and the nodes un+j for 1< j ≤ 2t and j even are called the clones of
the nodes un−1 and un, respectively. The edge e = �un−1� un� is said to be cloned.
Let cx ≥ c0 be a TT inequality defining a facet of STSP�n�; an edge e = �u� v� is called c-clonable if the

c-length of every walk W of Kn is at least c0+ �de�W �− 2�ce, where de�W � is the minimum of the degrees of
u and v in W ; we say that a node v ∈ V is --critical for the inequality if the c-length of a minimum c-length
walk of Kn − �v� is c0−-.

Theorem 4.1 (Naddef and Rinaldi [18, Theorems 4.12 and 4.13]). Let cx ≥ c0 be a nontrivial TT
inequality facet-defining for STSP�n� and let e = �un−1� un� be a c-clonable edge such that un−1 and un are
2ce-critical for cx ≥ c0. Then the following hold:
(a) the inequality c∗x∗ ≥ c∗

0 obtained by cloning e (t times) is facet-defining for STSP�n+ 2t�;
(b) the edge subsets ��un−1�� & & & � ��un+2t� of En+2t are c∗-connected;
(c) for v ∈ V − �un−1� un�, if ��v� in Kn is c-connected, then ��v� in Kn+2t is c∗-connected;
(d) if f = �z1� z2� 	= e is an edge in En such that z1 and z2 are 2cf -critical for cx ≥ c0, then z1 and z2 are

2c∗
f -critical for c∗x ≥ c∗

0 .

Definition 4.2. A simple extended PWB inequality is the inequality obtained by cloning ti times the edge
�ui

1� ui
2� for each i ∈ I where I is any subset of �1� & & & � k� such that ni = 2 for all i ∈ I . An inequality is an

extended PWB if its associated simple inequality is a simple extended PWB.

Theorem 4.2. The extended PWB inequalities are facet-defining for STSP�n�.

Proof. Let cx ≥ c0 be a simple PWB inequality of STSP�n� with ni = 2 for some i. We first prove the
following two claims.

Claim 4.1. Let e = �ui
1� ui

2�, with ni = 2, be an edge of an extended PWB configuration that is not cloned
and let cx ≥ c0 be the inequality associated with the configuration. Then the validity of cx ≥ c0 implies that e is
c-clonable.
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Proof. We have to show that if e is not c-clonable, i.e., if there exists a walk W of Kn such that c�W � <

c0− �de�W �−2�ce, then the inequality is not valid, i.e., there exists a walk W ∗ with c�W ∗� < c0. If de�W � = 2,
then obviously W ∗ = W . If de�W � ≥ 4 we show how to construct a walk W ′ from W where the minimum degree
of ui

1 and ui
2 is de�W �−2 and c�W ′� ≤ c�W �−2ce. Thus, we can construct the walk W ∗ by recursively applying

this process. We consider three distinct cases.
Case (a). W contains at least three copies of e. The walk W ′ is obtained from W by removing two copies

of e. The multigraph Kn�W ′� is connected and c�W ′� = c�W �− 2ce.
Case (b). W contains two copies of e. Let uq

r � �ui
1� ui

2� and us
t � �ui

1� ui
2� be neighbors in W of ui

1 and ui
2,

respectively, such that the multigraph Kn�W ′� is connected, where W ′ = W − e − �ui
1� uq

r �− �ui
2� us

t �+ �uq
r � us

t �.
Since ni = 2, it follows that either uq

r ∈ �Y � Z� or q 	= i and either us
t ∈ �Y � Z� or s 	= i. Thus, it is easy to verify

from (11) that c�W ′� ≤ c�W �− 2ce and that equality holds only if uq
r = Y and us

t = Z.
Case (c). W contains only one copy of e. Among the edges of W different from e that are incident with ui

1,
there are always two, say �ui

1� w� and �ui
1� z�, or, possibly, two copies of the same edge (in which case w = z),

such that Kn�W ′′� is connected, where W ′′ = W − �ui
1� w� − �ui

1� z� + �w� z�. Specularly, among the edges of
W different from e that are incident with ui

2, there are always two, say �ui
2� w′� and �ui

3� z′�, or, possibly, two
copies of the same edge (in which case w′ = z′), such that Kn�W ′� is connected, where W ′ = W ′′ − �ui

2� w′�−
�ui

2� z′�+ �w′� z′�. It is easy to verify from (11) that c�W ′� ≤ c�W �− 2ce. �

Observe that if ni > 2, then none of the edges of the path �i is c-clonable, because there are tight walks
where both the end nodes of a path edge have degree four (see, e.g., Figure 5). This explains the exclusion of
these edges from the cloning process in Definition 4.2.

Claim 4.2. Both the end nodes of the edge e = �ui
1� ui

2� are 2ce-critical.

Proof. The walk W i
A of Definition 2.6 contains two copies of e. The Hamiltonian cycle H1 of Kn − �ui

1�,
obtained from W i

A by removing the two copies of e, has length c0 − 2ce. It follows that ui
1 is 2ce-critical.

Analogously, using the walk W i
B, one proves that also ui

2 is 2ce-critical. �

End of Proof of Theorem 4.2. Let l be the number of edges that have been cloned to obtain the inequality
cx ≥ c0, i.e., l = ��i � ti > 0��. If l = 0, the inequality is valid since it is a simple PWB. Therefore, by Claim 4.1,
e = �ui

1� ui
2� with ni = 2 is c-clonable and, by Claim 4.2, both its end nodes are 2ce-critical. Thus, applying

Theorem 4.1, the inequality c∗x∗ ≥ c∗
0 , obtained from cx ≥ c0 by cloning e for ti times, is facet-defining for

STSP�n+ 2ti� and, for any node v, the edge set ��v� in Kn+2ti is c∗-connected. In addition, if the end nodes of
an edge f are 2cf -critical, then they are also 2c

∗
f -critical. Finally, by induction on l one shows that any simple

extended PWB inequality ĉx̂ ≥ ĉ0 is facet-defining and that all its nodes are ĉ-connected. Thus, any extended
PWB inequality is facet-defining. �

Padberg and Hong [24] define the chain inequality as follows:
Let Si ⊆ V for i = 0�1� & & & � q be any proper subsets of V satisfying Si ∩S0 =
 for i = 1� & & & � p, �Si ∩S0� ≥ 1

and �Si\S0� ≥ 1 for i = p + 1� & & & � q, and Si ∩ Sj =
 for 1≤ i ≤ j ≤ q. Let R ⊆ S0 be a subset of S0 satisfying
�R� = p and R∩ Si =
 for i = 1� & & & � q. Then the chain inequality is

q∑
i=0

x�"�Si��+
p∑

i=1
x��R * Si�� ≤ �S0� + �R� +

q∑
i=1

��Si� − 1�−
⌈

q −p+ 1
2

⌉
 (22)

Padberg and Hong [24] show that the chain inequality is a valid inequality for STSP�n� with n ≥ 8, when
2≤ p < q (for p ≤ 1 the chain inequality coincides with a comb inequality). If q−p is odd, then the inequality is
dominated by a nonnegative linear combination of subtour elimination and degree constraints (see, e.g., Naddef
and Pochet [15], where a generalization of these inequalities is described).
It is not difficult to verify, by putting (22) in TT form, that the chain inequality is an extended 2-regular PWB

inequality obtained by cloning only one path edge of a simple 2-regular PWB configuration, say �u11� u12�, and
then zero-lifting all nodes except u11 and its clones (these are the members of the set R in the definition of the
chain inequalities).
Extended PWB inequalities generalize chain inequalities not only because the cloning process can involve

all path edges of a 2-regular PWB inequality and because all nodes can be zero-lifted, but also because these
inequalities can be derived from any nonregular PWB inequality having at least one path of length 2. This
generalization of the chain inequalities differs from the one described by Naddef and Pochet [15].



Naddef and Rinaldi: The Symmetric Traveling Salesman Polytope: New Facets from the Graphical Relaxation
252 Mathematics of Operations Research 32(1), pp. 233–256, © 2007 INFORMS

5. Composition of PWB inequalities. In Naddef and Rinaldi [17] we describe an operation, called 2-sum,
which yields facet-defining inequalities for GTSP�n� and involves two facet-defining inequalities defined on
smaller configurations. In Naddef and Rinaldi [18] we give sufficient conditions under which an inequality,
obtained as the 2-sum of two other inequalities, defines a facet of STSP�n�. We apply the 2-sum operation to
PWB inequalities. For the sake of completeness, we give the formal definition of the 2-sum operation.
Two weighted graphs G1 = �V 1� E1� c1� and G2 = �V 2� E2� c2� are isomorphic if there exists a one-to-one

correspondence C between their node sets that preserves the weight function, i.e., for every edge �u� v� ∈ E1,
the edge �C�u�� C�v�� belongs to E2 and c1�u� v� = c2�C�u�� C�v��.
Definition 5.1. Let c1x1 ≥ c10 and c2x2 ≥ c20 be two TT inequalities facet-defining for STSP�n1� and

STSP�n2�, respectively, and let e1 = �u1� v1� ∈ En1
and e2 = �u2� v2� ∈ En2

be two edges such that c1�u1� v1� =
c2�u2� v2� = D > 0. Denote by Vn1

and Vn2
the node sets of the two graphs Kn1

and Kn2
, respectively, by V 1

the set Vn1
− �u1� v1� and by V 2 the set Vn2

− �u2� v2�. Then the 2-sum of the two inequalities, obtained by
identifying u1 with u2 and v1 with v2, is the inequality cx ≥ c10 + c20 − 2D defined on �En , with n = n1+ n2− 2,
whose support graph Gc = �V � En� c� is defined as follows:

(i) V = V 1+V 2+ �u� v�;
(ii) the subgraph of Gc induced by V 1 + �u� v� is isomorphic to Gc1 and u and v correspond to u1 and v1,

respectively, in the isomorphism;
(iii) the subgraph of Gc induced by V 2 + �u� v� is isomorphic to Gc2 and u and v correspond to u2 and v2,

respectively, in the isomorphism;
(iv) the coefficients of the edges with one end node in V1 and the other in V2, that we call the crossing edges

of the 2-sum, are computed by a sequential lifting procedure.
The inequalities c1x1 ≥ c10 and c2x2 ≥ c20 are called the component inequalities of the 2-sum.
For the sake of simplicity, from now on every time that the correspondence between nodes, edges, and walks

of each of the graph Gc1
and Gc2

and their corresponding isomorphic subgraphs of Gc is evident, we omit to
mention it explicitly.
In Naddef and Rinaldi [17] we use the 2-sum operation in a recursive way to generate huge families of

inequalities defining facets of GTSP�n�. The most interesting of such families is perhaps the one of the regular
parity path tree (or regular parity PWB-tree) inequalities. These inequalities are peculiar because the lifting
procedure does not have to be carried out explicitly, since the coefficient of each crossing edge is given by
the c-length of the shortest path between its end nodes in the c-weighted graph produced by each 2-sum. This
implies that the coefficients of the crossing edges do not depend on the order of the sequential lifting procedure.
Definition 5.2. A regular parity PWB-tree inequality is one of the following:
(i) A regular PWB inequality �0. In this case the PWB-tree inequality has length 0. The path edges as well

as the even and the odd nodes of �0 coincide with the corresponding ones of the PWB inequality.
(ii) The 2-sum �l+1 of a regular parity PWB-tree inequality �l, having length l and of a regular PWB

inequality obtained by identifying the end nodes of a path edge of one inequality with the end nodes of a path
edge of the other, with the constraints that the identified nodes have the same parity. In this case the PWB-tree
inequality has length l + 1. The nodes that result from the two identifications inherit the parity of the nodes
from which they derive; the edge between them is a path edge of �l+1. The path edges as well as the even and
the odd nodes of �l and of the PWB inequality are path edges, even and odd nodes of �l+1.
As it was mentioned before, for the regular parity PWB-tree inequalities the following theorem holds:

Theorem 5.1 (Naddef and Rinaldi [17, Theorem 5.3]). Let c1x1 ≥ c10 and c2x2 ≥ c20 be two regular parity
PWB-tree inequalities, let cx ≥ c0 be their 2-sum, and let �u� v� be the edge that results from the identification.
Then, using the notation of Definition 5.1, for any x ∈ V 1 and y ∈ V 2 the following holds:

c�x� y� =min�c1�x� u�+ c2�u� y�� c1�x� v�+ c2�v� y�� (23)

The main result of this section is a proof that regular parity PWB-tree inequalities are facet-defining for
STSP�n�. To do so, we use the following theorem that gives conditions for a 2-sum inequality to be facet-defining
for STSP�n�.
We call a 2-sum inequality h-liftable if the coefficients of its crossing edges do not change if Hamiltonian

cycles are used in the lifting procedure, instead of walks.

Theorem 5.2 (Naddef and Rinaldi [18, Theorem 3.5]). Under the assumptions of Definition 5.1, let
c1x1 ≥ c10 and c2x2 ≥ c20 be nontrivial inequalities defining facets of STSP�n1� and STSP�n2�, respectively.
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uj
i

uj
i

uj+1
i

uj+1
i

uq
r

uq
r

(a) (b)

Figure 15. Tight walks containing edge �ui
j � ur

q� and twice edge �ui
j � ui

j+1�.

The 2-sum inequality cx ≥ c0 is facet-defining for STSP�n� if it is h-liftable and:
(a) v1 is 2D-critical for c1x1 ≥ c10 ,
(b) ��u2� is c2-connected,

and either
Case (A):

(c′) u2 is 2D-critical for c2x2 ≥ c20 ,
(d′) ��v1� is c1-connected,

or
Case (B):
(c′′) v2 is 2D-critical for c2x2 ≥ c20 ,
(d′′) ��u1� is c1-connected,
(e′′) there exists a Hamiltonian cycle H1 ∈�=

c1
containing the edge �u1� v1� and any edge e1 ∈ �c1

�v1�,
(f′′) there exists a Hamiltonian cycle H2 ∈�=

c2
containing the edge �u2� v2� and any edge e2 ∈ �c2

�v2�.

Before stating the main theorem, we prove a lemma concerning the h-liftability of simple regular parity
PWB-tree inequalities and recall three lemmata that we state in Naddef and Rinaldi [18] and that will be used
in the main proof as well.

Lemma 5.1. The 2-sum of a simple regular parity PWB-tree and of a simple PWB inequality is h-liftable.

Proof. We consider the 2-sum of a simple regular parity PWB-tree inequality �l with a simple regular
PWB inequality cx ≥ c0, obtained by identifying the end nodes of a path edge of �l with the end nodes of
the edge �ui

j � ui
j+1� of the PWB inequality. Without loss of generality, we can assume that j < ni, and thus

that ui
j+1 is always even. Let e = �a� ur

q� be a crossing edge of the 2-sum inequality. We consider two cases,
depending on whether node ui

j (as well as the corresponding node of �l) is even or odd. We use the walks of
the Figures 15–17. These walks belong to � =

c when cx ≥ c0 is a path inequality and can be easily adjusted to
the cases when the inequality is either a wheelbarrow or a bicycle.

Case A. Node ui
j is even. Without loss of generality, we assume that q ≤ j (or else, just exchange the roles

of j and j + 1 and those of Z and Y ). Then it is easy to see, by (23) and (13), that ce = c1�a� ui
j�+ c2�ui

j � ur
q�.

u1
i u1

i

uq
r

uq
r

Y Y(a) (b)

Figure 16. Tight walks containing the edges �ui
1� Y � and �Y � ur

q�.
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uq
r uq

r

u1
i u1

i

Y Y(a) (b)

Figure 17. A tight walk containing the edges �ui
1� Y � and �Y � ur

q� and one containing twice edge �ui
1� Y � and edge �ui

1� ur
q�.

The inequality �l is facet-defining for GTSP�n� (see Naddef and Rinaldi [17]). Therefore, there exists a tight
walk containing �a� ui

j� that, by Lemma 2.3, can be turned into a Hamiltonian cycle H containing �a� ui
j�. If

r = i, then let W1 be the walk of Figure 15(a); otherwise, let W1 be the walk of Figure 15(b). This walk contains
edge �ui

j � ui
j+1� twice. The Hamiltonian cycle H +W1− 2�ui

j � ui
j+1�− �a� ui

j�− �ui
j � ur

q�+ �a� ur
q� is tight for the

2-sum inequality and contains the crossing edge e.
Case B. Node ui

j is odd, i.e., ui
j = Y and j = 0. In Naddef and Rinaldi [17, Lemma 5.6] we show that there

exists a tight walk W for the inequality �l that contains both edges �a� Y � and �Y � ui
1�. We first assume that

either r 	= i or q = nr + 1, in the latter case we have ur
q = Z. Then it is easy to see that, by (23) and (11),

ce = c1�a� Y � + c2�Y � ur
q�. If q = nr + 1, then let W2 be the walk of Figure 16(a); otherwise, let it be the

walk of Figure 16(b) (the edges represented by broken lines have to replace the marked edge if node Y has
degree 2 in W ). The walk W + W2 − 2�ui

1� Y � − �a� Y � − �Y � ur
q� + �a� ur

q� is tight for the 2-sum inequality,
contains the crossing edge e, and, by Lemma 2.3, can be transformed into a tight Hamiltonian cycle by shortcuts
involving only edges of E1 since only one edge on E2 is incident with ui

1 and Y , respectively. Now let us
assume that r = i and q > 0. If ce = c1�a� Z� + c2�Z� ur

q�, then let W3 be the walk of Figure 17(a). The walk
W ′ = W +W3− 2�ui

1� Y �− �a� Y �− �Y � ur
q�+ �a� ur

q� is tight for the 2-sum inequality and contains the crossing
edge e. Finally, if ce = c1�a� ui

1�+ c2�ui
1� ur

q�, let H be the Hamiltonian cycle defined for Case (A) and W4 the
walk of Figure 17(b). Then also the walk W ′′ = H + W4 − 2�ui

1� Y � − �a� ui
1� − �ui

1� ur
q� + �a� ur

q� is tight for
the 2-sum and contains e. Both walks W ′ and W ′′ can be turned into tight walks where every node but Y has
degree 2, by applying shortcuts involving only edges of E1, since only one edge on E2 is incident with ui

1. To
reduce each of these walks to a Hamiltonian cycle, a shortcut involving a crossing edge �w� us

t �, where s 	= i,
is necessary. However, since the coefficients of the inequality do not depend on the lifting sequence, we can
assume, without loss of generality, that the lifting coefficients for all the crossing edges �w� us

t �, with s 	= i, are
computed first, and the lemma is proved. �

The following three lemmata give conditions under which some properties of the components of a 2-sum are
carried over to the resulting inequality. The notation used in their statements is that of Definition 5.1.

Lemma 5.2 (Naddef and Rinaldi [18, Lemma 3.5]). Under the assumptions of Definition 5.1, let w ∈ Vn1

be --critical for c1x1 ≥ c10 , and let c1e = -/2 for some edge e ∈ ��w� in Kn1
. The corresponding node w ∈ V is

--critical for cx ≥ c0 if cx ≥ c0 is supporting for GTSP�n� and any of the following conditions holds:
(a) w � �u1� v1�,
(b) w = u1 and u2 is 2D-critical for c2x2 ≥ c20 ,
(c) w = v1 and v2 is 2D-critical for c2x2 ≥ c20 .

Lemma 5.3 (Naddef and Rinaldi [18, Lemma 3.6]). Under the assumptions of Definition 5.1, if there exists
a Hamiltonian cycle H ∈�=

c1
containing two nonadjacent edges e and f ∈ En1

and at least one of the two nodes
u2 and v2 is 2D-critical for c2x2 ≥ c20 , then there exists a Hamiltonian cycle H∗ ∈ �=

c containing the edges in
En corresponding to e and f , respectively.

Lemma 5.4 (Naddef and Rinaldi [18, Lemma 3.7]). Under the assumptions of Definition 5.1, let ��w� in
Kn1

be c1-connected for every node w ∈ Vn1
and let ��w� in Kn2

be c2-connected for every node w ∈ Vn2
. Then

��w� in Kn is c-connected for every node w ∈ V if the following conditions hold:
(i) cx ≥ c0 is h-liftable;
(ii) at least one of the two nodes u1 and v1 is 2D-critical for c1x1 ≥ c10;
(iii) at least one of the two nodes u2 and v2 is 2D-critical for c2x2 ≥ c20 .
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We have now all the basic tools to prove the following

Theorem 5.3. The regular parity PWB-tree inequalities are facet-defining for STSP�n�.

Proof. Let �l be a simple regular parity PWB-tree inequality of length l. We proceed by induction on l. The
theorem is true for l = 0 since �0 is a PWB inequality. We consider now the case l = 1. Thus, by Definition 5.2,
�1 is the 2-sum of an inequality �0, which we denote by c1x1 ≥ c10, and of a simple PWB inequality c2x2 ≥ c20 ,
obtained by identifying the end nodes of the path edge �u1� v1� of the first inequality to the end nodes of the
path edge �u2� v2� of the second. Using the notation of Definition 5.1, we show now that the conditions of
Theorem 5.2 are satisfied. By Lemma 5.1, �l is h-liftable for all values of l.

Claim 5.1. An even end node of a path edge e of a simple PWB inequality cx ≥ c0 is 2ce-critical.

Proof. Without loss of generality, we can assume that e = �ui
j � ui

j+1�, with j ∈ �0� & & & � ni − 1�. We consider
two cases.
The first case arises when j ∈ �1� & & & � ni − 1�; in this case both the end nodes of e are even. Consider the

walk W i
A of Definition 2.6 if j = 1, the walk W i

B if j = ni − 1, and W i
C�j + 1� if j ∈ �2� & & & � ni − 2�. Such a

walk contains two copies of edge e; in addition, by removing these two copies, we obtain a walk of V \�ui
j+1�

of c-length c0− 2ce. Therefore, ui
j+1 is 2ce-connected. Similarly, one shows that also ui

j is 2ce-connected.
In the second case, arising when j = 0, we consider the walk W i

C�1�, the only even node is ui
1. We add the

(odd) node Y = ui
0; then we remove the two cycle edges �ui

1� ui−1
1 � and �ui

1� ui+1
1 �; and finally we add the edges

�Y � ui−1
1 �, �Y � ui+1

1 �; and two copies of the edge e = �Y � ui
1�. The resulting walk has c-length c0 and contains two

copies of e; moreover, the removal of these two copies of e yields a walk of V \�ui
j� of c-length c0− 2ce. �

Claim 5.2. An even end node of a path edge e of a simple regular parity PWB-tree inequality cx ≥ c0 is
2ce-critical.

Proof. It follows immediately by applying the recursion of Definition 5.2, Claim 5.2, and Lemma 5.2. �

Since a path edge has at most one odd end node, we can assume, without loss of generality, that the nodes u1
and u2 are both even. Thus, by Claims 5.1 and 5.2, the conditions (a) and �c′′� are satisfied for all values of l.
Depending on the parity of the nodes v1 and v2 we have two distinct cases.

Case A. v1 and v2 are even. In this case, by Claims 5.1 and 5.2 Condition �c′� is satisfied.
Case B. v1 and v2 are odd. First, we prove the following

Claim 5.3. Let cx ≥ c0 be a simple PWB inequality and let �ui
1� Y � be one of its path edges incident with

an odd node. Then there exists a Hamiltonian cycle H ∈�=
c containing �ui

1� Y � and an edge of �c�Y �.

Proof. Consider the walk of Figure 7(a), where j and q are set to 1 and nr , respectively. With these settings
of j and q, the walk is actually a Hamiltonian cycle. Replace �ui

1� ur
nr

� by the two edges �ui
1� Y � and �Y � ur

nr
�.

For the case of a path inequality, insert node Z into the cycle in a similar manner, by removing any cycle edge
of CZ (by Theorem 2.3 at least one edge of CZ belongs to the Hamiltonian cycle). The resulting Hamiltonian
cycle belongs to �=

c , contains the edge �ui
1� Y �, and, again by Theorem 2.3, intersects CY ⊆ �c�Y �. �

Claim 5.4. Let cx ≥ c0 be a simple regular parity PWB-tree inequality and �u� v� be one of its path edges
incident with an odd node v. Then there exists a Hamiltonian cycle H ∈ �=

c containing �u� v� and an edge
of �c�v�.

Proof. It follows immediately by applying the recursion of Definition 5.2, Claim 5.1, and Lemma 5.3. �

End of Proof of Theorem 5.3. Claims 5.3 and 5.4 imply that both conditions �e′′� and �f ′′� are satisfied
for all values of l.
For l = 1 the two inequalities are of PWB type, hence, by Theorems 3.2 and 3.3, the conditions (b), �d′�, and

�d′′� are satisfied. Thus, the inequality is facet-defining, and each node of the graph is c-connected with respect
to the coefficient vector c of the inequality. This implies that the same holds for l > 1, by applying the induction
and the Lemmata 5.1 and 5.4. �

A clique-tree inequality (see Grötschel and Pulleyblank [11]), as long as there is a node not contained in any
handle or tooth, is a special case of a regular parity path tree obtained as follows (see Naddef and Rinaldi [17]):
—Only 2-regular PWB inequalities with at least one odd node are used as components.
—Each 2-sum involves an odd node.
—All odd nodes involved in the 2-sums correspond to a single odd node in the resulting inequality.

It is evident how the regular parity PWB-tree inequalities generalize the clique tree inequalities in many possible
ways.
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6. Conclusions. The operations described in this paper can be extended in several directions to prove that
further classes of inequalities derived from PWB inequalities are facet-defining for the STSP polytope. For
example, the components of a 2-sum can be extended PWB inequalities, or edge cloning can be applied to
regular parity PWB inequalities.
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