The Symmetric Traveling Salesman Polytope: New Facets from the Graphical Relaxation

Denis Naddef
Laboratoire G-SCOP, Institut National Polytechnique de Grenoble, 46, avenue Félix-Viallet, 38031 Grenoble, France, denis.naddef@g-scop.inpg.fr, http://www.g-scop.inpg.fr/~naddefd/
Giovanni Rinaldi
Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti" del CNR, viale Manzoni 30, 00185 Roma, Italy, rinaldi@iasi.cnr.it, http://www.iasi.cnr.it/iasi/personnel/rinaldi.html

Abstract

The path, the wheelbarrow, and the bicycle inequalities have been shown by Cornuéjols, Fonlupt, and Naddef to be facetdefining for the graphical relaxation of $\operatorname{STSP}(n)$, the polytope of the symmetric traveling salesman problem on an n-node complete graph. We show that these inequalities, and some generalizations of them, define facets also for $\operatorname{STSP}(n)$. In conclusion, we characterize a large family of facet-defining inequalities for $\operatorname{STSP}(n)$ that include, as special cases, most of the inequalities currently known to have this property as the comb, the clique tree, and the chain inequalities. Most of the results given here come from a strong relationship of $\operatorname{STSP}(n)$ with its graphical relaxation that we have pointed out in another paper, where the basic proof techniques are also described.

Key words: traveling salesman problem; Hamiltonian cycle; polyhedron; facet; linear inequality MSC2000 subject classification: Primary: 90C57; secondary: 52B12 OR/MS subject classification: Primary: networks/graphs; secondary: traveling salesman History: Received October 29, 2004; revised February 17, 2006, and July 25, 2006.

1. Introduction. "The most spectacular success of the cutting plane technique has certainly been achieved for the traveling salesman problem" Grötschel and Lovász observe in their survey on combinatorial optimization (Grötschel and Lovász [8]). This success is due mostly to the exploitation of the current (partial) knowledge of the structure of the traveling salesman polytope and is the main motivation for pushing this knowledge a bit further.

Cornuéjols et al. [5] define a class of valid inequalities for the symmetric traveling salesman polytope on a graph with n nodes $(\operatorname{STSP}(n))$ known as the path, the wheelbarrow, and the bicycle inequalities (the PWB inequalities for short). They show that these inequalities are facet-defining for a relaxation of $\operatorname{STSP}(n)$, namely, the graphical relaxation polyhedron $(\operatorname{GTSP}(n))$.

The main result of this paper is that these inequalities, and many of their generalizations, are facet-defining for $\operatorname{STSP}(n)$. This result was contained in the research report of Naddef and Rinaldi [16], which had the same title as this article and was widely referenced in the literature, both in research and in survey articles. However, it was very technical and difficult to read and, thus, was never submitted for publication. This paper is a substantial revision of that report.

The motivation for adding the PWB inequalities to the list of those defining facets of $\operatorname{STSP}(n)$, in addition to the fact that they provide a huge and natural generalization of the comb inequalities, comes from the fact that they are useful in a polyhedral cutting plane algorithm for the solution of the traveling salesman problem, as shown by Naddef and Thienel [19, 20] (see also Clochard and Naddef [4]). This experimental evidence confirms the theoretical expectation expressed by Goemans [6], where he addresses the problem of measuring the quality of a class of inequalities. As a measure, he proposes the ratio of the lower bound for the graphical traveling salesman problem obtained by using all the inequalities of a given class along with the subtour elimination inequalities and the lower bound produced with only the subtour elimination inequalities. The best value, among all the inequalities of $\operatorname{GTSP}(n)$ known to date, is obtained for the PWB inequalities.

In Naddef and Rinaldi [18] we show how the two polyhedra $\operatorname{STSP}(n)$ and $\operatorname{GTSP}(n)$ are very tightly related. On this basis, we develop a technique to prove that some given facet-defining inequalities for $\operatorname{GTSP}(n)$ are also facet-defining for $\operatorname{STSP}(n)$. Moreover, we state sufficient conditions under which the composition of facetdefining inequalities that we introduced in Naddef and Rinaldi [17] for $\operatorname{GTSP}(n)$ also applies to the case of $\operatorname{STSP}(n)$. Finally, we show how to apply several kinds of liftings to the inequalities that define facets of $\operatorname{STSP}(n)$.

In this paper we first use the technique of Naddef and Rinaldi [18] to prove that the path, the wheelbarrow, and the bicycle inequalities are facet-defining for $\operatorname{STSP}(n)(\S 2)$. Since these inequalities contain the comb inequalities as a special case, as a byproduct we get another proof that the comb inequalities define facets of $\operatorname{STSP}(n)$. Another such proof for comb inequalities can be found in Naddef and Wild [21], and also, of course, in the original proof of Grötschel and Padberg [9, 10].

In Naddef and Rinaldi [18], we define an edge cloning operation to extend an inequality to a higher dimensional space, and we state sufficient conditions under which the application of such operation preserves the facet-defining property of an inequality. Here we apply this operation to the PWB inequalities. The so-called chain inequalities of Padberg and Hong [24] are a particular case of the inequalities obtained in this way.

We finally prove that the repeated 2 -sum composition of PWB inequalities yields facet-defining inequalities. Clique trees, with at least one node outside all handles and teeth, are a special case of these inequalities. Therefore, we get an alternative proof that they are facet-defining; the original one was given by Grötschel and Pulleyblank [11].

Let $G=(V, E)$ be a graph on n nodes. By $e=(u, v)$ we denote the edge of G having u and v as end nodes, and we let \mathbb{R}^{E} be the set of all real vectors whose components are indexed by the edge set E. For every real vector x in \mathbb{R}^{E}, by x_{e}, or by $x(u, v)$, we denote the component of x indexed by $e=(u, v)$. For a subset $F \subseteq E$, we let $x(F)$ be the sum $\sum_{e \in F} x_{e}$. When G is complete, we denote it by $K_{n}=\left(V, E_{n}\right)$.

With every Hamiltonian cycle H of K_{n} we associate a unique incidence vector χ^{H} in $\mathbb{R}^{E_{n}}$. The components of χ^{H} indexed by the edges of H have value 1 while all the other components have value 0 . The symmetric traveling salesman polytope (also called the Hamiltonian cycle polytope) associated with K_{n} is denoted by $\operatorname{STSP}(n)$ and is the convex hull of the set of the incidence vectors of all the Hamiltonian cycles of K_{n}.

The description of $\operatorname{STSP}(n)$ with linear inequalities is a classical topic of polyhedral combinatorics and has attracted a lot of interest. For the fundamentals of polyhedral combinatorics we refer the reader to the book of Nemhauser and Wolsey [22]. While for small values of $n(n \leq 9)$ a complete description of the system of inequalities defining facets of $\operatorname{STSP}(n)$ has been generated by means of a computer program (see, e.g., Christof and Reinelt [2]), for arbitrary values of n the knowledge of such a system is far from being complete, and it is very unlikely that it will ever be. In the last 40 years many papers appeared in which new valid or facetdefining inequalities for $\operatorname{STSP}(n)$ were introduced. We refer to Jünger et al. [12], Lawler et al. [13], Naddef [14], and Naddef and Pochet [15] for a list of them and for further details on the traveling salesman polytope. As new inequalities are discovered, it becomes more and more difficult to keep track of all of them in a unifying framework; moreover, the proof techniques are usually specific for each class of inequalities.

This paper aims at giving a compact combinatorial description for a large family of facet-defining inequalities that includes most of the known ones, as well as at providing a standard proof technique to show that an inequality defines a facet of $\operatorname{STSP}(n)$. $\operatorname{As} \operatorname{STSP}(n)$ is not full-dimensional, to study its polyhedral structure it is customary to embed it into a full-dimensional polyhedron called a relaxation, which is obtained by dropping some conditions on the solution set, and then to find sufficient conditions for an inequality facet-defining for the relaxation to maintain such a property for $\operatorname{STSP}(n)$.

The two major relaxations that have been considered in the study of the polyhedral structure of $\operatorname{STSP}(n)$ are the monotone traveling salesman polytope, introduced by Grötschel [7], and the graphical traveling salesman polyhedron. Sufficient conditions for a facet-defining inequality for the monotone relaxation to be facet-defining for $\operatorname{STSP}(n)$ are given by Balas and Fischetti [1].

A desirable property of a relaxation R is that every facet of $\operatorname{STSP}(n)$ be contained in exactly one of the facets of R that do not contain the entire polytope $\operatorname{STSP}(n)$. If this property holds, then there is a one-to-one correspondence between a subset of the facets of R and all facets of $\operatorname{STSP}(n)$. Unfortunately, the monotone traveling salesman polytope does not have such a property. On the contrary, the graphical traveling salesman polyhedron does. For this reason and for some nice connections with $\operatorname{STSP}(n)$, which will be mentioned later, this polyhedron appears to be the most natural and useful relaxation for studying the polyhedral structure of $\operatorname{STSP}(n)$.

We exploit here such connections between $\operatorname{STSP}(n)$ and the graphical traveling salesman polyhedron. The latter polyhedron has been studied by Cornuéjols et al. [5] and by Naddef and Rinaldi [17]. In Naddef and Rinaldi [18] we studied its connections with $\operatorname{STSP}(n)$. Most of our proofs are based on the results of these three papers.

To formally define the graphical traveling salesman polyhedron, we need the following definitions.
A multiset of edges of $G=(V, E)$ is a collection F of elements of E that may contain several copies of the same element. For every element e of E, we call multiplicity of e in F the number of times e appears in F. Clearly, a set of edges of G is a multiset where every element has multiplicity 1 . Let F_{1} and F_{2} be two multisets of edges of G and let $F_{1}+F_{2}$ denote the multiset for which the multiplicity of every element is given by the sum of its multiplicities in F_{1} and F_{2}. By $F+e$ and, if $e \in F$, by $F-e$ we denote the multisets for which the element e has multiplicity one more and one less than in F, respectively. Finally, $t\{e\}$ denotes the multiset containing only the element e with multiplicity t.

Figure 1. Example of a closed walk W in a graph G.

Let F be a multiset of edges of $G=(V, E)$. By $G[F]$ we denote the multigraph having node set V and having, for every pair of distinct nodes u and v in V, as many edges with end nodes u and v as the multiplicity of (u, v) in F. For every node v in V, the degree of v in F is the degree of v in the multigraph $G[F]$, and the neighbors of v in F are the neighbors of v in the multigraph $G[F]$. With every multiset F of edges of G we associate a unique representative vector $\chi^{F} \in \mathbb{R}^{E}$ by setting χ_{e}^{F} equal to the multiplicity of e in F for every $e \in E$. If c is a vector in \mathbb{R}^{E}, the c-length of F, also denoted by $c(F)$, is defined as $c(F)=c \chi^{F}$. For any two multisets F_{1} and F_{2} of edges of G, if $\chi^{F_{1}} \leq \chi^{F_{2}}$ we say that F_{1} is contained in F_{2}.

A spanning closed walk of a graph $G=(V, E)$ is a multiset W of edges of G such that
(i) the degree in W of every $v \in V$ is positive and even;
(ii) $G[W]$ is connected.

We simply use the term walk for a spanning closed walk since all our walks are of this kind.
Thus, a Hamiltonian cycle in G is a walk where every node has degree 2, while a walk is not, in general, a Hamiltonian cycle.

Figure 1 shows a graph and a closed walk which is not a Hamiltonian cycle.
The graphical traveling salesman polyhedron associated with the graph G, denoted by $\operatorname{GTSP}(G)$ or $\operatorname{GTSP}(n)$ when $G=K_{n}$, is the convex hull of the set of the representative vectors of all the walks of G and is the polyhedron associated with the graphical traveling salesman problem.

If G is connected, then $2 T=\{2\{e\} \mid e \in T\}$ is a walk for any spanning tree T of G. Moreover, $W+2 t\{e\}$ is a walk for any walk W, for any edge e of G, and for any nonnegative integer t. Therefore, $\operatorname{GTSP}(G)$ is a full-dimensional unbounded polyhedron. Clearly, $\operatorname{GTSP}(n)$ is a relaxation of $\operatorname{STSP}(n)$ (the degree of each node is no longer required to be 2 but only positive and even) and $\operatorname{STSP}(n)=\{x \in \operatorname{GTSP}(n) \mid x(E)=n\}$ (see Cornuéjols et al. [5]). Therefore, $\operatorname{STSP}(n)$ is a face of $\operatorname{GTSP}(n)$.

For any inequality $f x \geq f_{0}$ and for each node $u \in V$, we define the edge set $\Delta_{f}(u)=\left\{(v, w) \in E_{n} \mid u \neq v\right.$, $u \neq w, f(v, w)=f(u, v)+f(u, w)\}$.

Definition 1.1. An inequality $f x \geq f_{0}$ defined on $\mathbb{R}^{E_{n}}$ is said to be tight triangular (abbreviated $T T$) or in tight triangular form (abbreviated $T T$ form) if:
(a) The coefficients f_{e} satisfy the triangular inequality, i.e., $f(u, v) \leq f(u, w)+f(w, v)$ for every triple u, v, w of distinct nodes in V;
(b) $\Delta_{f}(u) \neq \varnothing$ for all u in V.

In Naddef and Rinaldi [18] we prove that, except for the trivial inequalities $x_{e} \geq 0$ and for the degree inequalities $x(\delta(\{u\})) \geq 2$, all facet-defining inequalities of $\operatorname{GTSP}(n)$ are in $T T$ form (here and in the following, by $\delta(U)=\{(u, v) \in E \mid u \in U, v \in V \backslash U\}$ we denote the cocycle of a subset U of V in the graph $G=(V, E))$. Moreover, we show that every nontrivial inequality $c x \geq c_{0}$ facet-defining for $\operatorname{STSP}(n)$ has a unique equivalent inequality $f x \geq f_{0}$ in $T T$ form, up to scaling by a nonnegative constant π, where f and f_{0} are defined as follows:

$$
\begin{gather*}
f(u, v)=\pi\left(\lambda_{u}+\lambda_{v}+c(u, v)\right) \quad \text { for all }(u, v) \in E \\
f_{0}=\pi\left(2 \sum_{u \in V} \lambda_{u}+c_{0}\right) \tag{1}
\end{gather*}
$$

where $\lambda \in \mathbb{R}^{V}$ satisfies

$$
\begin{equation*}
\lambda_{u}=\frac{1}{2} \max \{c(v, w)-c(u, v)-c(u, w) \mid u, v, w \in V, u \neq v \neq w\} \quad \text { for all } u \in V \tag{2}
\end{equation*}
$$

We now show the $T T$ form of the comb inequality, probably the best-known inequality of the linear description of $\operatorname{STSP}(n)$. We consider the simplest comb inequality, the one with three teeth. Such an inequality is defined on a subset of vertices H called the handle and on three mutually disjoint subsets of vertices T_{1}, T_{2}, and T_{3}, called the teeth, which intersect H (see Figure 2).

Figure 2. A 3-tooth comb and the coefficients of the inequality in $T T$ form.

When first defined by Chvátal [3] and then by Grötschel and Padberg [9], the inequality, where k is odd and stands for the number of teeth (in our example $k=3$) and where $\gamma(U)$ denotes the edge set $\{(u, w) \mid u, w \in U\}$, was given as

$$
x(\gamma(H))+\sum_{i=1}^{k} x\left(\gamma\left(T_{i}\right)\right) \leq|H|+\sum_{i=1}^{k}\left(\left|T_{i}\right|-1\right)-(k+1) / 2 .
$$

After multiplying both sides of the inequality by -1 and applying (2), one obtains for λ_{u} a value given by half the number of sets (handle and teeth) to which u belongs. Then, by applying (1) (with $\pi=2$ to produce integral coefficients), one obtains the following version of the inequality in $T T$ form:

$$
x(\delta(H))+\sum_{j=1}^{k} x\left(\delta\left(T_{j}\right)\right) \geq 3 k+1
$$

In the right-hand side part of Figure 2 some edges of G are drawn with their coefficients in the $T T$-form of the comb inequality defined by the sets in the left-hand side. The coefficient of any edge e is given by the number of sets whose border is crossed by e. To unclutter the figure, only a few examples of such coefficients are shown.

In Naddef and Rinaldi [18] we show that the $T T$ form of any facet-defining inequality for $\operatorname{STSP}(n)$ is also facet-defining for $\operatorname{GTSP}(n) .{ }^{1}$ Finally, we give sufficient conditions for an inequality facet-defining for $\operatorname{GTSP}(n)$ to define a facet of $\operatorname{STSP}(n)$.

Based on these results, the process of finding new valid inequalities for $\operatorname{STSP}(n)$ and of proving that they are facet-defining can go along the following four steps.

1. One first restricts the attention to a (possibly sparse) spanning graph $\bar{G}=(V, \bar{E})$ and proves that an inequality, say $c x \geq c_{0}$, defines a facet of $\operatorname{GTSP}(\bar{G})$. This task may take advantage from the sparsity of \bar{G} and from the fact that using walks, rather than Hamiltonian cycles, simplifies the proofs considerably. Note that \bar{G} only has to be connected to have a full-dimensional polyhedron $\operatorname{GTSP}(\bar{G})$ and actually may not be Hamiltonian at all. The graph \bar{G} is called the skeleton of the inequality (see Naddef and Rinaldi [17, pp. 373-374]).
2. Using a standard sequential lifting procedure, one then extends the inequality $c x \geq c_{0}$ to become a facetdefining inequality for $\operatorname{GTSP}(n)$. This is done by choosing an ordering $\left\langle e_{1}, e_{2}, \ldots, e_{r}\right\rangle$ of the edges of the set $E_{n} \backslash \bar{E}$ and then, for each $l=1, \ldots, r$, by assigning the smallest coefficient to e_{l} such that the length of the shortest walk in $G_{l}=\left(V, \bar{E} \cup \bigcup_{t=1}^{l} e_{t}\right)$ is c_{0}. The resulting inequality is facet-defining for $\operatorname{GTSP}(n)$ by construction. Different orderings of the edges in $E_{n} \backslash \bar{E}$ yield, in general, different inequalities. When this is not the case, we say that the skeleton is stable (see Naddef and Rinaldi [17]). Examples of a skeleton that is stable and of one that is not are given in $\S 2$.
3. Once a facet-defining inequality for $\operatorname{GTSP}(n)$ has been obtained, one tries to show that it defines also a facet of $\operatorname{STSP}(n)$ by proving that one of the mentioned sufficient conditions is satisfied.
4. To describe in a compact way a large family of facet-defining inequalities, one can apply some operations that we describe in Naddef and Rinaldi [17, 18] that generate new inequalities from known ones, using the inequalities produced at Step 3 as building blocks.

It is easy to see that a $T T$ inequality cannot have negative coefficients. However, it can have coefficients with value zero. A $T T$ inequality $c x \geq c_{0}$ defined on $\mathbb{R}^{E_{n}}$ with $c_{e}>0$ for all $e \in E_{n}$ is called simple. Simple inequalities have a peculiar geometric property. They define all bounded facets of $\operatorname{GTSP}(n)$.

Let $(U: W)$ denote the edge set $\{(u, w) \mid u \in U, w \in W\}$. Suppose we are given a $T T$ inequality $c x \geq c_{0}$ which is not simple. It is easy to see that V can be partitioned into p sets V^{1}, \ldots, V^{p} such that:

[^0](a) $c_{e}=0$ for all $e \in \gamma\left(V^{i}\right), i=1, \ldots, p$;
(b) for all $i \neq j \in\{1, \ldots, p\}, c_{e}=c_{f}>0$ for $e, f \in\left(V^{i}: V^{j}\right)$.

Since the edges linking two vertices contained in a same subset V^{i} have a zero coefficient, these edges do not play any structural role in the definition of the inequality, only the edges linking the various subsets do. In fact, as far as $\operatorname{GTSP}(n)$ is concerned, given a facet-defining inequality, one can add as many vertices as desired to any subsets V^{i} and obtain a facet-defining inequality for $\operatorname{GTSP}\left(n^{\prime}\right), n^{\prime}>n$. This suggests to first study the case in which $\left|V^{i}\right|=1$ for all i, i.e., to study first simple facet-defining inequalities.

The subgraph of G induced by the set obtained by taking one representative node for each of the sets V_{i} for $i=1, \ldots, p$ is a complete graph K_{p} on p nodes. The simple inequality associated with $c x \geq c_{0}$ is the inequality $\bar{c} \bar{x} \geq c_{0}$ defined by it on the complete graph K_{p} with

$$
\bar{c}\left(u_{i}, u_{j}\right)=c_{e}, \quad e \in\left(V^{i}: V^{j}\right) \quad \text { for all } 1 \leq i<j \leq p .
$$

From now on, every time we refer to an inequality of type $s l$ without using the attribute "simple" we mean that the inequality may have zero coefficients and that it is associated with a simple inequality of type $\&$.

The paper is organized as follows. In $\S 2$ we show that the simple path, wheelbarrow, and bicycle inequalities (simple PWB for short), proved by Cornuéjols et al. [5] to be facet-defining for $\operatorname{GTSP}(n)$, define also facets of $\operatorname{STSP}(n)$.

In $\S 3$ we extend the result to all PWB inequalities. In $\S 4$ we prove that the same holds for a generalization of these inequalities, which we call extended PWB inequalities. PWB and extended PWB are obtained from the simple PWB inequalities by applying the operations mentioned at step 4 of our "facet-hunting" process described above. In $\S 5$ we study some compositions of PWB inequalities that yield a large superclass of the clique-tree inequalities.
2. The simple PWB inequalities. The PWB inequalities were first defined by Cornuéjols et al. [5]. We give here the alternate definition proposed by Naddef and Pochet [15] that has been more widely used in the recent literature on the traveling salesman problem and, being based on handles and teeth, is more similar to the classical definition of the comb inequalities, of which the PWB are a generalization.
Definition 2.1. A k-PWB configuration is a quadruple $\langle\mathscr{H}, \mathscr{T}, \alpha, \beta\rangle$, where $\mathscr{H}=\left\{H_{r} \mid r=1, \ldots, h\right\}$ and $\mathscr{T}=\left\{T_{i} \mid i=1, \ldots, k\right\}$ are two collections of subsets of V called the handles and the teeth of the configuration, respectively, and α and β are integer vectors of h and k components, respectively. Each handle H_{r} has associated the component α_{r} and each tooth T_{i} has associated the component β_{i}. The vectors α and β satisfy the equality interval property (see Definition 2.2 below); moreover, the handles and the teeth satisfy the following conditions:

$$
\begin{gather*}
H_{r} \subset H_{r+1} \quad \text { for } 1 \leq r \leq h-1 \tag{3}\\
H_{1} \cap T_{i} \neq \varnothing \quad \text { for } i=1, \ldots, k \tag{4}\\
T_{i} \backslash H_{h} \neq \varnothing \quad \text { for } i=1, \ldots, k \tag{5}\\
T_{i} \cap T_{j}=\varnothing \quad \text { for } 1 \leq i<j \leq k \tag{6}\\
\left(H_{r+1} \backslash H_{r}\right) \backslash \bigcup_{i=1}^{k} T_{i}=\varnothing \quad \text { for } 1 \leq r \leq h-1 \tag{7}
\end{gather*}
$$

The above conditions state that the handles are linearly nested (3), that the innermost handle intersects all teeth (4), that each tooth has at least one node not contained in any handle (5), that the teeth are pairwise disjoint (6), and, finally, that the node of each handle is contained either in H_{1} or in a tooth (7).

In Figure 3, an example of a PWB configuration with three teeth and six handles is shown. The black-filled points in the figure represent nonempty sets of nodes while the white filled points represent possibly empty sets of nodes. The union of all these node sets gives V. It is easy to verify that the handles and the teeth satisfy the conditions (3)-(7). In particular, by Condition (7), the nodes that are not contained in any tooth can either belong to H_{1} (in the figure, the set of these nodes is marked as Y) or belong to the complement of H_{h} (the set of these nodes is marked as Z).

To complete Definition 2.1, we have to define the equality interval property. To this purpose, we need the notion of handle interval relatively to a given tooth T_{i}. A handle interval relatively to a given tooth T_{i} of a k-PWB configuration is the index set $R \subseteq\{1, \ldots, h\}$ of a maximal set of handles that have the same intersection with T_{i}. By definition, a handle interval is made of consecutive indices. Moreover, the index set $\{1, \ldots, h\}$ is partitioned into s_{i} handle intervals relatively to a tooth T_{i}. For example, in the PWB configuration of Figure 3, the handle intervals relative to T_{1} are $\{1,2,3\}$ and $\{4,5,6\}$; those relative to T_{3} are $\{1\},\{2,3\},\{4,5\}$, and $\{6\}$.

Figure 3. Example of a PWB configuration.

Definition 2.2. The vectors α and β of a k-PWB configuration $\langle\mathscr{H}, \mathscr{T}, \alpha, \beta\rangle$ satisfy the equality interval property if $\sum_{r \in R} \alpha_{r}=\beta_{i}$ holds for each tooth T_{i} and for each handle interval R relative to T_{i}.

It is easy to check that the integers associated with each handle and tooth in Figure 3 define vectors α and β that do satisfy the equality interval property; thus, the one shown is indeed a PWB configuration.

Definition 2.3. A k-PWB inequality associated with the k-PWB configuration $\langle\mathscr{H}, \mathscr{T}, \alpha, \beta\rangle$ is the inequality

$$
\begin{equation*}
\sum_{r=1}^{h} \alpha_{r} x\left(\delta\left(H_{r}\right)\right)+\sum_{i=1}^{k} \beta_{i} x\left(\delta\left(T_{i}\right)\right) \geq(k+1) \sum_{r=1}^{h} \alpha_{r}+2 \sum_{i=1}^{k} \beta_{i} \tag{8}
\end{equation*}
$$

Note that the coefficient of any edge e is easily computed by adding up the coefficient of all the sets whose border is crossed by e.

The coefficient vector of inequality (8) is the positive weighted sum of incident vectors of cocycles in G. Thus, each coefficient satisfies the triangular inequality. It is not difficult to verify that also condition (b) of Definition 1.1 is satisfied, hence (8) is in $T T$ form.

A comb inequality is a special case of a PWB-inequality. Its configuration has $|\mathscr{H}|=1$, and the components of α and β have all value 1 .

Remark 2.1. If the number of teeth k is even, then the inequality (8) is not valid for the $\operatorname{STSP}(n)$.
Definition 2.4. A k-PWB configuration (inequality) is called a k-path, a k-wheelbarrow, or a k-bicycle configuration (inequality), depending on whether both the subsets $H_{1} \backslash \bigcup_{i=1}^{k} T_{i}$ and $\left(V \backslash H_{1}\right) \backslash \bigcup_{i=1}^{k} T_{i}$ are nonempty, or only one of two is empty, or they are both empty.

The equality handle interval property is very binding, and for an arbitrarily chosen quadruple $\langle\mathscr{H}, \mathscr{T}, \alpha, \beta\rangle$ that satisfies the conditions (3)-(7) there are very few chances that it is satisfied. For generating all possible k-PWB configuration, a different approach might be more useful where the elements of the quadruple $\langle\mathscr{H}, \alpha, \mathscr{T}, \beta\rangle$ are generated by the following simple procedure.

Procedure 2.1. Input: any odd $k \geq 3$, any k-tuple of positive integers $\left(n_{1}, \ldots, n_{k}\right)$, with $n_{i} \geq 2$ for $i \in$ $\{1, \ldots, k\}$ and any partition of V into the sets $S_{Y}, S_{Z}, S_{1}^{1}, \ldots, S_{n_{1}}^{1}, S_{1}^{2}, \ldots, S_{n_{2}}^{2}, \ldots, S_{1}^{k}, \ldots, S_{n_{k}}^{k}$, where only S_{Y} and S_{Z} are allowed to be empty. Output: a quadruple $\langle\mathscr{H}, \mathcal{T}, \alpha, \beta\rangle$ satisfying the equality handle interval property and (3)-(7).
(i) Let ζ be the least common multiple of the integers $n_{1}-1, \ldots, n_{k}-1$;
(ii) for $i=1, \ldots, k$, let $T_{i}=\bigcup\left\{S_{j}^{i} \mid j=1, \ldots, n_{i}\right\}$ and $\beta_{j}=\zeta /\left(n_{i}-1\right)$;
(iii) let $H_{1}=\bigcup\left\{S_{1}^{i} \mid i=1, \ldots, k\right\} \cup\{Y\}$ and $\alpha_{1}=\min \left\{\beta_{i} \mid i=1, \ldots, k\right\}$;
(iv) for $i=1, \ldots, k$, let $j_{i}=1$ and $\beta_{i}^{\prime}=\beta_{i}-\alpha_{1}$;
(v) let $l=1$;
(vi) while $j_{i}<n_{i}-1$ for some $i \in\{1, \ldots, k\}$ do the following:
(a) increment l by 1 ;
(b) for any i such that $\beta_{i}^{\prime}=0$, let $\beta_{i}^{\prime}=\beta_{i}$ and increment j_{i} by 1 ;
(c) let $H_{l}=H_{l-1} \cup \bigcup\left\{S_{j_{i}}^{i} \mid i=1, \ldots, k\right\}$ and $\alpha_{l}=\min \left\{\beta_{i}^{\prime} \mid i=1, \ldots, k\right\}$;
(d) for $i=1, \ldots, k$, decrement β_{i}^{\prime} by α_{l};

In the case of Figure 3, let us set $k=3$ and consider the partition of V given by the sets represented by the black- and white-filled points. Let S_{Y} and S_{Z} be the sets marked as Y and Z, respectively. Finally, for $j=1, \ldots, k$, let $S_{1}^{j}, \ldots, S_{n_{j}}^{j}$ be the sets contained in the tooth T_{j} and ordered from the top to the bottom. It is easy to verify that the above procedure generates the teeth, the handles, and the coefficients α and β as those shown in the drawing.

If the end nodes of an edge of G belong to the same handles and teeth of a k-PWB configuration, then the coefficient of this edge is zero in (8). On the contrary, if there is a handle or a tooth that contains only one of the end nodes, then the edge belongs to one of the cocycles of the handles and of the teeth, and its coefficient is positive in (8). Consequently, if there are no two nodes of G that are contained in the same handles and teeth of a k-PWB configuration, the corresponding k-PWB inequality is simple. We call simple the $k-\mathrm{PWB}$ configuration in this case. For example, the PWB configuration of Figure 3 is simple if each black-filled point represents a single node of V and each white-filled point represents a single node of V or the empty set. In this section we only consider simple k-PWB configurations and inequalities.

A simple k-PWB configuration induces a labeling of the nodes of G that will be widely used throughout the paper. If $H_{1} \backslash \bigcup_{i=1}^{k} T_{i}$ is nonempty, its only node is labeled Y; similarly, if $\left(V \backslash H_{1}\right) \backslash \bigcup_{i=1}^{k} T_{i}$ is nonempty, its only node is labeled Z. The n_{i} nodes of a tooth T_{i} can be linearly ordered in such a way that $w \in T_{i}$ precedes $v \in T_{i}$ if it is contained in more handles than v. Each node of T_{i} is labeled u_{j}^{i}, where j is the position of the node in such an ordering. Therefore, u_{1}^{i} is the node contained in H_{1} and $u_{n_{i}}^{i}$ is contained in no handles. In what follows, paths (teeth) indices are taken modulo k. Therefore, the value of the superscript of a label u_{j}^{i} is defined as $((i-1) \bmod k)+1$; thus, for example, $u_{j}^{k+i}=u_{j}^{i}$. Note that this labeling is in agreement with the names given to the sets S_{j}^{i} in Procedure 2.1. Consequently, given any odd $k \geq 3$ and any k-tuple of positive integers $\left(n_{1}, \ldots, n_{k}\right)$, with $n_{i} \geq 2$ for $i \in\{1, \ldots, k\}$ and the labeling

$$
\begin{equation*}
\{Y, Z\} \cup\left\{u_{j}^{i} \mid j \in\left\{1, \ldots, n_{i}\right\}, \quad i \in\{1, \ldots, k\}\right\} . \tag{9}
\end{equation*}
$$

Procedure 2.1 uniquely identifies a k-PWB configuration $\langle\mathscr{H}, \mathscr{T}, \alpha, \beta\rangle$. Consequently, we refer to the labeling (9) as to a k-PWB configuration.

Depending on whether a k-PWB is a k-path (labels Y and Z are present), a k-wheelbarrow (only label Z is present), or a k-bicycle (Y and Z are missing) configuration, the labeling (9) is denoted by $P\left(n_{1}, \ldots, n_{k}\right)$, $W\left(n_{1}, \ldots, n_{k}\right)$, or $B\left(n_{1}, \ldots, n_{k}\right)$, respectively.

For convenience we label $u_{0}^{i}=Y$, and $u_{n_{i+1}}^{i}=Z$, for all $i=1, \ldots, k$. Following the terminology used by Cornuéjols et al. [5], we call the nodes Y and Z the odd nodes of the configuration, and we call all the other nodes even (see Figure 4).

In the following, to simplify the notation, by π^{i} we denote the edge set

$$
\pi^{i}=\left\{\left(u_{j}^{i}, u_{j+1}^{i}\right) \mid j \in\left\{1, \ldots, n_{i}-1\right\}\right\} \quad \text { for } i \in\{1, \ldots, k\}
$$

An edge of any set π^{i} or any edge $\left(u_{0}^{i}, u_{1}^{i}\right)$ or $\left(u_{n_{i}}^{i}, u_{n_{i+1}}^{i}\right)$ for $i \in\{i, \ldots, k\}$ is called a path edge. By C_{Y} and C_{Z} we denote the cycles whose edge sets are $\left\{\left(u_{1}^{i}, u_{1}^{i+1}\right) \mid i \in\{1, \ldots, k\}\right\}$ and $\left\{\left(u_{n_{i}}^{i}, u_{n_{i+1}}^{i+1}\right) \mid i \in\{1, \ldots, k\}\right\}$,

Figure 4. The labeling induced by the 3-path configuration of Figure 3 and the skeleton of the corresponding 3-path inequality.
respectively. An edge of any of these two cycles is call a cycle edge. An edge of the type $\left(u_{1}^{i}, u_{1}^{r}\right)$ or $\left(u_{n_{i}}^{i}, u_{n_{r}}^{r}\right)$ with $2 \leq((r-i) \bmod k) \leq k-2$ is called a chord (a short chord if one of the two inequalities holds with equality) of the cycle C_{Y} or C_{Z}, respectively.

Now it is easy to relate the definition above to the following original definition of the path inequality given by Cornuéjols et al. [5]:

Definition 2.5. The simple k-path inequality associated with $P\left(n_{1}, \ldots, n_{k}\right)$ is the following inequality on $\mathbb{R}^{E_{n}}$, with $n=2+\sum_{i=1}^{k} n_{i}$, in which $\eta_{i}=1 /\left(n_{i}-1\right)$ for $i \in\{1, \ldots, k\}$:

$$
\begin{equation*}
c x \geq c_{0}=k+1+2 \sum_{i=1}^{k} \eta_{i} \tag{10}
\end{equation*}
$$

where

$$
c_{e}= \begin{cases}|j-q| \eta_{i} & \text { for } e=\left(u_{j}^{i}, u_{q}^{i}\right), \quad j \neq q, \quad i \in\{1, \ldots, k\}, \tag{11}\\ & j, q \in\left\{0, \ldots, n_{i}+1\right\}, \\ \eta_{i}+\eta_{r}+\left|(j-1) \eta_{i}-(q-1) \eta_{r}\right| & \text { for } e=\left(u_{j}^{i}, u_{q}^{r}\right), \quad i \neq r, \quad i, r \in\{1, \ldots, k\}, \\ & j \in\left\{1, \ldots, n_{i}\right\}, \quad q \in\left\{1, \ldots, n_{r}\right\}, \\ 1 & \text { for } e=(Y, Z)\end{cases}
$$

The coefficient vectors of the simple k-wheelbarrow and of the simple k-bicycle inequalities are restrictions of the coefficient vector of a simple k-path inequality, obtained by removing all the edges incident with Y and all the edges incident with Y and Z, respectively.

The coefficients of the Equation (8) are exactly those of Definition 2.5 multiplied by the least common multiple of the numbers $n_{i}-1, i=1, \ldots, k$. Therefore, the two inequalities of the Definitions 2.4 and 2.5 define the same face of $\operatorname{STSP}(n)$.

If $n_{i}=p$ for $i \in\{1, \ldots, k\}$, the simple path, wheelbarrow, and bicycle configurations and their corresponding inequalities are called p-regular. The 2-regular PWB inequalities are the comb inequalities.

For the special case of regular configurations, the coefficients of the associated inequalities can be written as follows:

$$
\begin{align*}
& \quad c_{0}=(k+1)(p+1)-2, \tag{12}\\
& c_{e}= \begin{cases}|j-q| & \text { for } e=\left(u_{j}^{i}, u_{q}^{i}\right), \quad i \in\{1, \ldots, k\}, j \neq q, j, q \in\{0, \ldots, p+1\} \\
|j-q|+2 & \text { for } e=\left(u_{j}^{i}, u_{q}^{r}\right), \quad i \neq r, \quad i, r \in\{1, \ldots, k\}, j, q \in\{1, \ldots, p\} \\
p-1 & \text { for } e=(Y, Z)\end{cases} \tag{13}
\end{align*}
$$

2.1. The GTSP case. Cornuéjols et al. [5] show that the k-path, the k-wheelbarrow, and the k-bicycle inequalities define facets of $\operatorname{GTSP}(G)$, provided that G has a stable skeleton of the inequality as a subgraph. The stable skeleton for a k-path is given by the union of all the path edges (see an example in Figure 4), for the k-wheelbarrow it is given by the union of all the path edges and C_{Y}, and for the k-bicycle it is given by the union of all the path edges, C_{Y}, C_{Z}, and the short chords of these two cycles.

We give here a proof that the k-bicycle inequalities define facets of $\operatorname{GTSP}(n)$, which is slightly different from that of Cornuéjols et al. [5] as it also specifies a special set of tight walks that is used in the following proofs.

We make use the following result proven by Cornuéjols et al. [5, Theorem 3.4]:
Theorem 2.2. The simple bicycle inequalities are valid for $\operatorname{GTSP}(n)$.
To prove the next theorem we need a few more definitions and a simple lemma.
A walk W is said to be minimal if it does not contain another walk. For every inequality $f x \geq f_{0}$ in $\mathbb{R}^{E_{n}}$, valid for $\operatorname{STSP}(n)$ or for $\operatorname{GTSP}(G)$, we call tight the Hamiltonian cycles and the minimal walks whose representative vectors satisfy the inequality with equality. The set of tight Hamiltonian cycles and tight walks for f are denoted by $\mathscr{H}_{f}^{=}$and $\mathscr{W}_{f}^{=}$, respectively. The dimension of $\operatorname{GTSP}(G)$ is $|E|$ (i.e., $\operatorname{GTSP}(G)$ is full-dimensional) as long as G is connected. A walk basis of an inequality $c x \geq c_{0}$ defining a facet of $\operatorname{GTSP}(G)$ is any set \mathscr{B}_{c} of $|E|$ walks in $\mathscr{W}_{c}^{=}$whose representative vectors are linearly independent. Note that linear and affine independence of the representative vectors are equivalent since the zero vector does not belong to $\operatorname{GTSP}(G)$. A Hamiltonian cycle
basis of an inequality $c x \geq c_{0}$ defining a facet of $\operatorname{STSP}(n)$ is a set \mathscr{C}_{c} of $\left|E_{n}\right|-|V|$ Hamiltonian cycles in $\mathscr{H}_{c}=$ whose representative vectors are linearly independent.

If z is a vector in $\mathbb{R}^{E_{n}}$, by $z_{\bar{E}}$ we denote its restriction (projection) to the subspace $\mathbb{R}^{\bar{E}}$ for $\bar{E} \subset E_{n}$.
Lemma 2.1. Let $G=(V, \bar{E})$ be a graph with $\bar{E} \subset E_{n}$, let e^{*} be an edge in $E_{n} \backslash \bar{E}$ and $f x \geq f_{0}$ be a valid inequality for $\operatorname{GTSP}(n)$. If $f_{\bar{E}} x_{\bar{E}} \geq f_{0}$ is facet-defining for $\operatorname{GTSP}(G)$ and there exists a walk of $\mathscr{W}_{f_{-}}^{=}$containing e^{*} and only edges of \bar{E}, then the inequality $f_{E^{\prime}} x_{E^{\prime}} \geq f_{0}$ is facet-defining for $\operatorname{GTSP}\left(G^{\prime}\right)$, where $E^{\prime}=\bar{E} \cup\left\{e^{*}\right\}$ and $G^{\prime}=\left(V, E^{\prime}\right)$.

Proof. Let \mathscr{B} be a walk basis of $f_{\bar{E}} x_{\bar{E}} \geq f_{0}$ and let W be a walk of $\mathscr{W}_{f}^{=}$containing e^{*} and only edges of \bar{E}. Then $\mathscr{B} \cup\{W\}$ is a set of walks whose representative vectors are linearly independent, i.e., it is a walk basis for $f_{E^{\prime}} x_{E^{\prime}} \geq f_{0}$.

The use of Lemma 2.1 is quite evident in our context. Given the stable skeleton \bar{G}, once we prove that the inequality is facet-defining for $\operatorname{GTSP}(\bar{G})$, it is straightforward to prove that it is facet-defining for $\operatorname{GTSP}(n)$.

In the following theorem and quite often throughout the paper we make use of some special walks given by the following

Definition 2.6. For $i \in\{1, \ldots, k\}$ and $j \in\left\{1, \ldots, n_{i}-1\right\}$, we define (see Figure 5)

$$
\begin{aligned}
W_{A}^{i}=2 \pi^{i} & \cup\left\{\left(u_{n_{s}}^{s}, u_{n_{s+1}}^{s+1}\right) \mid s \in\{i, i+2, \ldots, i+k-1\}\right\} \\
& \cup\left\{\left(u_{1}^{s}, u_{1}^{s+1}\right) \mid s \in\{i+1, i+3, \ldots, i+k-2\}\right\} \\
& \cup\left\{\pi^{l} \mid l \in\{1, \ldots, k\}, l \neq i\right\}
\end{aligned}
$$

FIgure 5. The tight walks of Definition 2.6. In (c)-(d) and in (e) the paths of (a)-(b) are circularly permuted to the left and to the right, respectively.

$$
\begin{gathered}
W_{B}^{i}=2 \pi^{i} \cup\left\{\left(u_{1}^{s}, u_{1}^{s+1}\right) \mid s \in\{i, i+2, \ldots, i+k-1\}\right\} \\
\cup\left\{\left(u_{n_{s}}^{s}, u_{n_{s+1}}^{s+1}\right) \mid s \in\{i+1, i+3, \ldots, i+k-2\}\right\} \\
\cup\left\{\pi^{l} \mid l \in\{1, \ldots, k\}, l \neq i\right\}, \\
W_{C}^{i}(j)=W_{A}^{i}-\left(u_{1}^{i-2}, u_{1}^{i-1}\right)-2\left(u_{j}^{i}, u_{j+1}^{i}\right)+\left(u_{1}^{i-2}, u_{1}^{i}\right)+\left(u_{1}^{i-1}, u_{1}^{i}\right), \\
W_{D}^{i}(j)=W_{A}^{i}-\left(u_{1}^{i+1}, u_{1}^{i+2}\right)-2\left(u_{j}^{i}, u_{j+1}^{i}\right)+\left(u_{1}^{i}, u_{1}^{i+2}\right)+\left(u_{1}^{i}, u_{1}^{i+1}\right), \\
W_{E}^{i}=W_{B}^{i}-\left(u_{1}^{i}, u_{1}^{i+1}\right)-\left(u_{1}^{i+2}, u_{1}^{i+3}\right)+\left(u_{1}^{i}, u_{1}^{i+2}\right)+\left(u_{1}^{i+1}, u_{1}^{i+3}\right) .
\end{gathered}
$$

The walks $W_{A}^{i}, W_{B}^{i}, W_{C}^{i}(2), W_{D}^{i}(2)$, and W_{E}^{i} are shown in Figures 5(a), (b), (c), (d), and (e), respectively, for both the case $k=3$ and $k \geq 5$. Observe that all the edges of these walks are either path edges, or cycle edges, or short chords of the cycle C_{Y}. To unclutter the figures, all the edge sets π^{i} have cardinality 1 in most of them. However, any path edge may be replaced by a path with an arbitrary number of edges. The nodes u_{1}^{i} for $i \in\{1, \ldots, k\}$ are those at the top of the drawings. Moreover, we have operated in the figures a circular permutation of the paths (teeth). For example, in the Figure $5(\mathrm{a}$ and b) the teeth are ordered from left to right with the indices $i-1, i, \ldots, k, 1, \ldots, i-2$. In Figure $5(\mathrm{~d}$ and e) the order is $i, i+1, \ldots, k, 1, \ldots, i-1$. To extend the walks shown in the figures to the case when k is greater than 5 , split a cycle edge into three edges, then remove the central edge (marked with a cross in the figures), and finally connect its end nodes by the path marked by dotted lines in the figures. In the following we will use the same convention for all the figures involving PWB configurations.

Remark 2.2. The walks of Definition 2.6 satisfy a bicycle inequality at equality. For the sake of simplicity, in the following we refer to these walks also dealing with wheelbarrow and path inequalities. In these cases, though, we will always assume that each of these walks be modified by inserting each required odd node, by removing any cycle edge (of the cycle associated to the odd node) from the walk, and by adding an edge from each of its end nodes to the odd node.

Theorem 2.3. A simple bicycle inequality $c x \geq c_{0}$ associated with the simple k-bicycle configuration $B\left(n_{1}, \ldots, n_{k}\right)$ is facet-defining for $\operatorname{GTSP}(n)$ and has a walk basis \mathscr{B}_{c} with the following properties:
(a) Every walk of \mathscr{B}_{c} intersects the edge set of the cycle C_{Y}.
(b) Every walk of \mathscr{B}_{c} intersects the edge set of the cycle C_{Z}.
(c) For each edge $e \in C_{Y}$ there exists $e^{\prime} \in C_{Y}$ and a walk $W \in \mathscr{B}_{c}$ containing both e and e^{\prime}.
(d) For each edge $e \in C_{Z}$ there exists $e^{\prime} \in C_{Z}$ and a walk $W \in \mathscr{B}_{c}$ containing both e and e^{\prime}.

Proof. We prove first that the inequality $c_{S} x_{S} \geq c_{0}$ is facet-defining for $\operatorname{GTSP}(G)$, where $G=(V, S)$ is the subgraph of K_{n} whose edges are all the path edges, all the cycle edges, and all the short chords of the cycle C_{Y}.

The inequality $c_{S} x_{S} \geq c_{0}$ is valid by Theorem 2.2 and is supporting since all the walks of Definition 2.6 belong to $\mathscr{W}_{c}^{=}$. We show that the set of all these walks constitutes a basis \mathscr{B}_{1} for $c_{S} x_{S} \geq c_{0}$.

Let $f x \geq c_{0}$ be an inequality defining a facet of $\operatorname{GTSP}(G)$ that contains the face defined by $c_{S} x_{S} \geq c_{0}$, i.e., such that $\mathscr{W}_{c}^{=} \subseteq \mathscr{W}_{f}^{=}$.

From $f\left(W_{C}^{i}\left(j^{\prime}\right)\right)=f\left(W_{C}^{i}\left(j^{\prime \prime}\right)\right)$ for $j^{\prime} \neq j^{\prime \prime} \in\left\{1, \ldots, n_{i}-1\right\}$ it follows that

$$
\begin{equation*}
f\left(u_{j^{\prime}}^{i}, u_{j^{\prime}+1}^{i}\right)=f\left(u_{j^{\prime \prime}}^{i}, u_{j^{\prime \prime}+1}^{i}\right)=g_{i} \quad \text { for } i \in\{1, \ldots, k\}, \quad j^{\prime} \neq j^{\prime \prime} \in\left\{1, \ldots, n_{i}-1\right\} . \tag{14}
\end{equation*}
$$

For notational convenience we set $b_{i}=f\left(u_{n_{i}}^{i}, u_{n_{i+1}}^{i+1}\right), d_{i}=f\left(u_{1}^{i}, u_{1}^{i+1}\right), e_{i}=f\left(u_{1}^{i}, u_{1}^{i+2}\right)$, for $i \in\{1, \ldots, k\}$ (see Figure 6). From $f\left(W_{A}^{i}\right)=f\left(W_{B}^{i+1}\right)$ for $i \in\{1, \ldots, k\}$, it follows that

$$
\begin{equation*}
\left(n_{i}-1\right) g_{i}+b_{i}=\left(n_{i+1}-1\right) g_{i+1}+d_{i} \quad \text { for } i \in\{1, \ldots, k\} . \tag{15}
\end{equation*}
$$

Figure 6. The coefficients of some relevant edges.

From $f\left(W_{B}^{i}\right)=f\left(W_{A}^{i+1}\right)$ for $i \in\{1, \ldots, k-1\}$, it follows that

$$
\begin{equation*}
\left(n_{i}-1\right) g_{i}+d_{i}=\left(n_{i+1}-1\right) g_{i+1}+b_{i} \quad \text { for } i \in\{1, \ldots, k-1\} . \tag{16}
\end{equation*}
$$

The Equations (15) and (16) imply

$$
\begin{equation*}
b_{i}=d_{i} \quad \text { for } i \in\{1, \ldots, k-1\} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{i}=\frac{h}{n_{i}-1} \quad \text { for } i \in\{1, \ldots, k-1\} \tag{18}
\end{equation*}
$$

From $f\left(W_{A}^{i+1}\right)=f\left(W_{C}^{i+1}\right)$ for $i \in\{1, \ldots, k\}$ it follows that

$$
\begin{equation*}
e_{i-1}=d_{i-1}-d_{i}+\frac{2 h}{n_{i+1}-1} \quad \text { for } i \in\{1, \ldots, k\} \tag{19}
\end{equation*}
$$

and from $f\left(W_{C}^{i+1}\right)=f\left(W_{D}^{i-1}\right)$ for $i \in\{2, \ldots, k\}$ we have

$$
\begin{equation*}
d_{i}=d_{i-1}+\frac{h}{n_{i}+1}-\frac{h}{n_{i}-1} \quad \text { for } i \in\{2, \ldots, k\} \tag{20}
\end{equation*}
$$

If $k=3$ then $d_{1}=e_{2}$, otherwise from $f\left(W_{E}^{1}\right)=f\left(W_{B}^{1}\right)$ it follows that $d_{1}+d_{3}=e_{1}+e_{2}$ and from (19) we have

$$
\begin{equation*}
d_{i}=\frac{h}{n_{i}-1}+\frac{h}{n_{i+1}-1} \quad \text { for } i \in\{1, \ldots, k\} \tag{21}
\end{equation*}
$$

If for the bicycle inequality $c x \geq c_{0}$ we use the Definitions 2.1 and 2.3 , with the vectors α and β computed with Procedure 2.1, then setting $h=r \zeta$, where ζ is as defined in Procedure 2.1, one can see that $f_{e}=r c_{e}$, for e in the skeleton. Since we chose the same right-hand sides for both the inequalities, we have $r=1$. Similarly, if we use Definition 2.5, then setting $r=1 / \zeta$, i.e., setting $h=1$, we obtain the same result. Therefore, $f \equiv c_{S}$, the inequality $c_{S} x_{S} \geq c_{0}$ is facet-defining for $\operatorname{GTSP}(G)$, and the $|S|$ walks of the set \mathscr{B}_{1} are linearly independent.

To complete the proof, we take a sequence $\left\langle e_{1}, e_{2}, \ldots, e_{s}\right\rangle$ of the edges in $E_{n} \backslash S$ and we construct the sequences of nested edge sets $F_{0}, F_{1}, \ldots, F_{s}$, with $F_{0}=S$ and $F_{l}=F_{l-1} \cup\left\{e_{l}\right\}$, for $l=1,2, \ldots, s$. Then for every e_{l} we exhibit a walk of $\mathscr{W}_{c}^{=}$containing e_{l} and only edges in F_{l-1}. Consequently, by Lemma 2.1, $c x \geq c_{0}$ defines a facet of $\operatorname{GTSP}(n)$. We describe now these walks.

Let $e=\left(u_{j}^{i}, u_{q}^{r}\right)$ be any edge of $E_{n} \backslash S$ and let $d(e, k)=\min \{(i-r) \bmod k,(r-i) \bmod k\}$. Depending on the value of $d(e, k)$ we have different kinds of walks. Clearly, $0 \leq d(e, k) \leq(k-1) / 2$.

For an edge $e=\left(u_{j}^{i}, u_{j+q}^{i}\right)$ the value of $d(e, k)$ is zero, and we consider the walk

$$
W_{0}(e)=W_{A}^{i} \backslash\left\{\left(u_{j+t}^{i}, u_{j+t+1}^{i}\right) \mid t=1, \ldots, q-1\right\}+e
$$

All the edges of $W_{0}(e)$, except e, belong to S.
For $d(e, k)=1, \ldots, 4$ the corresponding walks $W_{1}(e), \ldots, W_{4}(e)$ are shown in Figure 7(a), \ldots, (d), respectively. The reader should not be confused by the fact that in the figures the end nodes of $e=\left(u_{j}^{i}, u_{q}^{r}\right)$ always have $1<j<n_{i}$ and $1<q<n_{r}$. Actually, the walks shown can be easily modified to accommodate the cases for all possible values of j and q in the sets $\left\{1, \ldots, n_{i}\right\}$ and $\left\{1, \ldots, n_{r}\right\}$, respectively, as long as the inequality $(q-1) \eta_{r} \geq(j-1) \eta_{i}$ is satisfied. If this is not the case, one can consider the mirror images of the walks of Figure 7, which would correspond to take the opposite orientation of the cycles C_{Y} and C_{Z} to draw the walks.

The walks corresponding to a chord of the cycle C_{Y} (when $j=q=1$) and to a chord of the cycle C_{Z} (when $j=n_{i}$ and $q=n_{r}$) are of the kind of those shown in Figure 7. All walks $W_{l}(e)$, for $l=0, \ldots, 4$ have the edge e and only edges in S.

If $k \leq 9$, then $d(e, k)$ is never greater than 4 . Therefore, the above walks are sufficient to complete the proof that the inequality is facet-defining, no matter how the sequence of the edges in the set $E_{n} \backslash S$ is chosen.

It is easy to verify that if $d(e, k) \geq 5$, it is not possible to construct a walk that uses only e and edges in S. However, it is always possible to construct a walk $W_{5}(e)$ that contains e, some edges in S, and short chords of the cycle C_{Z}. Such a walk is shown in Figure 8 , where k has any value greater than 11 and $d(e, k)$ has any value greater than 5 . To apply Lemma 2.1, the edges of $E_{n} \backslash S$ have to be ordered in such a way that any edge e with $d(e, k) \geq 5$ follows all of the short chords of cycle C_{Z} in the sequence $\left\langle e_{1}, e_{2}, \ldots, e_{s}\right\rangle$.
$d(e, k)=1$
(a)
 $d(e, k)=2$
(b)

$d(e, k)=3$
 $d(e, k)=4$
(d)

Figure 7. Tight walks containing an edge across two paths and only edges of a stable skeleton.
The union of \mathscr{B}_{1} and all of the walks associated with the edges $e_{1}, e_{2}, \ldots, e_{s}$ is a walk basis \mathscr{B}_{c} of the inequality $c x \geq c_{0}$. It is easy to verify, by inspection, that all its walks intersect both the cycles C_{Y} and C_{Z}.

Finally, for any edge $e=\left(u_{1}^{i}, u_{1}^{i+1}\right)$ of the cycle C_{Y}, the walk W_{B}^{i} contains e and the edge (u_{1}^{i-1}, u_{1}^{i}), which also belongs to C_{Y}. Analogously, for any edge $e=\left(u_{n_{i}}^{i}, u_{n_{i+1}}^{i+1}\right)$ of the cycle C_{Z}, the walk W_{A}^{i} contains e and the edge ($u_{n_{i-1}}^{i-1}, u_{n_{i}}^{i}$), which also belongs to C_{Z}.

Remark 2.3. As a by-product of Theorem 2.3, we have that a simple bicycle inequality is facet-defining for $\operatorname{GTSP}(G)$, where $G=(V, S)$ is the subgraph of K_{n}, whose edges are all of the path edges, all of the cycle edges, and all of the short chords of the cycle C_{Y}. This result is a bit stronger than that given by Cornuéjols et al. [5], where G is required to have also all of the short chords of the cycle C_{Z}.

As it is claimed in the proof of Theorem 2.3, the skeleton (V, S) (where S is the union of the path edges, the edge cycles, and the short chords of C_{Y}) is stable only for $k \leq 9$. One may wonder what happens for $k \geq 11$, or, more precisely, what happens if the lifting sequence described in the proof of the theorem starts with an edge e with $d(e, k) \geq 5$. If the edge e is a chord of C_{Y}, then it is still possible to find a tight walk of the bicycle inequality made of e and of edges in S (see Figure 9a). This implies that the lifting coefficient resulting for e is the same as that given in Definition 2.5. The same is true if e is a chord of C_{Z} but only for $k=11$ (see Figure 9b). However, this is no longer true in general; e.g., take the case where $n_{i}=2$ for all i and $k=11$. If one starts the lifting sequence with $e=\left(u_{1}^{1}, u_{2}^{6}\right)$, then the result is $c_{e}=1$; if $\left(u_{1}^{11}, u_{2}^{6}\right)$ is the second edge in the sequence, the coefficient is again 1 . At this point, no matter how the remaining edges are ordered, the

Figure 8. Tight walk made of an edge across two paths, edges of a stable skeleton and short chords of C_{Z}.
(a)

(b)

Figure 9. Tight walks containing a long chord and only edges of a stable skeleton.
coefficients they get either are the same as in Definition 2.5, or have value 4 . The edges having a coefficient that differs from the one of Definition 2.5 are shown in Figure 10, where the edges with coefficient equal to 1 and 4 are drawn with dashed and solid lines, respectively (note that, to unclutter Figure 10, the arrangement of the nodes has been changed with respect to Figure 9). Thus, the inequality in this way described by Figure 10 and Definition 2.5 is a new facet-defining inequality for $\operatorname{STSP}(22)$ that shares the same skeleton (V, S) with the bicycle inequality. On the other hand, $\left(V, S \cup\left\{\left(u_{1}^{1}, u_{2}^{6}\right),\left(u_{1}^{11}, u_{2}^{6}\right)\right\}\right)$ is a stable skeleton for the new inequality.
2.2. The STSP case. For $u \in V$, we say that a walk W is almost Hamiltonian in u if u has degree 4 in W and every other node of V has degree 2 in W.

A basis \mathscr{C}_{c} of an inequality $c x \geq c_{0}$, defining a facet of $\operatorname{GTSP}(n)$, is called canonical if it contains $\left|E_{n}\right|-n$ Hamiltonian cycles and n almost Hamiltonian walks (i.e., one for each $u \in V$).

The following notion of a set of edges being c-connected in a given node is the key for the sufficient conditions, which we give in Naddef and Rinaldi [18], for an inequality facet-defining for $\operatorname{GTSP}(n)$ to preserve such a property for $\operatorname{STSP}(n)$. The notion of c-connectedness is explained in more details in that paper.

Let $e=(u, v)$ and $f=(w, y)$ be two distinct edges in E_{n}. We say that e and f are c-adjacent if they belong to a tight Hamiltonian cycle $H \in \mathscr{H}_{c}^{=}$. Let z be a node in V; we say that e and f are c-adjacent in z if:
(i) e and f belong to $\Delta_{c}(z)$;
(ii) there exists a walk $W_{z} \in \mathscr{W}_{c}^{=}$almost Hamiltonian in z that contains the edges $(z, u),(z, v),(z, w)$, and (z, y);
(iii) $W_{z}-(z, u)-(z, v)+e$ is a Hamiltonian cycle (and such is also $\left.W_{z}-(z, w)-(z, y)+f\right)$.

A set of edges $J \subseteq E_{n}$ is said to be c-connected if for every pair of distinct edges f_{1} and $f_{2} \in J$ there exists a sequence of t edges e_{1}, \ldots, e_{t} in J, with $e_{1} \equiv f_{1}$ and $e_{t} \equiv f_{2}$, where e_{i} is c-adjacent to e_{i+1}, for $i=1, \ldots, t-1$. A set of edges $J \subseteq E_{n}$ is said to be c-connected in z if for every pair of distinct edges f_{1} and $f_{2} \in J$ there exists a sequence of t edges e_{1}, \ldots, e_{t} in E_{n} (not necessarily belonging to J), with $e_{1} \equiv f_{1}$ and $e_{t} \equiv f_{2}$, where e_{i} and e_{i+1} are c-adjacent in z, for $i=1, \ldots, t-1$. Observe that the notion of c-connectedness in z is "weaker" than the one of c-connectedness, in the sense that, contrary to what happens for the usual concept of connectivity, in this case every subset of a set c-connected in z is also c-connected in z.

Figure 10. Edges in which a new facet-defining inequality differs from that of an 11-bicycle.

Lemma 2.2 (Naddef and Rinaldi [18, Lemma 2.14]). Let $c x \geq c_{0}$ be a TT inequality defining a facet of $\operatorname{GTSP}(n)$. If $\Delta_{c}(u)$ is c-connected in u for every $u \in V$, then $c x \geq c_{0}$ has a canonical basis; thus it is facet-defining for $\operatorname{STSP}(n)$.

For every ordered triple $\langle u, v, w\rangle$ of distinct nodes in V, we call shortcut on $\langle u, v, w\rangle$ the vector $s_{u v w} \in \mathbb{R}^{E_{n}}$ defined by

$$
s_{u v w}(e)= \begin{cases}1 & \text { if } e=(v, w) \\ -1 & \text { if } e \in\{(u, v),(u, w)\} \\ 0 & \text { otherwise }\end{cases}
$$

Adding a shortcut to a walk that is tight for an inequality can produce a new tight walk with fewer edges. More precisely, we have the following

Lemma 2.3 (Naddef and Rinaldi [18, Lemma 2.5]). Let $c x \geq c_{0}$ be a tight triangular inequality that is supporting for $\operatorname{GTSP}(n)$, and let $W \in \mathscr{W}_{c}^{=}$be a walk having $t>n$ edges and containing the edge e. For every node $u \in V$ with degree $k \geq 4$ in W, there exists a shortcut $s_{u v w}$ such that the edge multiset having representative vector $\chi^{W}+s_{u v w}$ is a walk with $t-1$ edges belonging to $\mathscr{W}_{c}^{=}$and containing the edge e. Necessarily, the edge (v, w) belongs to $\Delta_{c}(u)$.

The sets $\Delta_{c}(u)$ may contain several edges; therefore, the application of Lemma 2.3 may require a lengthy procedure. The following lemma requires a weaker condition that is also easier to verify.

Lemma 2.4 (Naddef and Rinaldi [18, Lemma 2.15]). Let $c x \geq c_{0}$ be a TT inequality defining a facet of $\operatorname{GTSP}(n)$. If there exists a basis \mathscr{B}_{c} of $c x \geq c_{0}$ such that for every $u \in V$ there exists a nonempty set of edges $J_{u} \subseteq \Delta_{c}(u) c$-connected in u and every walk $W \in \mathscr{B}_{c}$ can be reduced to an element of $\mathscr{H}_{c}=$ by using only shortcuts in the set $\left\{s_{u v w} \mid(v, w) \in J_{u}, u \in V\right\}$, then $c x \geq c_{0}$ has a canonical basis; hence, it is facet-defining for $\operatorname{STSP}(n)$.

We use now Lemma 2.4 to prove that the simple bicycle inequality defines a facet of $\operatorname{STSP}(n)$ and to derive some properties of one of its canonical bases that will be used in the following to prove a similar theorem for the simple wheelbarrow inequality.

Theorem 2.4. A simple bicycle inequality $c x \geq c_{0}$ associated with the simple k-bicycle configuration $B\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is facet-defining for $\operatorname{STSP}(n)$ and has a Hamiltonian cycle basis \mathscr{C}_{c} with the following properties:
(a) Every Hamiltonian cycle of \mathscr{C}_{c} intersects the edge set of the cycle C_{Y}.
(b) Every Hamiltonian cycle of \mathscr{C}_{c} intersects the edge set of the cycle C_{Z}.
(c) For each edge $e \in C_{Y}$ there exists $e^{\prime} \in C_{Y}$ and a Hamiltonian cycle $H \in \mathscr{C}_{c}$ containing both e and e^{\prime}.
(d) For each edge $e \in C_{Z}$ there exists $e^{\prime} \in C_{Z}$ and a Hamiltonian cycle $H \in \mathscr{C}_{c}$ containing both e and e^{\prime}.

Proof. Let \mathscr{B}_{c} the walk basis constructed in the proof of Theorem 2.3. For every node $w \in V$ we define a set of edges $J_{w} \subseteq \Delta_{c}(w)$ such that, by using shortcuts in the set $\left\{s_{w y z} \mid(y, z) \in J_{w}\right\}$, every walk in \mathscr{B}_{c} where w has degree 4 can be reduced to a walk where w has degree 2 . Then we show that J_{w} is c-connected in w for all $w \in V$. By Lemma 2.4, this implies that the inequality defines a facet of $\operatorname{STSP}(n)$.

For $w=u_{j}^{i}, i=1,2, \ldots, k, j=2, \ldots, n_{i}-1$ we set $J_{w}=\left\{\left(u_{j-1}^{i}, u_{j+1}^{i}\right)\right\}$. In these cases $J_{w} \subseteq \Delta_{c}(w)$ and has cardinality 1 , and so it is c-connected in w.

For $w=u_{1}^{i}, i=1,2, \ldots, k$, we set $J_{w}=\left\{\left(u_{1}^{i-1}, u_{2}^{i}\right),\left(u_{1}^{i+1}, u_{2}^{i}\right),\left(u_{1}^{i-2}, u_{2}^{i}\right)\right\} \subseteq \Delta_{c}(w)$. If $n_{i}=2$ let W_{F}^{i} be the walk W_{B}^{i} of Definition 2.6. If $n_{i} \geq 3$ we define $W_{F}^{i}=W_{B}^{i}-2\left(u_{2}^{i}, u_{3}^{i}\right)-\left(u_{n_{i-1}}^{i-1}, u_{n_{i-2}}^{i-2}\right)-\left\{\left(u_{j}^{i}, u_{j+1}^{i}\right) \mid j=3, \ldots\right.$, $\left.n_{i}-1\right\}+\left(u_{n_{i-1}}^{i-1}, u_{3}^{i}\right)+\left(u_{n_{i}}^{i}, u_{n_{i-2}}^{i-2}\right)$, where the set $\left\{\left(u_{j}^{i}, u_{j+1}^{i}\right) \mid j=3, \ldots, n_{i}-1\right\}$ is empty if $n_{i}=3$ (see Figure 11,

Figure 11. The tight walk W_{F}^{i} built from W_{B}^{i}.

Figure 12. The tight walk W_{G}^{i} built from W_{F}^{i}.
where the edges to be removed in W_{B}^{i} and those to be added to obtain W_{F}^{i} are represented by dotted and thick lines, respectively). The walk W_{F}^{i} belongs to $\mathscr{W}_{c}^{=}$, as it can be checked using (11), and contains the edges $\left(w, u_{1}^{i-1}\right)$ and $\left(w, u_{1}^{i+1}\right)$ and two copies of edge $\left(w, u_{2}^{i}\right)$. Moreover, the edge sets $W_{F}^{i}-\left(w, u_{1}^{i-1}\right)-\left(w, u_{2}^{i}\right)+$ $\left(u_{1}^{i-1}, u_{2}^{i}\right)$ and $W_{F}^{i}-\left(w, u_{1}^{i+1}\right)-\left(w, u_{2}^{i}\right)+\left(u_{1}^{i+1}, u_{2}^{i}\right)$ are both Hamiltonian cycles. This implies that $\left(u_{1}^{i-1}, u_{2}^{i}\right)$ and $\left(u_{1}^{i+1}, u_{2}^{i}\right)$ are c-adjacent in w. Similarly, to show that the edges $\left(u_{1}^{i-2}, u_{2}^{i}\right)$ and $\left(u^{i+1}, u_{2}^{i}\right)$ are c-adjacent in w, we have to exhibit a suitable walk that is almost Hamiltonian in w. We can assume that $k \geq 5$, since for $k=3$ the edges $\left(u_{1}^{i-2}, u_{2}^{i}\right)$ and $\left(u^{i+1}, u_{2}^{i}\right)$ coincide. Consider the walk W_{G}^{i} obtained from W_{F}^{i} by replacing two edges of the cycle C^{Y} with two of its short chords, i.e., $W_{G}^{i}=W_{F}^{i}-\left(u_{1}^{i-1}, u_{1}^{i}\right)-\left(u_{1}^{i-2}, u_{1}^{i-3}\right)+\left(u_{1}^{i}, u_{1}^{i-2}\right)+\left(u_{1}^{i-1}, u_{1}^{i-3}\right)$ (see Figure 12, where we used dotted and thick lines with the same convention as in Figure 11). From W_{G}^{i} we construct, as before, two Hamiltonian cycles to show that $\left(u_{1}^{i-2}, u_{2}^{i}\right)$ and $\left(u^{i+1}, u_{2}^{i}\right)$ are c-adjacent in w. It follows that the set J_{w} is c-connected in w.

For $w=u_{n_{i}}^{i}, i=1,2, \ldots, k$, we set $J_{w}=\left\{\left(u_{n_{i-1}}^{i-1}, u_{n_{i}-1}^{i}\right),\left(u_{n_{i+1}}^{i+1}, u_{n_{i}-1}^{i}\right)\right\} \subseteq \Delta_{c}(w)$. The proof that in this cases the two edges of J_{w} are c-adjacent in w goes like for the cases $w=u_{1}^{i}, i=1,2, \ldots, k$; for each i only one walk is used, actually the walk W_{G}^{i} taken "upside down."

It is easy to verify that each of the walks of the basis \mathscr{B}_{c} constructed in the proof of Theorem 2.3 can be reduced to an Hamiltonian cycle using the shortcuts defined by the sets $J_{w}, w \in V$. An example of such a reduction is shown in Figure 13 for the walk $W_{3}\left(\left(u_{1}^{1}, u_{1}^{4}\right)\right)$ of Figure 7(c). Again, for the dotted and the thick lines we follow the convention used for Figure 11. Observe how the sets J_{w} have three edges for w belonging to the cycle C_{Y}, while have only two edges for the nodes of the cycle C_{Z}. This is because, for all the walks of \mathscr{B}_{c}, if a node w of C_{Z} has degree four, then the walk has a path edge and an edge of C_{Z} that are incident to w, which is not always the case if w belongs to C_{Y}.

Finally, by Theorem 2.3, all the walks of \mathscr{B}_{c} intersect the cycles C_{Y} and C_{Z}. It is easy to check that also the Hamiltonian cycles of \mathscr{C}_{c} obtained by shortcuts from those walks share this property. This proves that the properties (a) and (b) of the statement hold for \mathscr{C}_{c}. To prove that \mathscr{C}_{c} has also the properties (c) and (d), consider the walk $W_{C}^{i}(1)$ of Figure 5 for $i=1,2, \ldots, k$. This walk contains the two cycle edges $\left(u_{1}^{i}, u_{1}^{i-1}\right)$ and $\left(u_{1}^{i}, u_{1}^{i+1}\right)$ of C_{Y} whose end nodes have both degree 2 . Therefore, the Hamiltonian cycle of \mathscr{C}_{c} obtained by shortcuts from this walk also contains these two edges. Analogously, the Hamiltonian cycle of \mathscr{C}_{c} obtained from the walk $W_{D}^{i}\left(n_{i}-1\right)$ contains both of the cycle edges $\left(u_{n_{i}}^{i}, u_{n_{i-1}}^{i-1}\right)$ and $\left(u_{n_{i}}^{i}, u_{n_{i+1}}^{i+1}\right)$ of C_{Z}.
2.3. The 1 -node lifting. We have seen in $\S 2$ that a simple bicycle inequality is the restriction of a simple wheelbarrow inequality obtained by removing the coefficients of the edges incident with the node Z. On the other hand, one can view a simple wheelbarrow as the extension of a simple bicycle inequality obtained by adding a node to its corresponding configuration. The operation of adding one node (and the edges incident with it) to the configuration of a generic facet-defining inequality is called 1-node lifting in Naddef and Rinaldi [18], where we investigate the conditions on the coefficients of the new edges for the new inequality to preserve the facet-defining property. In particular, the theorem that follows states sufficient conditions for this to happen. When one of the edges incident with the new node has a zero coefficient, we have a special case of 1-node lifting, called zero-lifting, that is exploited in §3.

Figure 13. Example of reduction by shortcuts.

Theorem 2.5 (Naddef and Rinaldi [18, Theorem 4.4]). Let $c x \geq c_{0}$ be a TT inequality that is facetdefining for $\operatorname{STSP}(n)$; an inequality $c^{*} x^{*} \geq c_{0}$, which is obtained by 1-node lifting of $c x \geq c_{0}$ is facet-defining for $\operatorname{STSP}(n+1)$ if it is tight triangular and there exist an edge set $F \subseteq \Delta_{c^{*}}\left(u_{n+1}\right)$ and a Hamiltonian cycle basis \mathscr{C}_{c} of $c x \geq c_{0}$ such that:
(i) $F \cap H \neq \varnothing$ for all $H \in \mathscr{C}_{c}$;
(ii) for all $e \in F$ there exist $e^{\prime} \neq e, e^{\prime} \in \Delta_{c^{*}}\left(u_{n+1}\right)$ and $H \in \mathscr{H}_{c}^{=}$such that e and e^{\prime} belong to H;
(iii) every connected component of the graph (V, F) contains at least one odd cycle;
(iv) F is c^{*}-connected in u_{n+1}.

Remark 2.4. In Naddef and Rinaldi [18] we prove Theorem 2.5 by showing that a set of walks, obtained by first removing one or two edges of the set F from some walk of the canonical basis \mathscr{C}_{c} of $c x \geq c_{0}$, and then connecting the end nodes of the removed edges to the node u_{n+1} contains a canonical basis $\mathscr{C}_{c^{*}}$ of the inequality $c^{*} x^{*} \geq c_{0}$. Therefore, each walk of $\mathscr{C}_{c^{*}}$ shares all the edges of some walk of \mathscr{C}_{c}, except some of those that intersect the set F.

Using Theorem 2.5 and Remark 2.4 we can now show that the simple wheelbarrow inequalities define facets, of $\operatorname{STSP}(n)$ and we can derive some properties of one of their canonical bases that will be used in the following to prove a similar theorem for the simple path inequalities.

Theorem 2.6. A simple wheelbarrow inequality $c x \geq c_{0}$ associated with the simple k-wheelbarrow configuration $W\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is facet-defining for $\operatorname{STSP}(n)$ and has a Hamiltonian cycle basis \mathscr{C}_{c} with the following properties:
(a) Every Hamiltonian cycle of \mathscr{C}_{c} intersects the edge set of the cycle C_{Z}.
(b) For each edge $e \in C_{Z}$ there exists $e^{\prime} \in C_{Z}$ and a Hamiltonian cycle $H \in \mathscr{C}_{c}$ containing both e and e^{\prime}.

Proof. A simple wheelbarrow inequality with the coefficients given in (11) is in $T T$ form, since it is facetdefining for $\operatorname{GTSP}(n)$ (see Naddef and Rinaldi [18, Proposition 2.2]). As it has been already observed, it can be obtained by 1 -node lifting of a bicycle inequality $\hat{c} \hat{x} \geq c_{0}$. To prove that it is facet-defining for $\operatorname{STSP}(n)$, we use Theorem 2.5. Let the set F, required by that theorem, be defined as follows:

$$
F=C_{Y} \cup\left\{\left(u_{1}^{i}, u_{j}^{i+1}\right) \mid i \in\{1,2, \ldots, k\}, j \in\left\{2, \ldots, n_{i+1}\right\}\right\} .
$$

The set F belongs to $\Delta_{c}(Y)$ and satisfies the conditions (i), (ii), and (iii) due to the properties (a) and (c) of Theorem 2.4 and due to the fact that the cycle C_{Y} has odd length. We only need prove that F is c-connected in Y. For $i=1,2, \ldots, k$, consider the walk $W_{C}^{i}(1)$ of Figure 5 . Such a walk is tight for the bicycle inequality $\hat{c} \hat{x} \geq c_{0}$. This walk contains the two cycle edges $e=\left(u_{1}^{i}, u_{1}^{i-1}\right)$ and $e^{\prime}=\left(u_{1}^{i}, u_{1}^{i-2}\right)$ of C_{Y}, whose end nodes have both degree 2 . Therefore, the Hamiltonian cycle $H \in \mathscr{H}_{\hat{c}}^{=}$, obtained by shortcuts from this walk, also contains these two edges. The walk obtained by removing e and e^{\prime} from H and adding the four edges that connect the end nodes of the removed edges to Y is almost Hamiltonian in Y, belongs to $\mathscr{W}_{c}^{=}$, and implies that the two edges e and e^{\prime} are c-adjacent in Y. Repeating this argument for the walk $W_{D}^{i-2}(1)$, we see that $\left(u_{1}^{i-2}, u_{1}^{i-1}\right)$ and $\left(u_{1}^{i}, u_{1}^{i-2}\right)$ are c-adjacent in Y as well. Consequently, the edge set C_{Y} is c-connected in Y. To show that any edge $e \in F \backslash C_{Y}$ is c-adjacent in Y to some edge of C_{Y}, it is sufficient to start with a Hamiltonian cycle $H \in \mathscr{H}_{\hat{c}}=$ that contains e and an edge $e^{\prime} \in C_{Y}$. Such a Hamiltonian cycle exists by Property (a) of Theorem 2.4. By removing e and e^{\prime} from H and adding the edges that connect their end nodes to Y we produce a walk almost Hamiltonian in Y, implying that e and e^{\prime} are c-adjacent in Y. Since the cycle C_{Z} has empty intersection with the edge set F, the property (a) and (b) of the Hamiltonian cycle basis \mathscr{C}_{c} follow from Remark 2.4 and the properties (b) and (d) of Theorem 2.4.

ThEOREM 2.7. A simple path inequality $c x \geq c_{0}$ associated with the simple k-path configuration $P\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is facet-defining for $\operatorname{STSP}(n)$.

Proof. A simple path inequality with the coefficients given in (11) is in $T T$ form, since it is facet-defining for $\operatorname{GTSP}(n)$ (see Naddef and Rinaldi [18, Proposition 2.2]). In addition it can be obtained by 1-node lifting of a simple wheelbarrow inequality $\hat{c} \hat{x} \geq c_{0}$. To prove that it is facet-defining for $\operatorname{STSP}(n)$, we use again Theorem 2.5. Let the set F required by that theorem be defined as follows:

$$
F=C_{Z} \cup\left\{\left(u_{n_{i}}^{i}, u_{j}^{i+1}\right) \mid i \in\{1,2, \ldots, k\}, j \in\left\{1, \ldots, n_{i+1}-1\right\}\right\} \cup\left\{\left(Y, u_{n_{1}}^{1}\right)\right\}
$$

The set F belongs to $\Delta_{c}(Z)$ and satisfies the conditions (i), (ii), and (iii) due to the properties (a) and (b) of Theorem 2.6 and due to the fact that the cycle C_{Z} has odd length. We only need prove that F is c-connected
in Z. For $i=1,2, \ldots, k$, consider the walk obtained from $W_{D}^{i}\left(n_{i}-1\right)$ of Figure 5 by deleting an edge belonging to C_{Y} and connecting its end nodes to Y. Such a walk is tight for the simple wheelbarrow inequality $\hat{c} \hat{x} \geq c_{0}$. This walk contains the two cycle edges $e=\left(u_{n_{i}}^{i}, u_{n_{i-1}}^{i-1}\right)$ and $e^{\prime}=\left(u_{n_{i}}^{i}, u_{n_{i+1}}^{i+1}\right)$ of C_{Z}, whose end nodes have both degree 2. Therefore, the Hamiltonian cycle $H \in \mathscr{H}_{\hat{c}}^{\overline{=}}$, obtained by shortcuts from this walk, also contains these two edges. The walk obtained by removing e and e^{\prime} from H and adding the four edges that connect the end nodes of the removed edges to Z is almost Hamiltonian in Z, belongs to $\mathscr{W}_{c}^{=}$, and implies that the two edges e and e^{\prime} are c-adjacent in Z. Consequently, C_{Z} is c-connected in Z. To show that any edge $e \in F \backslash C_{Z}$ and some edge of C_{Y} are c-adjacent in Z, it is sufficient to start with a Hamiltonian cycle $H \in \mathscr{H}_{\hat{c}}=$ that contains e and an edge $e^{\prime} \in C_{Z}$. Such a Hamiltonian cycle exists by Property (a) of Theorem 2.6. By removing e and e^{\prime} from H and adding the edges that connect their end nodes to Z, we produce a walk almost Hamiltonian in Z that implies that e and e^{\prime} are c-adjacent in Z.

The Theorems 2.4, 2.6, and 2.7 are summarized in the following.
Theorem 2.8. The simple PWB inequalities are facet-defining for $\operatorname{STSP}(n)$.
3. The PWB inequalities. As we have seen in $\S 1$, the configuration of a PWB inequality $c^{*} x \geq c_{0}$ is obtained from the configuration of a simple one $c x \geq c_{0}$ (same right-hand side) by replacing each nodes i with a node set V^{i} of arbitrary size. As the edges in $\gamma\left(V^{i}\right)$ have a zero coefficient, the operation of replacing a node i by a set V^{i} in a configuration is called zero-lifting of i.

The following theorem, which we prove in Naddef and Rinaldi [18], gives a sufficient condition to derive the facet-defining property of an inequality from the facet-defining property of its simple archetype.

Theorem 3.1 (Naddef and Rinaldi [18, Theorem 4.9]). A TT inequality $c x \geq c_{0}$ is facet-defining for $\operatorname{STSP}(n)$ if its associated simple inequality $\bar{c} \bar{x} \geq c_{0}$ is nontrivial and facet-defining for $\operatorname{STSP}(p)$ and for every $v \in V_{p}$ the set $\delta(v)$ in K_{p} is \bar{c}-connected.

We first apply this theorem to the bicycle inequalities.
Theorem 3.2. The bicycle inequalities are facet-defining for $\operatorname{STSP}(n)$.
Proof. Let $c^{*} x^{*} \geq c_{0}$ be a bicycle inequality and $c x \geq c_{0}$ be its associated simple bicycle inequality. By converting the walks of the Figures 5, 7, and 8 to Hamiltonian cycles using shortcuts, it is easy to verify the following:
(a) For $i=1,2, \ldots, k$ and for each edge e incident with u_{1}^{i} with $e \neq\left(u_{1}^{i}, u_{2}^{i}\right)$, there exists a Hamiltonian cycle of $\mathscr{H}_{c}^{=}$containing both e and $\left(u_{1}^{i}, u_{2}^{i}\right)$.
(b) For $i=1,2, \ldots, k$ and for each edge e incident with $u_{n_{i}}^{i}$ with $e \neq\left(u_{n_{i}-1}^{i}, u_{n_{i}}^{i}\right)$, there exists a Hamiltonian cycle of $\mathscr{H}_{c}^{=}$containing both e and $\left(u_{n_{i}-1}^{i}, u_{n_{i}}^{i}\right)$.
(c) For $i=1,2, \ldots, k$ with $n_{i} \geq 3$ and for each edge e incident with u_{j}^{i} with $1<j<n_{i}, e \neq\left(u_{j}^{i}, u_{j-1}^{i}\right)$, and $e \neq\left(u_{j}^{i}, u_{j+1}^{i}\right)$, there exists a Hamiltonian cycle of $\mathscr{H}_{c}^{=}$containing either the pair of edges e and $\left(u_{j}^{i}, u_{j-1}^{i}\right)$ or the pair e and $\left(u_{j}^{i}, u_{j+1}^{i}\right)$.
(d) For $i=1,2, \ldots, k$ with $n_{i} \geq 3$, there exists a Hamiltonian cycle of $\mathscr{H}_{c}^{=}$containing both $\left(u_{j}^{i}, u_{j-1}^{i}\right)$ and $\left(u_{j}^{i}, u_{j+1}^{i}\right)$.
From (a), (b), (c), and (d) it follows that $\delta\left(u_{j}^{i}\right)$ is c-connected for $i=1,2, \ldots, k$ and for $j=1, \ldots, n_{i}$. Therefore, by Theorem 3.1, the theorem follows.

Now we make use of the following lemma to extend the facet-defining property to all the PWB inequalities.
Lemma 3.1 (Naddef and Rinaldi [18, Lemma 4.8]). Let $c x \geq c_{0}$ be a $T T$ inequality facet-defining for $\operatorname{STSP}(n), c^{*} x^{*} \geq c_{0}$ be an inequality obtained by 1-node lifting of $c x \geq c_{0}$ and F be a subset of $\Delta_{c^{*}}\left(u_{n+1}\right)$ that satisfies the conditions of Theorem 2.5. Then the following hold:
(a) The edge set $\delta\left(u_{n+1}\right) \subseteq E_{n+1}$ is c^{*}-connected if the graph (V, F) is connected.
(b) For every $v \in V$ the edge set $\delta(v) \subseteq E_{n+1}$ is c^{*}-connected if the edge set $\delta(v) \subseteq E_{n}$ is c-connected.

Theorem 3.3. The PWB inequalities are facet-defining for $\operatorname{STSP}(n)$.
Proof. It follows from Theorem 3.2, from Lemma 3.1 and from the connectivity of the graph induced by the edge set F defined in the Theorems 2.6 and 2.7.

Many of the inequalities known to define facets of $\operatorname{STSP}(n)$ are special cases of PWB inequalities, as it can be easily verified by putting them in $T T$ form. In particular,
(i) the 2-matching inequalities, introduced by Edmonds, are 2-regular PWB inequalities obtained from a simple inequality possibly by zero-lifting of the nodes Y and Z;

Figure 14. Cloning edge $\left(u_{n-1}, u_{n}\right)$ one time.
(ii) the Chvátal comb inequalities, introduced by Chvátal, are 2-regular PWB inequalities obtained from a simple inequality possibly by zero-lifting of Y, Z, and of the nodes of the cycle C_{Y};
(iii) the comb inequalities, introduced by Grötschel and Padberg, are 2-regular PWB inequalities.
4. The extended PWB inequalities. Some simple inequalities can be obtained by extending other simple inequalities by simultaneously adding two nodes to their configuration. In Naddef and Rinaldi [18] we call edge cloning an example of such an extension, and we define it as follows:

Definition 4.1. Let $c x \geq c_{0}$ be a $T T$ inequality defined on $\mathbb{R}^{E_{n}}$ and e be an edge in E_{n}. We say that the inequality $c^{*} x^{*} \geq c_{0}^{*}$ defined on $\mathbb{R}^{E_{n+2 t}}$, with $t \geq 1$, is obtained from $c x \geq c_{0}$ by cloning t times edge $e=\left(u_{n-1}, u_{n}\right)$ if (see Figure 14, in which $t=1$):

$$
\begin{gathered}
c_{0}^{*}=c_{0}+2 t c_{e} \\
c^{*}\left(u_{i}, u_{n+j}\right)=c\left(u_{i}, u_{n-1}\right) \quad \text { for } 1 \leq i \leq n-2,1 \leq j \leq 2 t-1 \text { and } j \text { odd, } \\
c^{*}\left(u_{i}, u_{n+j}\right)=c\left(u_{i}, u_{n}\right) \quad \text { for } 1 \leq i \leq n-2,2 \leq j \leq 2 t \text { and } j \text { even, } \\
c^{*}\left(u_{n+i}, u_{n+j}\right)=2 c_{e} \quad \text { for }-1 \leq i<j \leq 2 t \text { and } j-i \text { even, } \\
c^{*}\left(u_{n+i}, u_{n+j}\right)=c_{e} \quad \text { for }-1 \leq i<j \leq 2 t \text { and } j-i \text { odd. }
\end{gathered}
$$

The nodes u_{n+j} for $1 \leq j<2 t$ and j odd and the nodes u_{n+j} for $1<j \leq 2 t$ and j even are called the clones of the nodes u_{n-1} and u_{n}, respectively. The edge $e=\left(u_{n-1}, u_{n}\right)$ is said to be cloned.

Let $c x \geq c_{0}$ be a $T T$ inequality defining a facet of $\operatorname{STSP}(n)$; an edge $e=(u, v)$ is called c-clonable if the c-length of every walk W of K_{n} is at least $c_{0}+\left(d_{e}(W)-2\right) c_{e}$, where $d_{e}(W)$ is the minimum of the degrees of u and v in W; we say that a node $v \in V$ is α-critical for the inequality if the c-length of a minimum c-length walk of $K_{n}-\{v\}$ is $c_{0}-\alpha$.

Theorem 4.1 (Naddef and Rinaldi [18, Theorems 4.12 and 4.13]). Let $c x \geq c_{0}$ be a nontrivial TT inequality facet-defining for $\operatorname{STSP}(n)$ and let $e=\left(u_{n-1}, u_{n}\right)$ be a c-clonable edge such that u_{n-1} and u_{n} are $2 c_{e}$-critical for $c x \geq c_{0}$. Then the following hold:
(a) the inequality $c^{*} x^{*} \geq c_{0}^{*}$ obtained by cloning $e(t$ times) is facet-defining for $\operatorname{STSP}(n+2 t)$;
(b) the edge subsets $\delta\left(u_{n-1}\right), \ldots, \delta\left(u_{n+2 t}\right)$ of $E_{n+2 t}$ are c^{*}-connected;
(c) for $v \in V-\left\{u_{n-1}, u_{n}\right\}$, if $\delta(v)$ in K_{n} is c-connected, then $\delta(v)$ in $K_{n+2 t}$ is c^{*}-connected;
(d) if $f=\left(z_{1}, z_{2}\right) \neq e$ is an edge in E_{n} such that z_{1} and z_{2} are $2 c_{f}$-critical for $c x \geq c_{0}$, then z_{1} and z_{2} are $2 c_{f}^{*}$-critical for $c^{*} x \geq c_{0}^{*}$.

Definition 4.2. A simple extended PWB inequality is the inequality obtained by cloning t_{i} times the edge $\left(u_{1}^{i}, u_{2}^{i}\right)$ for each $i \in I$ where I is any subset of $\{1, \ldots, k\}$ such that $n_{i}=2$ for all $i \in I$. An inequality is an extended $P W B$ if its associated simple inequality is a simple extended PWB.

Theorem 4.2. The extended PWB inequalities are facet-defining for $\operatorname{STSP}(n)$.
Proof. Let $c x \geq c_{0}$ be a simple PWB inequality of $\operatorname{STSP}(n)$ with $n_{i}=2$ for some i. We first prove the following two claims.

Claim 4.1. Let $e=\left(u_{1}^{i}, u_{2}^{i}\right)$, with $n_{i}=2$, be an edge of an extended PWB configuration that is not cloned and let $c x \geq c_{0}$ be the inequality associated with the configuration. Then the validity of $c x \geq c_{0}$ implies that e is c-clonable.

Proof. We have to show that if e is not c-clonable, i.e., if there exists a walk W of K_{n} such that $c(W)<$ $c_{0}-\left(d_{e}(W)-2\right) c_{e}$, then the inequality is not valid, i.e., there exists a walk W^{*} with $c\left(W^{*}\right)<c_{0}$. If $d_{e}(W)=2$, then obviously $W^{*}=W$. If $d_{e}(W) \geq 4$ we show how to construct a walk W^{\prime} from W where the minimum degree of u_{1}^{i} and u_{2}^{i} is $d_{e}(W)-2$ and $c\left(W^{\prime}\right) \leq c(W)-2 c_{e}$. Thus, we can construct the walk W^{*} by recursively applying this process. We consider three distinct cases.

Case (a). W contains at least three copies of e. The walk W^{\prime} is obtained from W by removing two copies of e. The multigraph $K_{n}\left[W^{\prime}\right]$ is connected and $c\left(W^{\prime}\right)=c(W)-2 c_{e}$.

Case (b). W contains two copies of e. Let $u_{r}^{q} \notin\left\{u_{1}^{i}, u_{2}^{i}\right\}$ and $u_{t}^{s} \notin\left\{u_{1}^{i}, u_{2}^{i}\right\}$ be neighbors in W of u_{1}^{i} and u_{2}^{i}, respectively, such that the multigraph $K_{n}\left[W^{\prime}\right]$ is connected, where $W^{\prime}=W-e-\left(u_{1}^{i}, u_{r}^{q}\right)-\left(u_{2}^{i}, u_{t}^{s}\right)+\left(u_{r}^{q}, u_{t}^{s}\right)$. Since $n_{i}=2$, it follows that either $u_{r}^{q} \in\{Y, Z\}$ or $q \neq i$ and either $u_{t}^{s} \in\{Y, Z\}$ or $s \neq i$. Thus, it is easy to verify from (11) that $c\left(W^{\prime}\right) \leq c(W)-2 c_{e}$ and that equality holds only if $u_{r}^{q}=Y$ and $u_{t}^{s}=Z$.

Case (c). W contains only one copy of e. Among the edges of W different from e that are incident with u_{1}^{i}, there are always two, say $\left(u_{1}^{i}, w\right)$ and (u_{1}^{i}, z), or, possibly, two copies of the same edge (in which case $w=z$), such that $K_{n}\left[W^{\prime \prime}\right]$ is connected, where $W^{\prime \prime}=W-\left(u_{1}^{i}, w\right)-\left(u_{1}^{i}, z\right)+(w, z)$. Specularly, among the edges of W different from e that are incident with u_{2}^{i}, there are always two, say $\left(u_{2}^{i}, w^{\prime}\right)$ and $\left(u_{3}^{i}, z^{\prime}\right)$, or, possibly, two copies of the same edge (in which case $\left.w^{\prime}=z^{\prime}\right)$, such that $K_{n}\left[W^{\prime}\right]$ is connected, where $W^{\prime}=W^{\prime \prime}-\left(u_{2}^{i}, w^{\prime}\right)-$ $\left(u_{2}^{i}, z^{\prime}\right)+\left(w^{\prime}, z^{\prime}\right)$. It is easy to verify from (11) that $c\left(W^{\prime}\right) \leq c(W)-2 c_{e}$.

Observe that if $n_{i}>2$, then none of the edges of the path π^{i} is c-clonable, because there are tight walks where both the end nodes of a path edge have degree four (see, e.g., Figure 5). This explains the exclusion of these edges from the cloning process in Definition 4.2.

Claim 4.2. Both the end nodes of the edge $e=\left(u_{1}^{i}, u_{2}^{i}\right)$ are $2 c_{e}$-critical.

Proof. The walk W_{A}^{i} of Definition 2.6 contains two copies of e. The Hamiltonian cycle H_{1} of $K_{n}-\left\{u_{1}^{i}\right\}$, obtained from W_{A}^{i} by removing the two copies of e, has length $c_{0}-2 c_{e}$. It follows that u_{1}^{i} is $2 c_{e}$-critical. Analogously, using the walk W_{B}^{i}, one proves that also u_{2}^{i} is $2 c_{e}$-critical.

End of Proof of Theorem 4.2. Let l be the number of edges that have been cloned to obtain the inequality $c x \geq c_{0}$, i.e., $l=\left|\left\{i \mid t_{i}>0\right\}\right|$. If $l=0$, the inequality is valid since it is a simple PWB. Therefore, by Claim 4.1, $e=\left(u_{1}^{i}, u_{2}^{i}\right)$ with $n_{i}=2$ is c-clonable and, by Claim 4.2, both its end nodes are $2 c_{e}$-critical. Thus, applying Theorem 4.1, the inequality $c^{*} x^{*} \geq c_{0}^{*}$, obtained from $c x \geq c_{0}$ by cloning e for t_{i} times, is facet-defining for $\operatorname{STSP}\left(n+2 t_{i}\right)$ and, for any node v, the edge set $\delta(v)$ in $K_{n+2 t_{i}}$ is c^{*}-connected. In addition, if the end nodes of an edge f are $2 c_{f}$-critical, then they are also $2 c_{f}^{*}$-critical. Finally, by induction on l one shows that any simple extended PWB inequality $\hat{c} \hat{x} \geq \hat{c}_{0}$ is facet-defining and that all its nodes are \hat{c}-connected. Thus, any extended PWB inequality is facet-defining.

Padberg and Hong [24] define the chain inequality as follows:
Let $S_{i} \subseteq V$ for $i=0,1, \ldots, q$ be any proper subsets of V satisfying $S_{i} \cap S_{0}=\varnothing$ for $i=1, \ldots, p,\left|S_{i} \cap S_{0}\right| \geq 1$ and $\left|S_{i} \backslash S_{0}\right| \geq 1$ for $i=p+1, \ldots, q$, and $S_{i} \cap S_{j}=\varnothing$ for $1 \leq i \leq j \leq q$. Let $R \subseteq S_{0}$ be a subset of S_{0} satisfying $|R|=p$ and $R \cap S_{i}=\varnothing$ for $i=1, \ldots, q$. Then the chain inequality is

$$
\begin{equation*}
\sum_{i=0}^{q} x\left(\gamma\left(S_{i}\right)\right)+\sum_{i=1}^{p} x\left(\left(R: S_{i}\right)\right) \leq\left|S_{0}\right|+|R|+\sum_{i=1}^{q}\left(\left|S_{i}\right|-1\right)-\left\lceil\frac{q-p+1}{2}\right\rceil . \tag{22}
\end{equation*}
$$

Padberg and Hong [24] show that the chain inequality is a valid inequality for $\operatorname{STSP}(n)$ with $n \geq 8$, when $2 \leq p<q$ (for $p \leq 1$ the chain inequality coincides with a comb inequality). If $q-p$ is odd, then the inequality is dominated by a nonnegative linear combination of subtour elimination and degree constraints (see, e.g., Naddef and Pochet [15], where a generalization of these inequalities is described).

It is not difficult to verify, by putting (22) in $T T$ form, that the chain inequality is an extended 2-regular PWB inequality obtained by cloning only one path edge of a simple 2-regular PWB configuration, say $\left(u_{1}^{1}, u_{2}^{1}\right)$, and then zero-lifting all nodes except u_{1}^{1} and its clones (these are the members of the set R in the definition of the chain inequalities).

Extended PWB inequalities generalize chain inequalities not only because the cloning process can involve all path edges of a 2-regular PWB inequality and because all nodes can be zero-lifted, but also because these inequalities can be derived from any nonregular PWB inequality having at least one path of length 2 . This generalization of the chain inequalities differs from the one described by Naddef and Pochet [15].
5. Composition of PWB inequalities. In Naddef and Rinaldi [17] we describe an operation, called 2-sum, which yields facet-defining inequalities for $\operatorname{GTSP}(n)$ and involves two facet-defining inequalities defined on smaller configurations. In Naddef and Rinaldi [18] we give sufficient conditions under which an inequality, obtained as the 2 -sum of two other inequalities, defines a facet of $\operatorname{STSP}(n)$. We apply the 2 -sum operation to PWB inequalities. For the sake of completeness, we give the formal definition of the 2 -sum operation.

Two weighted graphs $G^{1}=\left(V^{1}, E^{1}, c^{1}\right)$ and $G^{2}=\left(V^{2}, E^{2}, c^{2}\right)$ are isomorphic if there exists a one-to-one correspondence ρ between their node sets that preserves the weight function, i.e., for every edge $(u, v) \in E^{1}$, the edge $(\rho(u), \rho(v))$ belongs to E^{2} and $c^{1}(u, v)=c^{2}(\rho(u), \rho(v))$.

Definition 5.1. Let $c^{1} x^{1} \geq c_{0}^{1}$ and $c^{2} x^{2} \geq c_{0}^{2}$ be two $T T$ inequalities facet-defining for $\operatorname{STSP}\left(n_{1}\right)$ and $\operatorname{STSP}\left(n_{2}\right)$, respectively, and let $e_{1}=\left(u_{1}, v_{1}\right) \in E_{n_{1}}$ and $e_{2}=\left(u_{2}, v_{2}\right) \in E_{n_{2}}$ be two edges such that $c^{1}\left(u_{1}, v_{1}\right)=$ $c^{2}\left(u_{2}, v_{2}\right)=\theta>0$. Denote by $V_{n_{1}}$ and $V_{n_{2}}$ the node sets of the two graphs $K_{n_{1}}$ and $K_{n_{2}}$, respectively, by V^{1} the set $V_{n_{1}}-\left\{u_{1}, v_{1}\right\}$ and by V^{2} the set $V_{n_{2}}-\left\{u_{2}, v_{2}\right\}$. Then the 2 -sum of the two inequalities, obtained by identifying u_{1} with u_{2} and v_{1} with v_{2}, is the inequality $c x \geq c_{0}^{1}+c_{0}^{2}-2 \theta$ defined on $\mathbb{R}^{E_{n}}$, with $n=n_{1}+n_{2}-2$, whose support graph $G_{c}=\left(V, E_{n}, c\right)$ is defined as follows:
(i) $V=V^{1}+V^{2}+\{u, v\}$;
(ii) the subgraph of G_{c} induced by $V^{1}+\{u, v\}$ is isomorphic to $G_{c^{1}}$ and u and v correspond to u_{1} and v_{1}, respectively, in the isomorphism;
(iii) the subgraph of G_{c} induced by $V^{2}+\{u, v\}$ is isomorphic to $G_{c^{2}}$ and u and v correspond to u_{2} and v_{2}, respectively, in the isomorphism;
(iv) the coefficients of the edges with one end node in V_{1} and the other in V_{2}, that we call the crossing edges of the 2 -sum, are computed by a sequential lifting procedure.
The inequalities $c^{1} x^{1} \geq c_{0}^{1}$ and $c^{2} x^{2} \geq c_{0}^{2}$ are called the component inequalities of the 2 -sum.
For the sake of simplicity, from now on every time that the correspondence between nodes, edges, and walks of each of the graph $G_{c_{1}}$ and $G_{c_{2}}$ and their corresponding isomorphic subgraphs of G_{c} is evident, we omit to mention it explicitly.

In Naddef and Rinaldi [17] we use the 2 -sum operation in a recursive way to generate huge families of inequalities defining facets of $\operatorname{GTSP}(n)$. The most interesting of such families is perhaps the one of the regular parity path tree (or regular parity $P W B$-tree) inequalities. These inequalities are peculiar because the lifting procedure does not have to be carried out explicitly, since the coefficient of each crossing edge is given by the c-length of the shortest path between its end nodes in the c-weighted graph produced by each 2 -sum. This implies that the coefficients of the crossing edges do not depend on the order of the sequential lifting procedure.

Definition 5.2. A regular parity $P W B$-tree inequality is one of the following:
(i) A regular PWB inequality \mathscr{P}_{0}. In this case the PWB-tree inequality has length 0 . The path edges as well as the even and the odd nodes of \mathscr{P}_{0} coincide with the corresponding ones of the PWB inequality.
(ii) The 2 -sum \mathscr{P}_{l+1} of a regular parity PWB-tree inequality \mathscr{P}_{l}, having length l and of a regular PWB inequality obtained by identifying the end nodes of a path edge of one inequality with the end nodes of a path edge of the other, with the constraints that the identified nodes have the same parity. In this case the PWB-tree inequality has length $l+1$. The nodes that result from the two identifications inherit the parity of the nodes from which they derive; the edge between them is a path edge of \mathscr{P}_{l+1}. The path edges as well as the even and the odd nodes of \mathscr{P}_{l} and of the PWB inequality are path edges, even and odd nodes of \mathscr{P}_{l+1}.

As it was mentioned before, for the regular parity PWB-tree inequalities the following theorem holds:
Theorem 5.1 (Naddef and Rinaldi [17, Theorem 5.3]). Let $c^{1} x^{1} \geq c_{0}^{1}$ and $c^{2} x^{2} \geq c_{0}^{2}$ be two regular parity $P W B$-tree inequalities, let $c x \geq c_{0}$ be their 2-sum, and let (u, v) be the edge that results from the identification. Then, using the notation of Definition 5.1, for any $x \in V^{1}$ and $y \in V^{2}$ the following holds:

$$
\begin{equation*}
c(x, y)=\min \left\{c^{1}(x, u)+c^{2}(u, y), c^{1}(x, v)+c^{2}(v, y)\right\} . \tag{23}
\end{equation*}
$$

The main result of this section is a proof that regular parity PWB-tree inequalities are facet-defining for $\operatorname{STSP}(n)$. To do so, we use the following theorem that gives conditions for a 2 -sum inequality to be facet-defining for $\operatorname{STSP}(n)$.

We call a 2-sum inequality h-liftable if the coefficients of its crossing edges do not change if Hamiltonian cycles are used in the lifting procedure, instead of walks.

Theorem 5.2 (Naddef and Rinaldi [18, Theorem 3.5]). Under the assumptions of Definition 5.1, let $c^{1} x^{1} \geq c_{0}^{1}$ and $c^{2} x^{2} \geq c_{0}^{2}$ be nontrivial inequalities defining facets of $\operatorname{STSP}\left(n_{1}\right)$ and $\operatorname{STSP}\left(n_{2}\right)$, respectively.

Figure 15. Tight walks containing edge $\left(u_{j}^{i}, u_{q}^{r}\right)$ and twice edge $\left(u_{j}^{i}, u_{j+1}^{i}\right)$.
The 2-sum inequality $c x \geq c_{0}$ is facet-defining for $\operatorname{STSP}(n)$ if it is h-liftable and:
(a) v_{1} is 2θ-critical for $c^{1} x^{1} \geq c_{0}^{1}$,
(b) $\delta\left(u_{2}\right)$ is c^{2}-connected,
and either
Case (A):
(c') u_{2} is 2θ-critical for $c^{2} x^{2} \geq c_{0}^{2}$,
($\left.\mathrm{d}^{\prime}\right) \delta\left(v_{1}\right)$ is c^{1}-connected,
or
Case (B):
($\mathrm{c}^{\prime \prime}$) v_{2} is 2θ-critical for $c^{2} x^{2} \geq c_{0}^{2}$,
($\left.\mathrm{d}^{\prime \prime}\right) \delta\left(u_{1}\right)$ is c^{1}-connected,
$\left(\mathrm{e}^{\prime \prime}\right)$ there exists a Hamiltonian cycle $H_{1} \in \mathscr{H}_{c_{1}}^{=}$containing the edge $\left(u_{1}, v_{1}\right)$ and any edge $e_{1} \in \Delta_{c_{1}}\left(v_{1}\right)$,
$\left(\mathrm{f}^{\prime \prime}\right)$ there exists a Hamiltonian cycle $H_{2} \in \mathscr{H}_{c_{2}}^{=}$containing the edge $\left(u_{2}, v_{2}\right)$ and any edge $e_{2} \in \Delta_{c_{2}}\left(v_{2}\right)$.
Before stating the main theorem, we prove a lemma concerning the h-liftability of simple regular parity PWB-tree inequalities and recall three lemmata that we state in Naddef and Rinaldi [18] and that will be used in the main proof as well.

Lemma 5.1. The 2 -sum of a simple regular parity $P W B$-tree and of a simple PWB inequality is h-liftable.
Proof. We consider the 2 -sum of a simple regular parity PWB-tree inequality \mathscr{P}_{l} with a simple regular PWB inequality $c x \geq c_{0}$, obtained by identifying the end nodes of a path edge of \mathscr{P}_{l} with the end nodes of the edge $\left(u_{j}^{i}, u_{j+1}^{i}\right)$ of the PWB inequality. Without loss of generality, we can assume that $j<n_{i}$, and thus that u_{j+1}^{i} is always even. Let $e=\left(a, u_{q}^{r}\right)$ be a crossing edge of the 2 -sum inequality. We consider two cases, depending on whether node u_{j}^{i} (as well as the corresponding node of \mathscr{P}_{l}) is even or odd. We use the walks of the Figures $15-17$. These walks belong to $\mathscr{W}_{c}^{=}$when $c x \geq c_{0}$ is a path inequality and can be easily adjusted to the cases when the inequality is either a wheelbarrow or a bicycle.

Case A. Node u_{j}^{i} is even. Without loss of generality, we assume that $q \leq j$ (or else, just exchange the roles of j and $j+1$ and those of Z and Y). Then it is easy to see, by (23) and (13), that $c_{e}=c^{1}\left(a, u_{j}^{i}\right)+c^{2}\left(u_{j}^{i}, u_{q}^{r}\right)$.

Figure 16. Tight walks containing the edges $\left(u_{1}^{i}, Y\right)$ and $\left(Y, u_{q}^{r}\right)$.

FIGURE 17. A tight walk containing the edges $\left(u_{1}^{i}, Y\right)$ and $\left(Y, u_{q}^{r}\right)$ and one containing twice edge $\left(u_{1}^{i}, Y\right)$ and edge $\left(u_{1}^{i}, u_{q}^{r}\right)$.
The inequality \mathscr{P}_{l} is facet-defining for $\operatorname{GTSP}(n)$ (see Naddef and Rinaldi [17]). Therefore, there exists a tight walk containing (a, u_{j}^{i}) that, by Lemma 2.3, can be turned into a Hamiltonian cycle H containing (a, u_{j}^{i}). If $r=i$, then let W_{1} be the walk of Figure 15(a); otherwise, let W_{1} be the walk of Figure 15(b). This walk contains edge $\left(u_{j}^{i}, u_{j+1}^{i}\right)$ twice. The Hamiltonian cycle $H+W_{1}-2\left(u_{j}^{i}, u_{j+1}^{i}\right)-\left(a, u_{j}^{i}\right)-\left(u_{j}^{i}, u_{q}^{r}\right)+\left(a, u_{q}^{r}\right)$ is tight for the 2 -sum inequality and contains the crossing edge e.

Case B. Node u_{j}^{i} is odd, i.e., $u_{j}^{i}=Y$ and $j=0$. In Naddef and Rinaldi [17, Lemma 5.6] we show that there exists a tight walk W for the inequality \mathscr{P}_{l} that contains both edges (a, Y) and $\left(Y, u_{1}^{i}\right)$. We first assume that either $r \neq i$ or $q=n_{r}+1$, in the latter case we have $u_{q}^{r}=Z$. Then it is easy to see that, by (23) and (11), $c_{e}=c^{1}(a, Y)+c^{2}\left(Y, u_{q}^{r}\right)$. If $q=n_{r}+1$, then let W_{2} be the walk of Figure 16(a); otherwise, let it be the walk of Figure 16(b) (the edges represented by broken lines have to replace the marked edge if node Y has degree 2 in W). The walk $W+W_{2}-2\left(u_{1}^{i}, Y\right)-(a, Y)-\left(Y, u_{q}^{r}\right)+\left(a, u_{q}^{r}\right)$ is tight for the 2-sum inequality, contains the crossing edge e, and, by Lemma 2.3, can be transformed into a tight Hamiltonian cycle by shortcuts involving only edges of E^{1} since only one edge on E^{2} is incident with u_{1}^{i} and Y, respectively. Now let us assume that $r=i$ and $q>0$. If $c_{e}=c^{1}(a, Z)+c^{2}\left(Z, u_{q}^{r}\right)$, then let W_{3} be the walk of Figure 17(a). The walk $W^{\prime}=W+W_{3}-2\left(u_{1}^{i}, Y\right)-(a, Y)-\left(Y, u_{q}^{r}\right)+\left(a, u_{q}^{r}\right)$ is tight for the 2-sum inequality and contains the crossing edge e. Finally, if $c_{e}=c^{1}\left(a, u_{1}^{i}\right)+c^{2}\left(u_{1}^{i}, u_{q}^{r}\right)$, let H be the Hamiltonian cycle defined for Case (A) and W_{4} the walk of Figure $17(\mathrm{~b})$. Then also the walk $W^{\prime \prime}=H+W_{4}-2\left(u_{1}^{i}, Y\right)-\left(a, u_{1}^{i}\right)-\left(u_{1}^{i}, u_{q}^{r}\right)+\left(a, u_{q}^{r}\right)$ is tight for the 2 -sum and contains e. Both walks W^{\prime} and $W^{\prime \prime}$ can be turned into tight walks where every node but Y has degree 2 , by applying shortcuts involving only edges of E^{1}, since only one edge on E^{2} is incident with u_{1}^{i}. To reduce each of these walks to a Hamiltonian cycle, a shortcut involving a crossing edge $\left(w, u_{t}^{s}\right)$, where $s \neq i$, is necessary. However, since the coefficients of the inequality do not depend on the lifting sequence, we can assume, without loss of generality, that the lifting coefficients for all the crossing edges $\left(w, u_{t}^{s}\right)$, with $s \neq i$, are computed first, and the lemma is proved.

The following three lemmata give conditions under which some properties of the components of a 2 -sum are carried over to the resulting inequality. The notation used in their statements is that of Definition 5.1.

Lemma 5.2 (Naddef and Rinaldi [18, Lemma 3.5]). Under the assumptions of Definition 5.1, let $w \in V_{n_{1}}$ be α-critical for $c^{1} x^{1} \geq c_{0}^{1}$, and let $c_{e}^{1}=\alpha / 2$ for some edge $e \in \delta(w)$ in $K_{n_{1}}$. The corresponding node $w \in V$ is α-critical for $c x \geq c_{0}$ if $c x \geq c_{0}$ is supporting for $\operatorname{GTSP}(n)$ and any of the following conditions holds:
(a) $w \notin\left\{u_{1}, v_{1}\right\}$,
(b) $w=u_{1}$ and u_{2} is 2θ-critical for $c^{2} x^{2} \geq c_{0}^{2}$,
(c) $w=v_{1}$ and v_{2} is 2θ-critical for $c^{2} x^{2} \geq c_{0}^{2}$.

Lemma 5.3 (Naddef and Rinaldi [18, Lemma 3.6]). Under the assumptions of Definition 5.1, if there exists a Hamiltonian cycle $H \in \mathscr{H}_{c_{1}}^{=}$containing two nonadjacent edges e and $f \in E_{n_{1}}$ and at least one of the two nodes u_{2} and v_{2} is 2θ-critical for $c^{2} x^{2} \geq c_{0}^{2}$, then there exists a Hamiltonian cycle $H^{*} \in \mathscr{H}_{c}^{=}$containing the edges in E_{n} corresponding to e and f, respectively.

Lemma 5.4 (Naddef and Rinaldi [18, Lemma 3.7]). Under the assumptions of Definition 5.1, let $\delta(w)$ in $K_{n_{1}}$ be c^{1}-connected for every node $w \in V_{n_{1}}$ and let $\delta(w)$ in $K_{n_{2}}$ be c^{2}-connected for every node $w \in V_{n_{2}}$. Then $\delta(w)$ in K_{n} is c-connected for every node $w \in V$ if the following conditions hold:
(i) $c x \geq c_{0}$ is h-liftable;
(ii) at least one of the two nodes u_{1} and v_{1} is 2θ-critical for $c^{1} x^{1} \geq c_{0}^{1}$;
(iii) at least one of the two nodes u_{2} and v_{2} is 2θ-critical for $c^{2} x^{2} \geq c_{0}^{2}$.

We have now all the basic tools to prove the following
Theorem 5.3. The regular parity $P W B$-tree inequalities are facet-defining for $\operatorname{STSP}(n)$.
Proof. Let \mathscr{P}_{l} be a simple regular parity PWB-tree inequality of length l. We proceed by induction on l. The theorem is true for $l=0$ since \mathscr{P}_{0} is a PWB inequality. We consider now the case $l=1$. Thus, by Definition 5.2, \mathscr{P}_{1} is the 2 -sum of an inequality \mathscr{P}_{0}, which we denote by $c^{1} x^{1} \geq c_{0}^{1}$, and of a simple PWB inequality $c^{2} x^{2} \geq c_{0}^{2}$, obtained by identifying the end nodes of the path edge $\left(u_{1}, v_{1}\right)$ of the first inequality to the end nodes of the path edge $\left(u_{2}, v_{2}\right)$ of the second. Using the notation of Definition 5.1, we show now that the conditions of Theorem 5.2 are satisfied. By Lemma 5.1, \mathscr{P}_{l} is h-liftable for all values of l.

Claim 5.1. An even end node of a path edge e of a simple $P W B$ inequality $c x \geq c_{0}$ is $2 c_{e}$-critical.
Proof. Without loss of generality, we can assume that $e=\left(u_{j}^{i}, u_{j+1}^{i}\right)$, with $j \in\left\{0, \ldots, n_{i}-1\right\}$. We consider two cases.

The first case arises when $j \in\left\{1, \ldots, n_{i}-1\right\}$; in this case both the end nodes of e are even. Consider the walk W_{A}^{i} of Definition 2.6 if $j=1$, the walk W_{B}^{i} if $j=n_{i}-1$, and $W_{C}^{i}(j+1)$ if $j \in\left\{2, \ldots, n_{i}-2\right\}$. Such a walk contains two copies of edge e; in addition, by removing these two copies, we obtain a walk of $V \backslash\left\{u_{j+1}^{i}\right\}$ of c-length $c_{0}-2 c_{e}$. Therefore, u_{j+1}^{i} is $2 c_{e}$-connected. Similarly, one shows that also u_{j}^{i} is $2 c_{e}$-connected.

In the second case, arising when $j=0$, we consider the walk $W_{C}^{i}(1)$, the only even node is u_{1}^{i}. We add the (odd) node $Y=u_{0}^{i}$; then we remove the two cycle edges $\left(u_{1}^{i}, u_{1}^{i-1}\right)$ and (u_{1}^{i}, u_{1}^{i+1}); and finally we add the edges $\left(Y, u_{1}^{i-1}\right),\left(Y, u_{1}^{i+1}\right)$; and two copies of the edge $e=\left(Y, u_{1}^{i}\right)$. The resulting walk has c-length c_{0} and contains two copies of e; moreover, the removal of these two copies of e yields a walk of $V \backslash\left\{u_{j}^{i}\right\}$ of c-length $c_{0}-2 c_{e}$.

Claim 5.2. An even end node of a path edge e of a simple regular parity $P W B$-tree inequality $c x \geq c_{0}$ is $2 c_{e}$-critical.

Proof. It follows immediately by applying the recursion of Definition 5.2, Claim 5.2, and Lemma 5.2.
Since a path edge has at most one odd end node, we can assume, without loss of generality, that the nodes u_{1} and u_{2} are both even. Thus, by Claims 5.1 and 5.2, the conditions (a) and ($\mathrm{c}^{\prime \prime}$) are satisfied for all values of l. Depending on the parity of the nodes v^{1} and v^{2} we have two distinct cases.

Case A. v^{1} and v^{2} are even. In this case, by Claims 5.1 and 5.2 Condition (c^{\prime}) is satisfied.
Case B. v^{1} and v^{2} are odd. First, we prove the following
Claim 5.3. Let $c x \geq c_{0}$ be a simple PWB inequality and let $\left(u_{1}^{i}, Y\right)$ be one of its path edges incident with an odd node. Then there exists a Hamiltonian cycle $H \in \mathscr{H}_{c}^{=}$containing $\left(u_{1}^{i}, Y\right)$ and an edge of $\Delta_{c}(Y)$.

Proof. Consider the walk of Figure 7(a), where j and q are set to 1 and n_{r}, respectively. With these settings of j and q, the walk is actually a Hamiltonian cycle. Replace $\left(u_{1}^{i}, u_{n_{r}}^{r}\right)$ by the two edges $\left(u_{1}^{i}, Y\right)$ and $\left(Y, u_{n_{r}}^{r}\right)$. For the case of a path inequality, insert node Z into the cycle in a similar manner, by removing any cycle edge of C_{Z} (by Theorem 2.3 at least one edge of C_{Z} belongs to the Hamiltonian cycle). The resulting Hamiltonian cycle belongs to $\mathscr{H}_{c}^{=}$, contains the edge $\left(u_{1}^{i}, Y\right)$, and, again by Theorem 2.3, intersects $C_{Y} \subseteq \Delta_{c}(Y)$.

Claim 5.4. Let $c x \geq c_{0}$ be a simple regular parity PWB-tree inequality and (u, v) be one of its path edges incident with an odd node v. Then there exists a Hamiltonian cycle $H \in \mathscr{H}_{c}^{=}$containing (u, v) and an edge of $\Delta_{c}(v)$.

Proof. It follows immediately by applying the recursion of Definition 5.2, Claim 5.1, and Lemma 5.3.
End of Proof of Theorem 5.3. Claims 5.3 and 5.4 imply that both conditions $\left(\mathrm{e}^{\prime \prime}\right)$ and $\left(\mathrm{f}^{\prime \prime}\right)$ are satisfied for all values of l.

For $l=1$ the two inequalities are of PWB type, hence, by Theorems 3.2 and 3.3, the conditions (b), (d'), and $\left(\mathrm{d}^{\prime \prime}\right)$ are satisfied. Thus, the inequality is facet-defining, and each node of the graph is c-connected with respect to the coefficient vector c of the inequality. This implies that the same holds for $l>1$, by applying the induction and the Lemmata 5.1 and 5.4.

A clique-tree inequality (see Grötschel and Pulleyblank [11]), as long as there is a node not contained in any handle or tooth, is a special case of a regular parity path tree obtained as follows (see Naddef and Rinaldi [17]):
-Only 2-regular PWB inequalities with at least one odd node are used as components.
-Each 2-sum involves an odd node.
-All odd nodes involved in the 2 -sums correspond to a single odd node in the resulting inequality.
It is evident how the regular parity PWB-tree inequalities generalize the clique tree inequalities in many possible ways.
6. Conclusions. The operations described in this paper can be extended in several directions to prove that further classes of inequalities derived from PWB inequalities are facet-defining for the STSP polytope. For example, the components of a 2 -sum can be extended PWB inequalities, or edge cloning can be applied to regular parity PWB inequalities.

Acknowledgment. This work was supported in part by the Marie Curie Research Training Network "Algorithmic Discrete Optimization" (ADONET), Grant MRTN-CT-2003-504438, of the European Union Research Commission, which we gratefully acknowledge.

References

[1] Balas, E., M. Fischetti. 1997. On the monotonization of polyhedra. Math. Programming 77 59-84.
[2] Christof, T., G. Reinelt. 1996. Combinatorial optimization and small polytopes. TOP 4 1-53.
[3] Chvátal, V. 1973. Edmonds polytopes and weakly Hamiltonian graphs. Math. Programming 5 29-40.
[4] Clochard, J. M., D. Naddef. 1993. Using path inequalities in a branch and cut code for the symmetric traveling salesman problem. G. Rinaldi, L. A. Wolsey, eds. Proc. 3rd Math. Programming Conf. Integer Programming Combin. Optim. CORE, Louvain-la-Neuve, Belgium, 291-311.
[5] Cornuéjols, G., J. Fonlupt, D. Naddef. 1985. The traveling salesman problem on a graph and some related integer polyhedra. Math. Programming 33 1-27.
[6] Goemans, M. X. 1995. Worst-case comparison of valid inequalities for the TSP. Math. Programming 69 335-349.
[7] Grötschel, M. 1980. On the monotone symmetric travelling salesman problem: Hypohamiltonian/hypotraceable graphs and facets. Math. Oper. Res. 5 285-292.
[8] Grötschel, M., L. Lovász. 1995. Combinatorial optimization. R. L. Graham, M. Grötschel, L. Lovász, eds. Handbook of Combinatorics, Vol. II, Chap. 28. North-Holland, Amsterdam, The Netherlands, 1541-1597.
[9] Grötschel, M., M. W. Padberg. 1979. On the symmetric travelling salesman problem I: Inequalities. Math. Programming $16265-280$.
[10] Grötschel, M., M. W. Padberg. 1979. On the symmetric travelling salesman problem II: Lifting theorems and facets. Math. Programming 16 281-302.
[11] Grötschel, M., W. R. Pulleyblank. 1986. Clique tree inequalities and the symmetric travelling salesman problem. Math. Oper. Res. 11 537-569.
[12] Jünger, M., G. Reinelt, G. Rinaldi. 1995. The traveling salesman problem. M. O. Ball, T. L. Magnanti, C. L. Monma, G. L. Nemhauser, eds. Network Models, Handbooks in Operations Research and Management Science, Vol. 7, Chap. 4. North-Holland, Amsterdam, The Netherlands, 225-330.
[13] Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, eds. 1985. The Traveling Salesman Problem. Wiley-Interscience Series in Discrete Mathematics. John Wiley \& Sons, Chichester.
[14] Naddef, D. 2002. Polyhedral theory, branch and cut algorithms for the symmetric traveling salesman problem. G. Gutin, A. Punnen, eds. The Traveling Salesman Problem and Its Variations. Combinatorial Optimization. Kluwer Academic Publisher, Dordrecht, The Netherlands, 29-116.
[15] Naddef, D., Y. Pochet. 2001. The symmetric traveling salesman polytope revisited. Math. Oper. Res. 26 700-722.
[16] Naddef, D., G. Rinaldi. 1988. The symmetric traveling salesman polytope: New facets from the graphical relaxation. Technical Report 248, IASI-CNR, Rome, Italy.
[17] Naddef, D., G. Rinaldi. 1991. The symmetric traveling salesman polytope and its graphical relaxation: Composition of valid inequalities. Math. Programming 51 359-400.
[18] Naddef, D., G. Rinaldi. 1993. The graphical relaxation: A new framework for the symmetric traveling salesman polytope. Math. Programming 58 53-88.
[19] Naddef, D., S. Thienel. 2002. Efficient separation routines for the symmetric traveling salesman problem. I: General tools and comb separation. Math. Programming 92(2) 237-255.
[20] Naddef, D., S. Thienel. 2002. Efficient separation routines for the symmetric traveling salesman problem. II: Separating multihandle inequalities. Math. Programming 92(2) 257-283.
[21] Naddef, D., E. Wild. 2003. The domino inequalities: Facets for the symmetric traveling salesman polytope. Math. Programming 98 223-251.
[22] Nemhauser, G. L., L. A. Wolsey. 1988. Integer and Combinatorial Optimization. Discrete Mathematics and Optimization. WileyInterscience, New York.
[23] Oswald, M., G. Reinelt, D. O. Theis. 2005. Not every GTSP facet induces a STSP facet. M. Jünger, V. Kaibel, eds. Integer Programming \& Combinatorial Optimization (IPCO) XI, Lecture Notes in Computer Science, Vol. 3509. Springer-Verlag GmbH, Berlin, Germany, 468-482.
[24] Padberg, M. W., S. Hong. 1980. On the symmetric travelling salesman problem: A computational study. Math. Programming Stud. 12 78-107.

[^0]: ${ }^{1}$ Until very recently, no examples were known of facet-defining inequalities for $\operatorname{GTSP}(n)$ that are provably not facet-defining for $\operatorname{STSP}(n)$. Some of such inequalities are exhibited by Oswald et al. [23].

