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In some industries, a certain part can be needed in a very large number of different configurations. This is the case, e.g.,
for the electrical wirings in European car factories. A given configuration can be replaced by a more complete, therefore
more expensive, one. The diversity management problem consists of choosing an optimal set of some given number k of
configurations that will be produced, any nonproduced configuration being replaced by the cheapest produced one that is
compatible with it. We model the problem as an integer linear program. Our aim is to solve those problems to optimality.
The large-scale instances we are interested in lead to difficult LP relaxations, which seem to be intractable by the best
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Introduction
In some industries, the number of different configurations
of a given part exceeds by far the acceptable number on
the assembly line. This is the case, e.g., for the electrical
wirings in the European car factories. Due to a large range
of options, European manufacturers consider up to 7,000
different wiring designs. They produce, however, only a
much smaller number of k= 6 up to k= 40 configurations,
depending on the manufacturer. If a wiring that is not man-
ufactured is needed, then it is replaced by a compatible one
of minimum cost among those produced, that is, one that
has all the options required plus some others. This implies
an overcost.
The Optimal Diversity Management Problem �ODMP� is

that of choosing optimally the k models that will be manu-
factured, i.e., the choice that minimizes the total overcost.
This problem is NP-hard (see Briant 2000).
A problem similar to the ODMP has been studied by

Thonemann and Brandeau (2000). They consider a much
smaller number of possible models (200), but also a much
more complex cost function that takes into account inven-
tory costs, set-up costs, and a factor of complexity of the
chosen models.
In our case it seems realistic to only consider minimizing

the total overcost in manufacturing.
Our approach is based on a classical integer linear pro-

gramming model for the p-median problem, which we
give in §1. It turns out that the large-scale instances we
are interested in lead to difficult LP relaxations, which

seem to be intractable by the best direct methods currently
available.
The main purpose of this paper is to try to drastically

reduce the problem size in order to be able to solve to opti-
mality large instances of the problem. Problem reduction is
a very common technique in integer programming; see, for
example, Andersen and Andersen (1995), Crowder et al.
(1983), Martin (1998), Hoffman and Padberg (1991), Suhl
and Szymanski (1994), and Martin (2001).
We will perform problem reduction using a lower bound

obtained via Lagrangean relaxation. This reduction will be
obtained by variable fixing, either by a reduced cost argu-
ment or by logical implications. Beasley (1987) applied
similar techniques for the set-covering problem.
The main ideas are exposed in §2. The list of all the

variable fixings is then given in §3. Some of these variable
fixings are more efficient if one knows the value of a very
good feasible solution. In §3.6, we give heuristics that aim
to obtain such solutions. These heuristics are driven by the
Lagrangean relaxation solution.
In §4 we will see that the problem reduction is so suc-

cessful that it either solves the problem or prepares it for a
subsequent successful application of a state-of-the-art ILP
solver such as CPLEX MIP. We also comment on alterna-
tive solution approaches.

1. The Model
The ODMP is a particular case of several well-known diffi-
cult problems. For example, it can be seen as a k-median or
k-center problem on the graph of a partial order described
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below. Another approach would be to consider the prob-
lem as a set-partitioning problem, that is, to partition the
set of models into k subsets, each containing an element
that can replace all the other elements of the subset. This
approach leads naturally towards a column-generation solu-
tion technique, which may be another way of addressing
this problem. One could, for example, try to use techniques
similar to those used by Caprara et al. (1996) and by Ceria
et al. (1998) for large set-covering problems in relation to
railway timetable scheduling.

1.1. General Remarks and Notation

An instance of ODMP is defined by a given number
of models N = �1� � � � � i� � � � � n�, their costs �c1� � � � � ci�
� � � � cn�, and their demands �d1� � � � � di� � � � � dn�, together
with a partial order on the set of models �1� � � � � i� � � � � n�,
where i ≺ j stands for i can be replaced by j and i �= j .
We let i � j stand for i ≺ j or i= j . If i ≺ j , then ci < cj .
In our wiring application, a model has p possible options
that can be described by a p-string of 0 and 1, where a 1
in position t means that option t is present. It is then easy
to check if i ≺ j; it can be done by bit comparisons. The
string corresponding to j must have a 1 in every position
where i does.
Later, we will take the k smallest entries of some sets of

values �aj ∈�� j ∈ B ⊂ N�. We will denote the indices of
these values by argminkj∈Baj , breaking ties arbitrarily.

1.2. A Graph Associated with ODMP

It is quite natural to associate with the problem the directed
graph G= �N �A�, with nodeset N = �1� � � � � i� � � � � n� rep-
resenting the models, and arc set A= ��i� j�� i ≺ j�. From
now on, we will not distinguish between the nodeset of this
graph and the set of models; this is the reason we represent
them by the same symbol N .
Some models have a zero demand, but may be useful

because they can replace many other ones. We let N� rep-
resent the set of models with non-zero demands.
We will also be interested in solutions that necessarily

contain the models in some set N1, and do not contain the
models in some set N0. Note that N1 will always contain,
among other models, those models with nonzero demand
that cannot be replaced by any other one. We call these
models maximal or terminal. These are the maximal ele-
ments of the partial order.
Similarly, we will be interested in solutions in which

substitutions in some set A1 are forced, and in which sub-
stitutions in some set A0 are forbidden. We assume that
these sets are consistent; that is, if �i� j� ∈A1, then j ∈N1.
From the start N1 �= �, since all maximal models must be
produced. If there is more than one maximal model, then
also A0 �= �, as will become clear in §3.
In order to efficiently perform most of the operations

described in this paper, it is necessary to implement the
data optimally. The graph is implemented as a list of nodes

representing the models with a linked list of successors and
another linked list of predecessors. It is then important that
both lists be sorted from the cheapest element to the most
expensive one.

1.3. The Integer Programming Model

For i≺ j , let xij = 1 if model i is replaced by model j and
0 if not. When i = j , xii = 1 will mean that the model i
is produced. The cost of replacing model i by model j is
dicj , and the overcost is di�cj − ci�.
Minimizing the total cost or the total overcost is equiv-

alent; these two values only differ by a large constant. For
notational simplicity, we will be minimizing the total cost.
The problem can then be modeled by the following Inte-

ger Linear Program, which we denote by Choice ILP:

minimize
∑
j∈N

∑
i�j

cjdixij (1.1)

such that∑
j
i

xij = 1 ∀ i ∈N� (1.2)

∑
i∈N

xii = k (1.3)

xij � xjj ∀ i� j ∈N� i≺ j (1.4)

xij � 0 ∀ i� j ∈N� i≺ j (1.5)

xjj ∈ �0�1� ∀ j ∈N (1.6)

Equations (1.2) just state that a model is either produced
or replaced by exactly one other. Equation (1.3) says that
exactly k models must be produced; Inequalities (1.4) state
that in order to replace model i by model j , model j has
to be produced. The last conditions are just the integrality
requirements on the variables, which are only necessary for
the xjj variables.
Inequalities (1.4) are often referred to in the literature as

variable upper bounds. The number of these inequalities
can be very large, although bounded by n�n− 1�/2.
Note that we could have added xjj = 1 if model j is

maximal. We will come back to this later on, since one can
in general do even more.
The linear relaxation of the previous integer program is

the linear program obtained by replacing Conditions (1.6)
by xjj � 0. Note that because of Conditions (1.2) and the
nonnegativity of the variables, we have 0� xij � 1 for all
i� j .
The classical way of solving this linear program (see

Chapter II.4 of Nemhauser and Wolsey 1988) is to first
solve the linear program obtained by deleting all the vari-
able upper-bound inequalities (1.4). Let x� be the optimal
solution of that linear program. Iterate the following steps
as long as necessary:
• Determine all, or a subset of all, variable upper-bound

inequalities violated by x�. If none, stop.
• Add these inequalities to the current linear program.
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• Solve the new linear program to obtain the new opti-
mal solution x�.
None of the three steps poses a problem. Nevertheless,

this approach fails in our case. The reason is that a very
high percentage of the variable upper-bound constraints
will have to be added to the linear program. In order to keep
the linear program of manageable size, we occasionally
have to remove those inequalities that are no longer active.
We then have the phenomenon that some inequalities enter
(and exit) the linear program several times, and conver-
gence of the process is never reached for large instances.
The failure of this procedure is the reason for the fol-

lowing developments.

1.4. A Hypergraph Associated with ODMP

This hypergraph will only be used in the problem reduc-
tion part. It could be the basis for a solution method based
on set partitioning by methods similar to those developed
by Caprara et al. (1996) and by Ceria et al. (1998). With
an instance we associate a hypergraph. The nodes of the
hypergraph represent the models. For each model i, we gen-
erate an edge Ei of the hypergraph that corresponds to those
nodes that can be used to replace i. Note that we have i ∈Ei.
A transversal T is a set of nodes that intersects all the
edges. The diversity management problem reduces to find-
ing a transversal of cardinality k of minimum cost. Since
edges containing other edges are useless in this context, we
keep only minimal edges (by inclusion), and remove the
other ones. By removing an edge, we mean deleting it from
the edge set; the removal does not affect the node set. If sev-
eral edges are identical, we only keep one.
If we are interested in solutions that contain all mod-

els in a set N1, we delete from this hypergraph all edges
containing a node that corresponds to a model in N1. Note
that an edge consisting of a unique node has to appear in
all solutions and therefore the corresponding model can be
added to N1, so we assume that there are no such edges.
We call this hypergraph the free-node hypergraph. Note
that any feasible solution contains at most k− �N1� nodes
of this hypergraph. The reason that not all k− �N1� nodes
must be chosen is that we removed all nonminimal edges,
and therefore there are nodes that may be chosen that do
not appear in the hypergraph.
Figure 1 shows an example of a free-node hypergraph

with k = 10 and �N1� = 6, and therefore we are left with
four models from which to choose. In that drawing, edges
with two nodes are drawn as edges of a graph.
The free-node hypergraph will be used to reduce the size

of the problem in several ways. It is also crucial in driving
a branch-and-bound or branch-and-cut algorithm.

2. Our Lagrangean Relaxation Algorithm
Let us relax in a Lagrangean way the Equations (1.2),
which are those that make the problem difficult, as we
will see. Let ui represent the multiplier associated with
Equations (1.2) corresponding to i.

Figure 1. Example of a free node hypergraph.
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For notational convenience, we will assume that a mul-
tiplier ui exists for i ∈N\N� (i.e., such that di = 0), which
can only take the value 0.
The objective function becomes:

minimize
∑
j∈N

∑
i�j

cjdixij +
∑
i∈N�

ui

(
1−∑

j
i
xij

)
�

Rearranging the terms in that objective function we get:

minimize
∑
i∈N�

ui +
∑
j∈N

∑
i�j
�cjdi − ui�xij �

Let us consider a more restricted problem, which in fact
will be the one we will need. Let N1, N0, A1, and A0 be as
defined earlier.
The Lagrangean relaxation we have to solve, then, is the

following:

minimize
∑
i∈N�

ui +
∑
j∈N

∑
i�j
�cjdi − ui�xij (2.1)

such that∑
i∈N

xii = k (2.2)

xij � xjj ∀ i� j ∈N� i≺ j (2.3)

xij � 0 ∀ i� j ∈N� i≺ j (2.4)

xjj ∈ �0�1� ∀ j ∈N (2.5)

xjj = 0 ∀ j ∈N0 (2.6)

xjj = 1 ∀ j ∈N1 (2.7)

xij = 0 ∀ �i� j� ∈A0 (2.8)

xij = 1 ∀ �i� j� ∈A1 (2.9)

For all j ∈ N and i � j , we will call �ij�u�= dicj − ui
the reduced cost of variable xij (which is the reduced cost
of arc �i� j�, if i �= j , referring to the arc of the underlying
graph).
Given values ūi to the multipliers ui for i ∈N�, we now

solve the previous Lagrangean relaxation.
Let

Sj�ū�= �jj�ū�+
∑

i≺j� �i�j��A0∪A1

min�0� �ij �ū��

+ ∑
i≺j� �i�j�∈A1

�ij�ū��
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and let K�ū� be the set N1 completed by k− �N1� models
j ∈N\�N0 ∪N1� having the smallest values S��ū�, i.e.,

K�ū�=N1 ∪ argmin
j�N1∪N0

k−�N1�Sj�ū��

then

L�ū�= ∑
j∈N�

ūj +
∑

j∈K�ū�
Sj�ū��

In the computation of Sj�ū� only the incoming arcs that
are forced (in A1), or those with a negative reduced cost
and acceptable (not in A0), contribute to Sj�ū�.
The associated optimal solution x̄ of the Lagrangean

relaxation is defined by setting x̄jj = 1 for j ∈K�ū�, x̄jj = 0
otherwise, and x̄ij = 1 if and only if �i� j� ∈A1, or j ∈K�ū�
and i≺ j , �i� j��A0 with �ij�ū� < 0.
Note that the solution x̄ is always integral. Therefore,

the maximum value over all possible multipliers of (2.1)
subject to Constraints (2.2)–(2.9) theoretically cannot be
a better lower bound than the one we would obtain solv-
ing the linear relaxation (see Geoffrion 1974). However,
because variable fixing changes the space we deal with, we
will see that we will very often do better than the LP bound
associated with the original choice ILP (1.1)–(1.6).
We use the following algorithm to solve the Lagrangean

relaxation (2.1)–(2.9); i.e., to maximize the bound L�ū� and
simultaneously reduce the problem as much as possible.
Step 0. Initialize the multipliers and the sets N0, N1, A0,

and A1.
Step 1. Repeat the following steps until a stopping cri-

terion is reached:
(a) Solve the Lagrangean relaxation to obtain x̄ and

L�ū�. Eventually, update the global lower bound GLB.
(b) Perform problem reduction. If the reduction

changes the primal solution x̄, go back to (a).
(c) Perform a primal bounding. Eventually update the

global upper bound GUB.
(d) Change the multipliers.

In the remainder of this article, we develop the individual
parts of this algorithm. We develop the problem reduction
in §3. It aims at increasing as much as possible the sets
N0, N1, A0, and A1. The primal bounding will be developed
in §3.6 and aims at finding better feasible solutions, that
is, at reducing GUB. The better GUB, the better some of the
variable fixings are.
The stopping criterion is either that L�ū� rounded up

equals GUB or a maximum number of iterations has been
reached.
The change of multipliers is done by classical subgra-

dient optimization and will not be developed here (see
Beasley 1993b). We have also tested the bundle method
of Lemaréchal (see Lemaréchal and Sagastizábal 1997,
Hiriart-Urruty and Lemaréchal 1993). The results with this
method can be found in Briant (2000).

3. Problem Reduction or Variable Fixing

3.1. Node and Arc Fixing

A variable xij for i� j can be fixed to the value  ∈ �0�1�,
if by doing so one does not lose all optimal solutions. Most
of the time, in this paper, the variables will be fixed to
 ∈ �0�1� if all optimal solutions have the variable at that
value. The sets N1, N0, A1, and A0 correspond, respectively,
to the set of variables xjj fixed to 1 and 0, and the set of
variables xij for i ≺ j fixed to 1 and 0. Note that fixing
a variable xjj to 0 does not eliminate the corresponding
model from the problem because it has to be replaced by
another model.
The variable fixings are of two types. The ones that we

call fixing by logical implications are consequences of for-
mer fixings; these generally make use of the fact that ci < cj
when i ≺ j . These create a snowball effect in problem
reduction and have to be applied recursively. Also, as will
become clear very soon, in order for these to be efficient,
node fixing must precede arc fixing in these procedures.
The other variable fixings that we call fixing by reduced
costs exploit the current Lagrangean relaxation.

3.2. Fixing by Logical Implications

We first give a list of basic fixings by logical implications.
For all i ∈ N , let  +�i�= ��i� j� ∈ A�=  +1 �i�∪  +0 �i�∪

 +nf �i� be the set of arcs going out of i, partitioned into
the sets of the outgoing arcs fixed to 1, fixed to 0, and not
fixed, respectively. We also define  −�i� = ��j� i� ∈ A� =
 −0 �i�∪  −1 �i�∪  −nf �i� as the partition of the incoming arcs
to i.

FLI 1: If ∃ i ∈N0,
Then A0 ←A0 ∪  −nf �i�

FLI 2: If ∃ i ∈N1,
Then A0 ←A0 ∪  +nf �i�

FLI 3: If ∃ �i� j� ∈A1,
Then

(a) N1 ←N1 ∪ �j�
(b) N0 ←N0 ∪ �i�
(c) A0 ←A0 ∪  +nf �i�
(d) N0 ←N0 ∪ �t � i� ct < cj�

FLI 4: If ∃ i �N1�  
+�i�⊆A0,

Then N1 ←N1 ∪ �i�

FLI 5: If ∃ i ∈N0� ∃ j � i�  +nf �i�= ��i� j��∧  +1 �i�=�
Then A1 ←A1 ∪ ��i� j��

FLI 6: If ∃ i �N1�∃ j � i� �i� j� ∈  +nf �i�∧ j ∈N1

Then A0 ←A0 ∪ ��i� t� ∈  +nf �i�� ct > cj�

Theorem 3.1. The variable fixings FLI 1 to FLI 6 are
legal.

Proof. All these fixings are easily understood. We explain
the least trivial one only, that is, FLI 3 (d). If an optimal
solution, with j chosen, contained as chosen a model t such
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that t � i and ct < cj , then i would be replaced by t and
not by j , which contradicts the fact that �i� j� is in A1. �

Remark 3.2. Generally, there are several maximal models
with nonzero demands. By rule FLI 6, the problem can be
reduced from the very beginning by generating only one
arc from any node to those maximal ones—namely, the arc
going to the cheapest one. In case of ties, it is not important
which one is kept.
There are a few less basic fixings by logical implications:

FLI 7: If ∃ i �N1� � +nf �i��> �N � − k

Then A0 ←A0 ∪A′

where A′ =  +nf �i�\argmin
j∈ +nf �i�

�N �−kcj

FLI 8: If i≺ j ≺ #

(a) If �i� #� ∈A1

Then A1 ←A1 ∪ ��j� #��
(b) If �j� #� ∈A0

Then A0 ←A0 ∪ ��i� #��

FLI 9: If ∃ i ∈N0� ∃ j� � i� ��i� j� ∈A� cj < cj��⊆  +0 �i�
Then N0 ←N0 ∪ �j � i� cj < cj��

FLI 10: If ∃ i ∈N0�∃ j� � i� ��i� j� ∈A� cj < cj��
⊆  +0 �i�∧ j� ∈N1

Then A1 ←A1 ∪ ��i� j���

Theorem 3.3. The variable fixings FLI 7 to FLI 10 are
legal.

Proof. The reason for FLI 7 is that if i was replaced by
one of the � +nf �i�� − �N � + k most expensive successors,
then by the basic variable fixings FLI 3 (b) and FLI 3 (d),
i and the �N � − k cheaper nodes j � i would be fixed to
0, and there would be less than k left. FLI 8 is less obvi-
ous. If i is replaced by #, then j , which is more expensive,
also should be. If not, j would be replaced by something
cheaper than #, and by transitivity, then so should i be since
it is possible. The two last fixings deal with the replace-
ment of a model i, we know is not chosen in any optimal
solution. The arcs to all the cheapest replacements are fixed
to 0, i.e., those cheaper than j�. If any one of these models
appears in an optimal solution, this would contradict the
fixing of the arc �i� j� to 0 therefore these models appear in
no optimal solution. Then if the cheapest possible replace-
ment of i is fixed to 1, we can fix to 1 the arc joining i
to it. Note that if there are other models of the same cost,
there may be other optimal solutions in which i is replaced
by another model. This is an exception to the fact that we
fix only if all optimal solutions have the variable at the
corresponding value. �

3.3. Fixing by Reduced Costs

Fixing by reduced costs consists of setting a not-yet-fixed
variable xij to the value  ∈ �0�1�, and of computing the
optimal value L�ū��xij= of the Lagrangean relaxation sub-
ject to the additional restriction xij =  . If L�ū��xij= >
GUB, which means that there is no optimal solution of our

problem having xij equal to  , then we can fix xij to the
opposite value 1−  .
Variable fixing in relation to Lagrangean relaxation can

be found in Mulvey and Crowder (1979) and Beasley
(1993a).
Given j ∈N and i� j , denote further by

L�ū��ij �= L�ū��xij=1 and L�ū��¬ ij �= L�ū��xij=0
the value of the Lagrangean relaxation subject to the addi-
tional restriction that i is replaced by j (or i is produced if
j = i), and that i is not replaced by j (or i is not produced
if j = i), respectively.
Let S↑1�ū� = max�Sj�ū�� x̄jj = 1 and j � N1�, and

S↓0�ū� = min�Sj�ū�� x̄jj = 0 and j � N0�. In other words,
S↑1�ū� is the largest value of a Sj�ū� for a j that appears in
the current Lagrangean solution and that is not fixed to 1,
and S↓0�ū� is the smallest value of a Sj�ū� for a j that does
not appear in the current Lagrangean solution and that is
not fixed to 0.
The different fixings will be split into three groups that

represent the amount of computational effort required to
recompute the value of L�ū�, subject to some fixing. The
first ones require only the computation of simple formulas;
the last one is quite complex. One first performs the opera-
tions of the first group; when none succeed we go to those
of the second group and to the most complex ones after
that and, at the end, finish with variable probing, which is
the extreme case.

Basic Variable Fixings.
FRC 1: If ∃ i �N1� x̄ii = 1∧L�ū��¬ ii >GUB

with L�ū��¬ ii = L�ū�− Si�ū�+ S↓0�ū�
Then N1 ←N1 ∪ �i�

FRC 2: If ∃ i �N0� x̄ii = 0∧L�ū��ii >GUB
with L�ū��ii = L�ū�+ Si�ū�− S↑1�ū�
Then N0 ←N0 ∪ �i�

FRC 3: If ∃ j ∈N1�∃ �i� j��A1� x̄ij = 1∧L�ū��¬ ij > GUB
with L�ū��¬ ij = L�ū�−�ij�ū�
Then A1 ←A1 ∪ ��i� j��

FRC 4: If ∃ �i� j��A0� x̄jj = 1∧ x̄ij = 0∧L�ū��ij > GUB
with L�ū��ij = L�ū�+�ij�ū�
Then A0 ←A0 ∪ ��i� j��

Advanced Variable Fixings.
FRC 5: If ∃ �i� j��A0� x̄jj = 0∧�ij�ū� > 0

∧L�ū��jj� ij >GUB
with L�ū��jj� ij = L�ū�+ Sj�ū�+�ij�ū�− S↑1�ū�
Then A0 ←A0 ∪ ��i� j��

FRC 6: If ∃ i �N0� x̄ii = 1
∧∑

j�i x̄ij � 1
∧∧

j�i� x̄ij=1∧ j�N1
Sj�ū�−�ij�ū� < S↓0�ū�

∧L�ū��ii�¬ ij ∀ j�i > GUB
with L�ū��ii�¬ ij ∀ j�i

= L�ū�−∑
��ij�ū�� x̄ij = 1� j � i�

Then N0 ←N0 ∪ �i�
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The following advanced fixing may represent the max-
imum level of complexity that one can accept for an
advanced fixing, and beyond which it is preferable to use
the fixing by probing exposed in the next section.
FRC 7: If ∃ i ∈N0 ∃ �i� j��A1� x̄� 

+�i��= x̄ij = 1
∧ min

t�i�t �=j��i�t��A0

L�ū��it� tt�¬ ij > GUB

Then A1 ←A1 ∪ ��i� j�� and N1 ←N1 ∪ �j�
if not yet j ∈N1.

Given L�ū�, the computation of the value L�ū��it� tt�¬ ij

involves only changes of the quantities Sj�ū� and St�ū�,
which can be implemented in terms of simple formulas,
namely:

Sj�ū��¬ ij = Sj�ū�−�ij�ū�

L�ū��¬ ij =
{
L�ū�−�ij�ū� if Sj�ū��¬ij�S↓0�ū� or j ∈N1

L�ū�−Sj�ū�+S↓0�ū� otherwise

S↑1�ū��¬ ij =




S↑1�ū� if Sj�ū��¬ ij � S↑1�ū� or j ∈N1

Sj�ū��¬ ij if S↑1�ū� < Sj�ū��¬ ij � S↓0�ū�
and j �N1

S↓0�ū� if S↓0�ū� < Sj�ū��¬ ij and j �N1

and for all t � i, �i� t� � A0, because St�ū��¬ ij = St�ū�, we
have

L�ū��tt�¬ ij =
{
L�ū��¬ ij if St�ū�� S↑1�ū��¬ ij or t ∈N1

L�ū��¬ ij + St�ū�− S↑1�ū��¬ ij otherwise�

and finally L�ū��it� tt�¬ ij = L�ū��tt�¬ ij +max�0� �it�ū��.

Theorem 3.4. All variable fixings FRC 1–FRC 7 are legal.

Proof.
FRC 1: If x̄ii = 1, consider the new problem with

xii = 0. The optimal solution to the Lagrangean consists of
those models already chosen, except i, which is replaced
by the model j�, not fixed to 0 with Sj��ū� = S↓0�ū�.
The Lagrangean value of this solution is L�ū� − Si�ū� +
S↓0�ū�. If this value is higher than GUB, the value of the
best-known feasible solution, there is no optimal solution
of “Choice ILP” that does not contain model i; therefore,
we can fix xii = 1.
FRC 2: If x̄ii = 0, the argument is the same as in the

previous case except that i must be chosen, so it replaces
the worst of the chosen ones that are not fixed in the solu-
tion, say j�, with Sj��ū� = S↑1�ū�. The Lagrangean value
of this solution is L�ū�+ Si�ū�− S↑1�ū�. If this value is
greater than GUB there is no optimal solution of “Choice
ILP” that contains model i; therefore, we can fix xii = 0.
FRC 3: If j ∈N1 and x̄ij = 1, consider the new problem

with xij = 0. The value of Sj�ū� in the new Lagrangean
relaxation has increased to Sj�ū�−�ij�ū�, but since j ∈N1,
the chosen models in the Lagrangean relaxation remain
the same and the value of that relaxation is increased by
−�ij�ū�. If this increase brings the value over the value of

the best-known feasible solution, there is no optimal solu-
tion of “Choice ILP” that has xij = 0, and therefore we can
fix xij = 1. Note that we could have j � N1, x̄ij = 1, and
Sj�ū�−�ij�ū� < S↓0�ū�, and the argument would work; but
then if we could fix xij = 1, we could have fixed before
xjj = 1 and, as already stated, node fixing is always done
before arc fixing.
FRC 4: If x̄jj = 1 and x̄ij = 0, the argument is the same

as in the previous case except that one must replace −�ij�ū�
by +�ij�ū� everywhere and, of course, invert the roles of
xij = 0 and xij = 1.
FRC 5: Let �i� j� � A0 with x̄ij = 0 and �ij�ū� > 0. The

case where x̄jj = 1 has been already treated; therefore, we
need only consider the case x̄jj = 0. If an optimal solution
has xij = 1, then it should have xjj = 1, so model j enters
the solution and one must leave it. Therefore, if L�ū� +
Sj�ū�+�ij�ū�− S↑1�ū� > GUB, then we can fix xij = 0.
Notice that we do not have to treat the case �ij�ū�� 0,

because in this case, the value �ij�ū� is already a part of
Sj�ū�, and if L�ū�+Sj�ū�−S↑1�ū� > GUB, we could fix xjj
to 0 by FRC1, and xij to 0 by FLI 1.
FRC 6: If x̄ii = 1, i � N1, and

∑
j�i x̄ij � 1, there are

arcs of value 1 “leaving” i in the Lagrangean solution. Let
us assume i is in an optimal solution, then xij = 0 for all
arcs leaving i. Generally, this will change the Lagrangean
solution. It does not if for all j � i with x̄ij = 1, either
j ∈ N1 or Sj�ū� − �ij�ū� < S↓0�ū�. Therefore, if L�ū� −∑
��ij�ū�� x̄ij = 1� j � i� > GUB, we can fix xii to 0. Note

that in this case xii is fixed to the opposite value that it has
in the current Lagrangean solution.
FRC 7: Let i ∈ N0, x̄ij = 1, �i� j� � A1, x̄it = 0 for all

t �= j . Let us look at all solutions in which xij = 0. Since
i ∈N0, i must be replaced by another model. We first look
at what happens to j . If j ∈ N1, the model remains in the
Lagrangean optimal solution, if not, and Sj�ū�− �ij�ū� >
S↓0�ū�, it will have to leave, else if Sj�ū�−�ij�ū� > S↑1�ū�,
it becomes the new value of S↑1�ū�. We now compute the
best replacement for model i. For this we look at all t � i,
t �= j , �i� t� � A0 and compute the value of the solution
when t replaces i. This is easily done. If x̄tt = 1, then the
value is L�ū�+�it�ū�−�ij�ū� if j need not go out, else it
is L�ū�+ �it�ū�− Sj�ū�+ S↓0�ū�. If x̄tt = 0, then t must
be chosen. If j must leave because Sj�ū�−�ij�ū� > S↑1�ū�,
the solution value becomes: L�ū� − Sj�ū� + St�ū� +
max�0� �it�ū��. If j does not leave, the new solution value
is L�ū� − S↑1�ū� + St�ū� + max�0� �it�ū�� − �ij�ū�. The
max�0� �it�ū�� accounts for the fact that �it�ū� already con-
tributes to St�ū� if it is negative. If the minimum over all t
of all these values is greater than GUB, we can fix xij = 1,
and if not already done, xjj = 1. �

3.3.1. Variable Fixing via Variable Probing. Once
we have managed to fix a high percentage of the variables,
instead of designing more and more complex variable-
fixing rules, we turn to the following fixing by variable
probing.
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As seen in §3.2, variable fixing has a snowball effect;
one fixing implies many others. To obtain the set of all
implied fixings, one must recursively use the fixings by
logical implication. It is not rare to see up to 10 recur-
sive calls. Let FLI(ij) and FLI�¬ ij� be the set of variable
fixings implied, respectively, by fixing xij = 1 and xij = 0.

FP 1: If ∃ i �N1� L�ū��¬ ii� FLI�¬ ii� >GUB
Then N1 ←N1 ∪ �i�

FP 2: If ∃ i �N0� L�ū��ii� FLI�ii� >GUB
Then N0 ←N0 ∪ �i�

FP 3: If ∃ �i� j��A1� L�ū��¬ ij� FLI�¬ ij� >GUB
Then A1 ←A1 ∪ ��i� j��

FP 4: If ∃ �i� j��A1� L�ū��ij� FLI�ij� >GUB
Then A0 ←A0 ∪ ��i� j��

This brutal fixing may seem time consuming, but pays
off for very many instances. We have been able to prove
optimality for many instances for which it was not the case
without this strategy.

3.4. Variable Fixing in Relation to the Free-Node
Hypergraph

The free-node hypergraph was defined in §1.4.

3.4.1. Variable Fixing While Building the Free-Node
Hypergraph. When building the free-node hypergraph,
we delete edges containing other edges. Before doing so,
one may fix some variables:

FH 1: If ∃Ei ⊂Ej� t ∈Ej\Ei� i≺ j ∨ i≺ t ∨ ∧
#∈Ei

ct � c#

Then A0 ←A0 ∪ ��j� t��

Theorem 3.5. Variable fixing FH 1 is legal.

Proof. If i ≺ j , we know that i � Ei so i ∈ N0, and there
exists # ∈ Ei such that xi�# = 1 in an optimal solution, but
we know by FLI 8 (a) that we then have xj�# = 1, and
therefore xj�t = 0 for all t ∈ Ej\Ei. If i≺ t, necessarily xi�t
has been fixed to 0, else t would be in Ei. Let # be as just
defined, if j is to be replaced by t, then ct � c#, but then it
contradicts the fixing of xi�t to 0. The last one is obvious;
since t is more expensive than anyone in Ei, it will never
be used to replace j because we have to choose an element
in Ei that can do the job. �

Figure 2 shows an example in which the two nodes i and
j are not in the corresponding edges, which means that they
both belong to N0. Also, all the arcs �i� t� with t ∈ Ej\Ei

belong necessarily to A0.
Note that when the first case is true, then so is the sec-

ond, but if we detect the first case, we can go on and do the
fixing for all t ∈Ej\Ei. Also note that if i≺ j , then i �Ei.

3.4.2. Variable Fixing Using the Free-Node Hyper-
graph. Let us go back to the example of Figure 1.
Assuming that 33 is not in the optimal solution, we must
then find a transversal of cardinality of at most 4 in the
hypergraph of Figure 3, which is clearly impossible since

Figure 2. Example for fixing in the free-node hyper-
graph.

i j

t

Ei Ej

we have a matching (set of disjoint edges) of cardinality 5.
Therefore, we can set N1 =N1+ �33�; that is, fix 33 in the
solution.
Let us formalize this fixing. Let � �ij and � �¬ ij be the

free-node hypergraphs obtained by setting xij , respectively,
to 1 and 0. Let '��� represent the minimum cardinality of
a transversal of a hypergraph � .

FH 2: If ∃ i �N1� '�� �¬ ii� > k− �N1�
Then N1 ←N1 ∪ �i�

FH 3: If ∃ i �N0� '�� �ii� > k− �N1�
Then N0 ←N0 ∪ �i�

FH 4: If ∃ �i� j��A1� '�� �¬ ij � > k− �N1�
Then A1 ←A1 ∪ ��i� j��

FH 5: If ∃ �i� j��A0� '�� �ij � > k− �N1�
Then A0 ←A0 ∪ ��i� j��

Theorem 3.6. The variable fixings FH 2 to FH 5 are legal.

Proof. The minimum cardinality of a transversal of these
hypergraphs is the minimum number of variables xii, i �N1,
that we have to fix to 1 to obtain a feasible solution. �

Note that to find the value ' is itself NP-hard. We used
a heuristic to find a matching (set of disjoint edges) of
maximum cardinality, and use the fact that the cardinality
of any matching is a lower bound on '.

3.4.3. Reducing the Size of the Problem Without Fix-
ing. In this section, we try to reduce the number of vari-
ables even if we were not able to fix them.

Figure 3. The free-node hypergraph of Figure 1 with
x33�33 = 0.
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Figure 4. Node and arc agglomeration.

r
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i j
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Ei*

di +dj i

Let i �= j be such that Ei = Ej . At most one, say i, can
belong to Ei = Ej (else we would have i ≺ j and j ≺ i);
therefore j is fixed to 0 (j ∈ N0). Figure 4 is drawn with
both i and j fixed to 0. Since, in an optimal solution a
model r ∈ Ei will replace i (r may be i if i is not fixed
to 0), there exists an optimal solution in which this model
r will replace j . We can identify i and j to a single node
that we will call i�, and set di� = di +dj and ui� = ui + uj .
If i is not fixed to 0, we let ci� = ci, and i� is not fixed. If
both i and j are fixed to 0, then so is i�.
The value Sr�ū� for all r ∈ Ei may increase because

min�0� cr �di + dj� − �ui + uj�� � min�0� crdi − ui� +
min�0� crdj − uj� if r �= i, and because crdj − uj �

min�0� crdj − uj� if r = i. In this case, we have to recom-
pute the optimal solution of the Lagrangean relaxation.
In their work on the p-median problem, Avella et al.

(2003) report that in their code also this is a very successful
case of problem reduction for our type of problems.

3.4.4. Further Use of the Free-Node Hypergraph.
The free-node hypergraph can also be used in selecting
a branching variable in a branch-and-cut or branch-and-
bound procedure. We have successfully tested the following
branching scheme:
Choose an element of the current best-known solution

that belongs to the smallest cardinality edge. In the case
of ties, choose the one that belongs to the largest number
of edges; if ties remain, choose the one such that the total
number of nodes of these edges is the smallest. For more
details, see Briant (2000).

3.5. Influence of Variable Fixing on
the Lower Bound

As mentioned earlier, since our relaxation meets the inte-
grality condition we cannot hope to get a better lower
bound than that given by the optimal value of the lin-
ear relaxation of our integer program by using basic
Lagrangean relaxation. This is no longer true when variable
fixing is performed. We show this in a small instance of
535 models for which the linear relaxation is easily solved.
We report for k= 8 to k= 15 the value of the linear relax-
ation and of the bound we obtain by Lagrangean relaxation

with variable fixing; the last column reports the difference.
In the two cases in which the difference is 0, the linear
bound is the value of the integer optimum. The reported
values are those of the overcosts, that is, total cost minus
cost of the maximum diversity.

Linear Lagrangean
k relax bound Difference

8 148�952�746 148�958�420 5�674
9 130�874�135 131�355�909 481�774
10 117�778�654 118�260�428 481�774
11 106�844�683 106�844�683 0
12 99�544�965 99�544�965 0
13 92�979�799 93�251�020 271�221
14 87�217�013 87�304�002 86�989
15 82�326�415 82�429�734 103�319

3.6. Upper Bounding Heuristic

Fixing by reduced cost is very dependent on the best value
of a known feasible solution. Therefore, some effort is car-
ried out in that direction.

3.6.1. Initial Upper Bound. Before starting to solve
the problem, one first gets an upper bound by a greedy
heuristic. That is, first choose all maximal models with
positive demands (it happens that maximal models have a
demand of 0). From there on, iteratively choose the model
which added to the previously chosen ones decreases the
cost the most until the right number is reached. This can
be followed by a 2-OPT procedure that consists of trying
to exchange any removable model in the solution with an
addable one not in the solution, and effectively performing
the exchange if it improves the solution. This is done until
no improving exchange is found. By removable we mean,
at this point, not maximal with nonzero demand; later on,
not in N1, by addable we mean one not in N0.

3.6.2. Subsequent Upper Bounding. During the solu-
tion process, we try to use information coming from
the Lagrangean relaxation solutions to get a better upper
bound.
We start with the solution of the k models that have been

most frequently present in the solutions that have improved
the global lower bound, and then use a 2-OPT procedure on
it.
Using the k models in the solution of the current

Lagrangean relaxation and improving it by a 2-OPT proce-
dure gives, in general, results that are not as good.
The 2-OPT procedure used in the upper bounding

becomes the bottleneck when the size of the problem
increases. We have implemented a fast restricted 2-OPT
procedure that makes use of the S��ū� values. In that pro-
cedure, the m elements of the current solutions not in N1

with the largest value of S��ū� are considered as removable,
the p elements not in the current solutions not in N0 with
the smallest value of S��ū� as addable. We use m= p= 50.
This procedure is very time efficient and gives good results.
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Table 1. Instance with 535 nodes and 21,003 arcs.

Variable fixing Bounds

k Nodes Arcs Not fixed Lower Upper Guarantee Time

5 535 21�003 0 233�812�088 233�812�088 optimal 2�9
6 535 21�003 0 196�994�120 196�994�120 optimal 3�4
7 535 21�003 0 167�558�413 167�558�413 optimal 3�5
8 535 21�003 0 148�958�420 148�958�420 optimal 5�2
9 535 21�003 0 131�355�909 131�355�909 optimal 5�1
10 535 21�003 0 118�260�428 118�260�428 optimal 6�5
11 535 21�003 0 106�844�683 106�844�683 optimal 5�4
12 535 21�003 0 99�544�965 99�544�965 optimal 5�8
13 535 21�003 0 93�251�020 93�251�020 optimal 11�9
14 535 21�003 0 87�304�002 87�304�002 optimal 10�3
15 494 20�473 571 82�429�734 82�645�076 0.260% 24�2
16 461 19�655 1�422 78�019�486 78�451�890 0.551% 39�7
17 505 20�591 442 74�077�990 74�257�796 0.242% 26�2
18 535 21�003 0 70�487�622 70�487�622 optimal 27�1
19 535 21�003 0 66�758�372 66�758�372 optimal 17�0
20 535 21�003 0 63�370�554 63�370�554 optimal 25�6

4. Computational Results
The following three tables give the results of our
Lagrangean algorithm for three real-world instances. These
instances all come from the automobile industry. These
instances have, respectively, 535 nodes and 21,003 arcs
(Table 1); 1,284 nodes and 88,542 arcs (Table 2); 5,535
nodes and 666,639 arcs (Table 3). The three first columns
contain the results on the variable fixing. The next columns
indicate the lower and upper bounds of the overcost, the
guarantee on the quality of these bounds, and the execu-
tion CPU time in seconds. These tests were executed on a
UltraSparc-II, 295 MHz, 512 Mb. The program is written
in C++, compiled with gcc-2.95.1, option -O3.
Let CMD=∑

j∈V cjdj represent cost of maximal diversity,
that is, the cost of the solution that consists of producing all
the models. This cost represents a very significant share of

Table 2. Instance with 1,284 nodes and 88,542 arcs.

Variable fixing Bounds

k Nodes Arcs Not fixed Lower Upper Guarantee Time

5 1�284 88�542 0 2�598�461�620 2�598�461�620 optimal 28�7
6 1�284 88�542 0 2�270�141�628 2�270�141�628 optimal 50�9
7 1�284 88�542 0 1�956�636�740 1�956�636�740 optimal 150�9
8 1�284 88�542 0 1�667�587�616 1�667�587�616 optimal 30�7
9 1�284 88�542 0 1�496�819�524 1�496�819�524 optimal 39�2
10 1�284 88�542 0 1�362�417�844 1�362�417�844 optimal 77�6
11 1�191 84�078 4�557 1�234�343�666 1�245�001�468 0.856% 306�4
12 1�194 84�451 4�181 1�112�242�267 1�123�423�904 0.995% 301�2
13 1�206 85�255 3�365 1�006�237�066 1�015�984�652 0.959% 168�9
14 1�284 88�542 0 922�044�732 922�044�732 optimal 83�8
15 1�284 88�542 0 853�729�860 853�729�860 optimal 113�7
16 1�284 88�542 0 795�580�108 795�580�108 optimal 95�7
17 1�284 88�542 0 741�200�748 741�200�748 optimal 75�8
18 1�284 88�542 0 700�132�088 700�132�088 optimal 87�6
19 1�284 88�542 0 662�151�404 662�151�404 optimal 92�6
20 1�284 88�542 0 624�674�820 624�674�820 optimal 75�4

the value of GUB. The overcost is GUB− CMD. To be honest,
we compute the guarantee relative to the overcost; i.e.:

guarantee= GUB− GLB

GUB− CMD
�

For these three instances, the percentage of fixed vari-
ables is always higher than 90%, and for many values of k,
it is even 100%; i.e., all the variables were fixed, and we
have the proof that the feasible solution provided by our
primal heuristic is optimal.
For the other values of k, the guarantee on the value

of the solution remains excellent: always lower than 1%.
Moreover, the number of variables at the end of this algo-
rithm is very reduced: This number is approximately a few
thousand for the first two instances, and roughly a few tens
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Table 3. Instance with 5,535 nodes and 666,639 arcs.

Variable fixing Bounds

k Nodes Arcs Not fixed Lower Upper Guarantee Time

5 5�535 666�639 0 5�141�129�908 5�141�129�908 optimal 421�8
6 5�535 666�639 0 4�123�104�419 4�123�104�419 optimal 538�7
7 5�535 666�639 0 3�523�219�454 3�523�219�454 optimal 499�5
8 5�535 666�639 0 3�256�206�050 3�256�206�050 optimal 872�4
9 5�535 666�639 0 3�004�095�791 3�004�095�791 optimal 1536�0
10 5�535 666�639 0 2�787�108�865 2�787�108�865 optimal 1226�7
11 5�535 666�639 0 2�612�835�889 2�612�835�889 optimal 686�7
12 5�535 666�639 0 2�463�416�667 2�463�416�667 optimal 626�0
13 5�535 666�639 0 2�349�025�789 2�349�025�789 optimal 1093�2
14 5�437 654�444 12�293 2�245�675�976 2�252�318�645 0.295% 3987�2
15 5�444 656�458 10�272 2�153�203�940 2�159�782�405 0.305% 3491�1
16 5�316 634�972 31�886 2�064�761�593 2�076�980�195 0.588% 3357�4
17 5�433 654�132 12�609 1�984�165�324 1�989�980�398 0.292% 3401�7
18 5�535 666�639 0 1�908�162�840 1�908�162�840 optimal 4203�8
19 5�371 645�472 21�331 1�826�739�733 1�834�549�757 0.426% 8214�2
20 5�272 631�104 35�798 1�757�906�432 1�768�209�494 0.583% 6608�1

of thousands for the last one. Taking into account the reduc-
tion in size of the problem, we can now use an MIP solver
to compute the optimal solution of the problem. We will
discuss this shortly.
For instances of average sizes, such as Inst535 or

Inst1284, the execution times are relatively small, from a
few minutes down, sometimes, to a few seconds. However,
for instances of large size, such as Inst5535, they range
from a few minutes to several hours.
In Table 4, we present the results obtained for Inst5535

with the MIP solver CPLEX 6.0 for the values of k for
which the Lagrangean algorithm failed to prove the opti-
mality of the solution. This is now possible due to the
drastic decrease in size of the problem in the Lagrangean
relaxation phase. We enter at once all the nonfixed vari-
ables and therefore the corresponding variable upper-bound
constraints. We present in Table 4 the results obtained,
after this reduction, with CPLEX 6.0. The times have to
be added to the time spent in the Lagrangean relaxation.
In this table we indicate, for each instance, the values of

Table 4. Results with CPLEX after the
Lagrangean reduction.

Instance k # Nodes Time

Inst535 15 19 0�33
16 16 5�49
17 6 0�16

Inst1284 11 24 29�06
12 10 17�79
13 14 13�10

Inst5535 14 7 63�38
15 3 44�65
16 4 383�61
17 3 76�85
19 9 326�96
20 12 1066�48

k for which we did not have the proof of the optimality
of the solution with the Lagrangean algorithm, the num-
ber of nodes in the enumeration tree, and the CPU time
in seconds. In fact, we proved that the value of GUB pro-
vided by the Lagrangean algorithm was always optimal,
except for the Inst5535 instance, with k= 16 for which the
optimal value is 2,072,782,608 instead of 2,076,980,195,
i.e., the solution provided by our primal heuristic in the
Lagrangean relaxation algorithm was 0.2% greater than
the optimal value. Note that because of the initial num-
ber of variables and the behavior of the classical meth-
ods described in the beginning of this paper, these optimal
solutions could not be reached without the preprocessing
via the Lagrangean algorithm, in particular for the instance
Inst5535.
We have also compared our Lagrangean algorithm

against a simple tabu search method. The neighborhood of
a solution is that of a 2-OPT move, that is, any solution dif-
fering from it by the exchange of an element in the solution
with one out of it. We tested two tabu lists, one in which

Table 5. Tabu search results for Inst3773 (see Table 7).

Soln
k Greedy 2-OPT Tabu at it. Time

5 734�420�974 729�300�375 726�954�998 6 4�059
6 692�006�441 691�996�489 686�527�844 130 5�335
7 658�175�749 654�008�413 651�930�471 16 6�518
8 631�457�381 631�457�381 622�367�728 35 7�688
9 600�296�729 596�261�326 596�261�326 0 8�648
10 578�037�314 577�041�916 575�494�627 3 10�036
11 558�446�864 557�555�562 555�660�599 16 11�459
12 541�131�116 538�700�803 538�086�796 23 13�208
13 530�670�614 526�812�352 524�118�173 42 10�662
14 514�496�059 514�496�059 509�226�102 65 11�674
15 499�804�112 496�168�918 495�365�155 173 12�829
16 487�707�804 486�527�197 483�534�414 71 13�686
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Table 6. Tabu search results for Inst5535 (see Table 3).

k Greedy 2-OPT Tabu Soln at it. Time

16 2�226�151�310 2�185�733�408 2�084�896�310 13 21�786
17 2�017�986�650 2�007�827�422 2�003�078�752 3 22�885
18 2�045�843�868 2�006�141�829 1�915�364�871 192 25�229

Table 7. Instance with 3,773 nodes and 349,524 arcs.

Variable fixing Bounds

k Nodes Arcs Not fixed Lower Upper Guarantee (%) Time

5 3�321 201�173 148�803 715�763�565 726�954�998 1.539 2059
6 3�015 160�962 189�320 673�300�416 685�812�258 1.824 2651
7 2�659 135�702 214�936 636�548�725 651�930�471 2.359 3071
8 2�389 110�150 240�758 606�578�332 621�875�275 2.459 3530
9 1�916 68�335 283�046 581�010�042 595�955�799 2.507 4398
10 897 19�422 332�978 559�082�156 574�634�207 2.706 4204
11 401 7�575 345�321 539�800�081 555�210�688 2.775 4250
12 1 3�068 350�228 522�600�933 538�648�580 2.979 4551
13 1 3�749 349�547 507�124�143 522�028�357 2.855 4855
14 1 3�814 349�482 493�041�538 508�365�823 3.014 5168

we forbid a leaving element to come back into the solu-
tion for the next nbtabu1 iterations; in the other we forbid
the reverse 2-OPT move for some time. That is, if i was
removed from the list of produced items and j added to it,
we forbid i to be added and j removed for the next nbtabu2
iterations, with nbtabu2 much larger than nbtabu1. The
first tabu list gave much better results, was much easier to
implement, and was much faster since we did not have to
examine tabu lists to check whether a move is or is not tabu.
This can be done by marking the tabu elements. Aspiration
has been taken into account, but not search diversification
based on recency. It is difficult to catch the consequences
of a 2-OPT move on the other such moves; therefore, at
every iteration, the whole neighborhood has to be searched.
This leads to high computing times.
The following Tables 5 and 6, give the results for

Inst3773 (that will be presented further down; see Table 7)
and for Inst5535 for a few values of k. We give the greedy
value, the value after the 2-OPT procedure on the greedy
solution, the solution of the first implementation of tabu
search together with the iteration at which the best solution
was attained. The number of tabu iterations was limited to
200, since each iteration is costly. All the values are over-
costs. The results of the tabu search are not bad in relative
values, but do not reach the values we obtained by our
algorithm and, because of the large numbers involved, the
difference may amount to a significant amount of money.
The times of the tabu search are very high and increase
very quickly with the number k of items to choose. The
tabu algorithm does not provide us with a guarantee on the
quality of the solution. Note that even in the framework
of local search, one can benefit a lot from a preprocessing
by Lagrangean relaxation, since the information we get can
help. The neighborhood of each solution is considerably

narrowed when we take into account the status of some
variables obtained from the variable fixing. This enables
these heuristics to search in the right direction while con-
siderably decreasing the computing times.
To conclude this part, we present an instance illustrating

the limit of our Lagrangean algorithm. In this instance, we
have 3,773 nodes and 349,524 arcs; i.e., this instance is
much smaller than Inst5535. However, as Table 7 shows,
except for k = 5, we never succeeded in fixing more than
half of the variables of this instance. From k= 12 and up,
the percentage of fixed variables is about 1%, i.e., neg-
ligible. We suppose that these bad results are due to the
presence of several optimal solutions. In fact, the unit costs
of production are not very differentiated here: There are
very many nodes (incomparable but being able to replace
the same one) having identical costs. It is clear that our
method of variable fixing gives good results only if these
costs really are differentiated. Avella et al. (2003) report
better results with this instance.
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