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Abstract A Schnyder wood is an orientation and coloring of the edges of a pla-
nar map satisfying a simple local property. We propose a generalization of Schnyder
woods to graphs embedded on the torus with application to graph drawing. We prove
several properties on this new object. Among all we prove that a graph embedded on
the torus admits such a Schnyder wood if and only if it is an essentially 3-connected
toroidal map. We show that these Schnyder woods can be used to embed the uni-
versal cover of an essentially 3-connected toroidal map on an infinite and periodic
orthogonal surface. Finally we use this embedding to obtain a straight-line flat torus
representation of any toroidal map in a polynomial size grid.

Keywords Schnyder woods · Toroidal graphs · Embedding

1 Introduction

A closed curve on a surface is contractible if it can be continuously transformed into
a single point. Given a graph embedded on the torus, a contractible loop is an edge
forming a contractible cycle. Two homotopic multiple edges are two edges with the
same extremities such that their union forms a contractible cycle. In this paper, we
will almost always consider graphs embedded on the torus with no contractible loop
and no homotopic multiple edges. We call these graphs toroidal graphs for short and
keep the distinction with graph embedded on the torus that may have contractible
loops or homotopic multiple edges. A map on a surface is a graph embedded on this
surface where every face is homeomorphic to an open disk. A map embedded on the
torus is a graph embedded on the torus that is a map (it may contains contractible
loops or homotopic multiple edges). A toroidal map is a toroidal graph that is a map
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Fig. 1 Schnyder property

(it has no contractible loop and no homotopic multiple edges). A toroidal triangu-
lation is a toroidal map where every face has size three. A general graph (i.e., not
embedded on a surface) is simple if it contains no loop and no multiple edges. Since
some loops and multiple edges are allowed in toroidal graphs, the class of toroidal
graphs is larger than the class of simple toroidal graphs.

The torus is represented by a parallelogram in the plane whose opposite sides are
pairwise identified. This representation is called the flat torus. The universal cover
G∞ of a graph G embedded on the torus is the infinite planar graph obtained by
replicating a flat torus representation of G to tile the plane (the tiling is obtained by
translating the flat torus along two vectors corresponding to the sides of the parallel-
ogram). Note that a graph G embedded on the torus has no contractible loop and no
homotopic multiple edges if and only if G∞ is simple.

Given a general graph G, let n be the number of vertices and m the number of
edges. Given a graph embedded on a surface, let f be the number of faces. Euler’s
formula says that any map on a surface of genus g satisfies n − m + f = 2 − 2g,
where the plane is the surface of genus 0, and the torus the surface of genus 1.

Schnyder woods were originally defined for planar triangulations by Schny-
der [26].

Definition 1 (Schnyder wood, Schnyder property) Given a planar triangulation G,
a Schnyder wood is an orientation and coloring of the edges of G with the colors 0,
1, 2 where each inner vertex v satisfies the Schnyder property (see Fig. 1 where each
color is represented by a different type of arrow):

• Vertex v has outdegree one in each color.
• The edges e0(v), e1(v), e2(v) leaving v in colors 0, 1, 2, respectively, occur in

counterclockwise order.
• Each edge entering v in color i enters v in the counterclockwise sector from

ei+1(v) to ei−1(v) (where i + 1 and i − 1 are understood modulo 3).

For higher genus triangulated surfaces, a generalization of Schnyder woods has
been proposed by Castelli Aleardi et al. [3], with applications to encoding. Unfortu-
nately, in this definition, the simplicity and the symmetry of the original Schnyder
wood are lost. Here we propose an alternative generalization of Schnyder woods for
toroidal graphs, with application to graph drawings.

By Euler’s formula, a planar triangulation satisfies m = 3n − 6. Thus, there are
not enough edges in the graph for all vertices to be of outdegree three. This explains
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Fig. 2 Example of a Schnyder wood of a toroidal graph

why just some vertices (inner ones) are required to satisfy the Schnyder property.
For a toroidal triangulation, Euler’s formula gives exactly m = 3n, so there is hope
for a nice object satisfying the Schnyder property for every vertex. This paper shows
that such an object exists. Here we do not restrict ourselves to triangulations and we
directly define Schnyder woods in a more general framework.

Felsner [7, 8] (see also [20]) has generalized Schnyder woods to 3-connected pla-
nar maps by allowing edges to be oriented in one direction or in two opposite direc-
tions. We also allow edges to be oriented in two directions in our definition.

Definition 2 (Toroidal Schnyder wood) Given a toroidal graph G, a (toroidal) Schny-
der wood of G is an orientation and coloring of the edges of G with the colors 0, 1,
2, where every edge e is oriented in one direction or in two opposite directions (each
direction having a distinct color), satisfying the following (see example of Fig. 2):

(T1) Every vertex v satisfies the Schnyder property (see Definition 1)
(T2) Every monochromatic cycle of color i intersects at least one monochromatic

cycle of color i − 1 and at least one monochromatic cycle of color i + 1.

Note that in this definition each vertex has exactly one outgoing arc in each color.
Thus, there are monochromatic cycles and the term “wood” has to be handled with
care here. The graph induced by one color is not necessarily connected, but each
connected component has exactly one directed cycle. We will prove that all the
monochromatic cycles of one color have the same homotopy.

In the case of toroidal triangulations, m = 3n implies that there are too many edges
to have bi-oriented edges. Thus, we can use this general definition of Schnyder wood
for toroidal graphs and keep in mind that when restricted to toroidal triangulations all
edges are oriented in one direction only.
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Fig. 3 Rules for the dual Schnyder wood

Fig. 4 Dual Schnyder wood of the Schnyder wood of Fig. 2

Extending the notion of essentially 2-connectedness [23], we say that a toroidal
graph G is essentially k-connected if its universal cover is k-connected. Note that an
essentially 1-connected toroidal graph is a toroidal map. We prove that essentially
3-connected toroidal maps are characterized by the existence of Schnyder woods.

Theorem 1 A toroidal graph admits a Schnyder wood if and only if it is an essentially
3-connected toroidal map.

The dual of a Schnyder wood is the orientation and coloring of the edges of G∗
obtained by the rules represented on Fig. 3.

Our definition supports duality and we have the following results.

Theorem 2 There is a bijection between Schnyder woods of a toroidal map and
Schnyder woods of its dual.

The dual Schnyder wood of the Schnyder wood of Fig. 2 is represented on Fig. 4.
In our definition of Schnyder woods, two properties are required: a local one (T1)

and a global one (T2). This second property is important for using Schnyder woods
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Fig. 5 Geodesic embedding of the toroidal map of Fig. 2

to embed toroidal graphs on orthogonal surfaces, as has been done in the plane by
Miller [20] (see also [8]).

Theorem 3 The universal cover of an essentially 3-connected toroidal map admits a
geodesic embedding on an infinite and periodic orthogonal surface.

A geodesic embedding of the toroidal map of Fig. 2 is represented on Fig. 5. The
black parallelogram represents a copy of the graph of Fig. 2; this is the basic tile that
is used to fill the plane.

A straight-line flat torus representation of a toroidal map G is the restriction to a
flat torus of a periodic straight-line representation of G∞. The problem of finding a
straight-line flat torus representation of a toroidal map was previously solved on ex-
ponential size grids [21]. There are several works that represent a toroidal map inside
a parallelogram in a polynomial size grid [5, 6], but in these representations the op-
posite sides of the parallelogram do not perfectly match. In the embeddings obtained
by Theorem 3, vertices are not coplanar, but we prove that for toroidal triangulations
one can project the vertices on a plane to obtain a periodic straight-line representation
of G∞. This gives the first straight-line flat torus representation of any toroidal map
in a polynomial size grid.

Theorem 4 A toroidal graph admits a straight-line flat torus representation in a
polynomial size grid.

In Sect. 2, we explain how our definition of Schnyder woods in the torus gen-
eralizes the planar case. In Sect. 3, we show that our Schnyder woods are of two
fundamentally different types. In Sect. 4, we study the behavior of Schnyder woods
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in the universal cover; we define the notion of regions and show that the existence
of Schnyder woods for a toroidal graph implies that the graph is an essentially 3-
connected toroidal map. In Sect. 5, we define the angle labeling and the dual of a
Schnyder wood. In Sect. 6, we show how the definition of Schnyder woods can be
relaxed for one of the two types of Schnyder wood. This relaxation is used in the next
sections for proving the existence of a Schnyder wood. In Sect. 7, we use a result of
Fijavz [13] on the existence of non-homotopic cycles in simple toroidal triangulations
to obtain a short proof of existence of Schnyder woods for simple triangulations. In
Sect. 8, we prove a technical lemma showing how a Schnyder wood of a graph G

can be derived from a Schnyder wood of the graph G′, where G′ is obtained from
G by contracting an edge. This lemma is then used in Sect. 9 to prove the existence
of Schnyder woods for any essentially 3-connected toroidal maps. In Sect. 10, we
use Schnyder woods to embed the universal cover of essentially 3-connected toroidal
maps on periodic and infinite orthogonal surfaces by generalizing the region vec-
tor method defined in the plane. In Sect. 11, we show that the dual map can also
be embedded on this orthogonal surface. In Sect. 12, we show that, in the case of
toroidal triangulations, this orthogonal surface can be projected on a plane to obtain
a straight-line flat torus representation.

2 Generalization of the Planar Case

Felsner [7, 8] has generalized planar Schnyder woods by allowing edges to be ori-
ented in one direction or in two opposite directions. The formal definition is the fol-
lowing:

Definition 3 (Planar Schnyder wood) Given a planar map G, let x0, x1, x2 be three
distinct vertices occurring in counterclockwise order on the outer face of G. The
suspension Gσ is obtained by attaching a half-edge that reaches into the outer face
to each of these special vertices. A (planar) Schnyder wood rooted at x0, x1, x2 is an
orientation and coloring of the edges of Gσ with the colors 0, 1, 2, where every edge
e is oriented in one direction or in two opposite directions (each direction having a
distinct color), satisfying the following (see the example of Fig. 6):

(P1) Every vertex v satisfies the Schnyder property and the half-edge at xi is directed
outwards and colored i

(P2) There is no monochromatic cycle.

In the definition given by Felsner [8], property (P2) is in fact replaced by “There
is no interior face the boundary of which is a monochromatic cycle”, but the two are
equivalent by results of [7, 8].

With our definition of Schnyder woods for toroidal graphs, the goal is to generalize
the definition of Felsner. In the torus, property (P1) can be simplified as every vertex
plays the same role: there are no special outer vertices with a half-edge reaching into
the outer face. This explains property (T1) in our definition. Then if one asks that
every vertex satisfies the Schnyder property, there are necessarily monochromatic
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Fig. 6 Example of a Schnyder wood of a planar map

Fig. 7 An orientation and coloring of the edges of a toroidal triangulation satisfying (T1) but not (T2), as
there is no pair of intersecting monochromatic cycles

cycles and (P2) is not satisfied. This explains why (P2) has been replaced by (T2) in
our generalization to the torus.

It would have been possible to replace (P2) by “there is no contractible monochro-
matic cycles”, but this is not enough to suit our needs. Our goal is to use Schnyder
woods to embed universal covers of toroidal graphs on orthogonal surfaces, as has
been done in the plane by Miller [20] (see also [8]). The difference is that our surface
is infinite and periodic. In such a representation the three colors 0, 1, 2 correspond to
the three directions of the space. Thus, the monochromatic cycles with different col-
ors have to intersect each other in a particular way. This explains why property (T2)
is required. Figure 7 gives an example of an orientation and coloring of the edges of
a toroidal triangulation satisfying (T1) but not (T2), as there is no pair of intersecting
monochromatic cycles.

Let G be a toroidal graph given with a Schnyder wood. Let Gi be the directed
graph induced by the edges of color i. This definition includes edges that are half-
colored i, and in this case, the edges get only the direction corresponding to color i.
Each graph Gi has exactly n edges, so it does not induce a rooted tree (contrarily to
planar Schnyder woods). Note also that Gi is not necessarily connected (for example,
in the graph of Fig. 8, every Schnyder wood has one color whose corresponding
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Fig. 8 A toroidal graph where
every Schnyder wood has one
color whose corresponding
subgraph is not connected

subgraph is not connected). But each component of Gi has exactly one outgoing
arc for each of its vertices. Thus, each connected component of Gi has exactly one
directed cycle that is a monochromatic cycle of color i, or i-cycle for short. Note that
monochromatic cycles can contain edges oriented in two directions with different
colors, but the orientation of an i-cycle is the orientation given by the (half-)edges of
color i. The graph G−1

i is the graph obtained from Gi by reversing all its edges. The
graph Gi ∪ G−1

i−1 ∪ G−1
i+1 is obtained from the graph G by orienting edges in one or

two directions depending on whether this orientation is present in Gi , G−1
i−1, or G−1

i+1.
The following lemma shows that our property (T2) in fact implies that there are no
contractible monochromatic cycles.

Lemma 1 The graph Gi ∪ G−1
i−1 ∪ G−1

i+1 contains no contractible directed cycle.

Proof Suppose there is a contractible directed cycle in Gi ∪ G−1
i−1 ∪ G−1

i+1. Let C be
such a cycle containing the minimum number of faces in the closed disk D bounded
by C. Suppose by symmetry that C turns clockwise around D. Then, by (T1), there
is no edge of color i − 1 leaving the closed disk D. So there is an (i − 1)-cycle in D,
and this cycle is C by minimality of C. Then, by (T1), there is no edge of color i

leaving D. So, again by minimality of C, the cycle C is an i-cycle. Thus, all the
edges of C are oriented clockwise in color i and counterclockwise in color i − 1.
Then, by (T1), all the edges of color i + 1 incident to C have to leave D. Thus, there
is no (i + 1)-cycle intersecting C, a contradiction to property (T2). �

Let G be a planar map and let x0, x1, x2 be three distinct vertices occurring in
counterclockwise order on the outer face of G. One can transform Gσ into the fol-
lowing toroidal map G+ (see Fig. 9): Add a vertex v in the outer face of G. Add three
non-parallel and non-contractible loops on v. Connect the three half-edges leaving xi

to v such that there are no two such edges entering v consecutively. Then we have
the following.

Theorem 5 The Schnyder woods of a planar map G rooted at x0, x1, x2 are in
bijection with the Schnyder woods of the toroidal map G+ (where the orientation of
one of the loops is fixed).

Proof (�⇒) We are given a Schnyder wood of the planar graph G, rooted at x0,
x1, x2. Orient and color the graph G+ as in the example of Fig. 9, i.e., the edges of
the original graph G have the same color and orientation as in Gσ , the edge from
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Fig. 9 The toroidal Schnyder wood corresponding to the planar Schnyder wood of Fig. 6

xi to v is colored i and leaving xi , and the three loops around v are colored and
oriented appropriately so that v satisfies the Schnyder property. Then it is clear that
all the vertices of G+ satisfy (T1). By (P2), we know that Gσ has no monochromatic
cycles. All the edges between G and v are leaving G, so there is no monochromatic
cycle of G+ involving vertices of G. Thus, the only monochromatic cycles of G+ are
the three loops around v and they satisfy (T2).

(⇐�) Given a Schnyder wood of G+, the restriction of the orientation and col-
oring to G and the three edges leaving v gives a Schnyder wood of Gσ . The three
loops around v are three monochromatic cycles corresponding to three edges leav-
ing v; thus, they have different colors by (T1). Thus, the three edges between G and
v are entering v with three different colors. The three loops around v have to leave
v in counterclockwise order 0,1,2 and we can assume the colors such that the edge
leaving xi is colored i. Clearly, all the vertices of Gσ satisfy (P1). By Lemma 1, there
are no contractible monochromatic cycles in G+, so Gσ satisfies (P2). �

A planar map G is internally 3-connected if there exist three vertices on the outer
face such that the graph obtained from G by adding a vertex adjacent to the three
vertices is 3-connected. Miller [20] (see also [7]) proved that a planar map admits a
Schnyder wood if and only if it is internally 3-connected. The following results show
that the notion of essentially 3-connected is the natural generalization of internally
3-connected to the torus.

Theorem 6 A planar map G is internally 3-connected if and only if there exist three
vertices on the outer face of G such that G+ is an essentially 3-connected toroidal
map.
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Proof (�⇒) Let G be an internally 3-connected planar map. By definition, there
exist three vertices x0, x1, x2 on the outer face such that the graph G′ obtained from
G by adding a vertex adjacent to these three vertices is 3-connected. Let G′′ be the
graph obtained from G by adding three vertices y0, y1, y2 that form a triangle and
by adding the three edges xiyi . It is not difficult to check that G′′ is 3-connected.
Since G∞ can be obtained from the (infinite) triangular grid, which is 3-connected,
by gluing copies of G′′ along triangles, G∞ is clearly 3-connected. Thus, G+ is an
essentially 3-connected toroidal map.

(⇐�) Suppose there exist three vertices on the outer face of G such that G+ is
an essentially 3-connected toroidal map, i.e., G∞ is 3-connected. A copy of G is
contained in a triangle y0y1y2 of G∞. Let G′′ be the subgraph of G∞ induced by
this copy plus the triangle, and let xi be the unique neighbor of yi in the copy of G.
Since G′′ is connected to the rest of G∞ by a triangle, G′′ is also 3-connected. Let us
now prove that this implies that G is internally 3-connected for x0, x1, and x2. This
is equivalent to saying that the graph G′, obtained by adding a vertex z connected
to x0, x1, and x2, is 3-connected. If G′ had a separator {a, b} or {a, z}, with a, b ∈
V (G′) \ {z}, then {a, b} or {a, yi}, for some i ∈ [0,2], would be a separator of G′′.
This would contradict the 3-connectedness of G′′. So G is internally 3-connected. �

3 Two Different Types of Schnyder Woods

Two non-contractible closed curves are homotopic if one can be continuously trans-
formed into the other. Homotopy is an equivalence relation, and as we are on the torus
we have the following.

Lemma 2 Let C1,C2 be two non-contractible closed curves on the torus. If C1,C2
are not homotopic, then their intersection is non-empty.

Two non-contractible oriented closed curves on the torus are fully homotopic if
one can be continuously transformed into the other by preserving the orientation. We
say that two monochromatic directed cycles Ci,Cj of different colors are reversal if
one is obtained from the other by reversing all the edges (Ci = C−1

j ). We say that two
monochromatic cycles are crossing if they intersect but are not reversal. We define
the right side of an i-cycle Ci , as the right side while “walking” along the directed
cycle by following the orientation given by the edges colored i.

Let G be a toroidal graph given with a Schnyder wood.

Lemma 3 All i-cycles are non-contractible, non-intersecting, and fully homotopic.

Proof By Lemma 1, all i-cycles are non-contractible. If there exist two such dis-
tinct i-cycles that are intersecting, then there is a vertex that has two outgoing edges
of color i, a contradiction to (T1). So the i-cycles are non-intersecting. Then, by
Lemma 2, they are homotopic.

Suppose that there exist two i-cycles Ci,C
′
i that are not fully homotopic. By the

first part of the proof, cycles Ci,C
′
i are non-contractible, non-intersecting, and ho-

motopic. Let R be the region between Ci and C′
i situated on the right of Ci . Suppose
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Fig. 10 The two types of Schnyder woods on toroidal graphs

by symmetry that C−1
i is not an (i + 1)-cycle. By (T2), there exists a cycle Ci+1

intersecting Ci and thus Ci+1 is crossing Ci . By property (T1), Ci+1 is entering Ci

from its right side and so it is leaving the region R when it crosses Ci . To enter the
region R, the cycle Ci+1 has to enter Ci or C′

i from their left side, a contradiction to
property (T1). �

Lemma 4 If two monochromatic cycles are crossing, then they are of different colors
and they are not homotopic.

Proof By Lemma 3, two crossing monochromatic cycles are not of the same color.
Suppose that there exist two monochromatic cycles Ci−1 and Ci+1, of color i − 1
and i + 1, that are crossing and homotopic. By Lemma 1, the cycles Ci−1 and Ci+1

are not contractible. Since Ci−1 
= C−1
i+1 and Ci−1 ∩ Ci+1 
= ∅, the cycle Ci+1 is

leaving Ci−1. It is leaving Ci−1 on its right side by (T1). Since Ci−1 and Ci+1 are
homotopic, the cycle Ci+1 is entering Ci−1 at least once from its right side. This is
in contradiction with (T1). �

Let Ci be the set of i-cycles of G. Let (Ci )
−1 denote the set of cycles ob-

tained by reversing all the cycles of Ci . By Lemma 3, the cycles of Ci are non-
contractible, non-intersecting, and fully homotopic. So we can order them as follows:
Ci = {C0

i , . . . ,C
ki−1
i }, ki ≥ 1, such that, for 0 ≤ j ≤ ki − 1, there is no i-cycle in the

region R(C
j
i ,C

j+1
i ) between C

j
i and C

j+1
i containing the right side of C

j
i (super-

script understood modulo ki ).
We show that Schnyder woods are of two different types (see Fig. 10):

Theorem 7 Let G be a toroidal graph given with a Schnyder wood. Then all i-cycles
are non-contractible, non-intersecting, and fully homotopic, and either:
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• For every pair of two monochromatic cycles Ci,Cj of different colors i, j , the two
cycles Ci and Cj are not homotopic and thus intersect (we say the Schnyder wood
is of Type 1);

or

• There exists a color i such that Ci−1 = (Ci+1)
−1 and for any pair of monochromatic

cycles Ci,Cj of colors i, j , with j 
= i, the two cycles Ci and Cj are not homotopic
and thus intersect (we say the Schnyder wood is of Type 2, or Type 2.i if we want
to specify the color i).

Moreover, if G is a toroidal triangulation, then there are no edges oriented in two
directions and the Schnyder wood is of Type 1.

Proof By Lemma 3, all i-cycles are non-contractible, non-intersecting, and fully ho-
motopic. Suppose that there exist a (i − 1)-cycle Ci−1 and a (i + 1)-cycle Ci+1 that
are homotopic. We prove that the Schnyder wood is of Type 2.i. We first prove that
Ci−1 = (Ci+1)

−1. Let C′
i−1 be any (i − 1)-cycle. By (T2), C′

i−1 intersects an (i + 1)-
cycle C′

i+1. By Lemma 3, C′
i−1 (resp. C′

i+1) is homotopic to Ci−1 (resp. Ci+1).
So C′

i−1 and C′
i+1 are homotopic. By Lemma 4, C′

i−1 and C′
i+1 are reversal. Thus,

Ci−1 ⊆ (Ci+1)
−1 and so by symmetry Ci−1 = (Ci+1)

−1. Now we prove that for any
pair of monochromatic cycles C′

i ,C
′
j of colors i, j , with j 
= i, the two cycles C′

i and

C′
j are not homotopic. By (T2), C′

j intersects an i-cycle Ci . Since Ci−1 = (Ci+1)
−1,

cycle C′
j is bi-oriented in color i − 1 and i + 1, and thus we cannot have C′

j = C−1
i .

So C′
j and Ci are crossing and by Lemma 4, they are not homotopic. By Lemma 3,

C′
i and Ci are homotopic. Thus, C′

j and C′
i are not homotopic. Thus, the Schnyder

wood is of Type 2.i.
If there are no two monochromatic cycles of different colors that are homotopic,

then the Schnyder wood is of Type 1.
For toroidal triangulation, m = 3n by Euler’s formula, so there are no edges ori-

ented in two directions, and thus only Type 1 is possible. �

Note that in a Schnyder wood of Type 1, we may have edges that are in two
monochromatic cycles of different colors (see Fig. 2).

We do not know if the set of Schnyder woods of a given toroidal graph has a kind of
lattice structure as in the planar case [9]. De Fraysseix et al. [15] proved that Schnyder
woods of a planar triangulation are in one-to-one correspondence with the orientation
of the edges of the graph where each inner vertex has outdegree three. It is possible
to retrieve the coloring of the edges of a Schnyder wood from the orientation. The
situation is different for toroidal triangulations. There exist orientations of toroidal
triangulations where each vertex has outdegree three but there is no corresponding
Schnyder wood. For example, if one considers a toroidal triangulation with just one
vertex, the orientations of edges that satisfy (T1) are the orientations where there are
not three consecutive edges leaving the vertex (see Fig. 11).
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Fig. 11 Two different orientations of a toroidal triangulation. Only the second one corresponds to a Schny-
der wood

4 Schnyder Woods in the Universal Cover

Let G be a toroidal graph given with a Schnyder wood. Consider the orientation and
coloring of the edges of G∞ that correspond to the Schnyder wood of G.

Lemma 5 The orientation and coloring of the edges of G∞ satisfy the following:

(U1) Every vertex of G∞ satisfies the Schnyder property
(U2) There is no monochromatic cycle in G∞.

Proof Clearly, (U1) is satisfied. Now we prove (U2). Suppose by contradiction that
there is a monochromatic cycle U of color i in G∞. Let C be the closed curve of
G corresponding to edges of U . If C self-intersects, then there is a vertex of G with
two edges leaving v in color i, a contradiction to (T1). So C is a monochromatic
cycle of G. Since C corresponds to a cycle of G∞, it is a contractible cycle of G,
a contradiction to Lemma 1. �

One can remark that properties (U1) and (U2) are the same as in the definition of
Schnyder woods for 3-connected planar graphs (properties (P1) and (P2)). Note that if
the orientation and coloring of the edges of G∞, corresponding to an orientation and
coloring of the edges of G, satisfy properties (U1) and (U2), we do not necessarily
have a Schnyder wood of G. For example, the graph G∞ obtained by replicating the
graph G of Fig. 7 satisfies (U1) and (U2), whereas the orientation and coloring of G

do not make a Schnyder wood as (T2) is not satisfied.
Recall that the notation Ci = {C0

i , . . . ,C
ki−1
i } denotes the set of i-cycles of G

such that there is no i-cycle in the region R(C
j
i ,C

j+1
i ). As monochromatic cycles

are not contractible by Lemma 1, a directed monochromatic cycle C
j
i corresponds to

a family of infinite directed monochromatic paths of G∞ (infinite in both directions
of the path). This family is denoted Lj

i . Each element of Lj
i is called a monochromatic

line of color i, or i-line for short. By Lemma 3, all i-lines are non-intersecting and
oriented in the same direction. Given any two i-lines L, L′, the unbounded region
between L and L′ is noted R(L,L′). We say that two i-lines L,L′ are consecutive if
no i-lines are contained in R(L,L′).

Let v be a vertex of G∞. For each color i, vertex v is the starting vertex of a unique
infinite directed monochromatic path of color i, denoted Pi(v). Indeed this is a path
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Fig. 12 Regions corresponding
to a vertex

since there is no monochromatic cycle in G∞ by property (U2), and it is infinite (in
one direction of the path only) because every reached vertex of G∞ has exactly one
edge leaving in color i by property (U1). As Pi(v) is infinite, it necessarily contains
two vertices u,u′ of G∞ that are copies of the same vertex of G. The subpath of
Pi(v) between u and u′ corresponds to an i-cycle of G and thus is part of an i-line
of G∞. Let Li(v) be the i-line intersecting Pi(v).

Lemma 6 The graph G∞
i ∪ (G

∞
i−1)

−1 ∪ (G
∞
i+1)

−1 contains no directed cycle.

Proof Suppose there is a contractible directed cycle C in G∞
i ∪ (G

∞
i−1)

−1 ∪
(G

∞
i+1)

−1. Let D be the closed disk bounded by C. Suppose by symmetry that C

turns around D clockwise. Then, by (U1), there is no edge of color i − 1 leaving the
closed disk D. So there is an (i − 1)-cycle in D, a contradiction to (U2). �

Lemma 7 For every vertex v and color i, the two paths Pi−1(v) and Pi+1(v) only
intersect on v.

Proof If Pi−1(v) and Pi+1(v) intersect on two vertices, then G∞
i−1 ∪ (G

∞
i+1)

−1 con-
tains a cycle, contradicting Lemma 6. �

By Lemma 7, for every vertex v, the three paths P0(v), P1(v), P2(v) divide G∞
into three unbounded regions R0(v), R1(v), and R2(v), where Ri(v) denotes the re-
gion delimited by the two paths Pi−1(v) and Pi+1(v). Let R◦

i (v) = Ri(v)\(Pi−1(v)∪
Pi+1(v)) (see Fig. 12).

Lemma 8 For all distinct vertices u, v, we have:

(i) If u ∈ Ri(v), then Ri(u) ⊆ Ri(v).
(ii) If u ∈ R◦

i (v), then Ri(u) �Ri(v).
(iii) There exists i and j with Ri(u) �Ri(v) and Rj(v) � Rj (u).

Proof (i) Suppose by symmetry that the Schnyder wood is not of Type 2.(i +1). Then
in G, i-cycles are not homotopic to (i − 1)-cycles. Thus in G∞, every i-line crosses
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every (i −1)-line. Moreover an i-line crosses an (i −1)-line exactly once and from its
right side to its left side by (U1). Vertex v is between two consecutive monochromatic
(i − 1)-lines Li−1,L

′
i−1, with L′

i−1 situated on the right of Li−1. Let R be the region
situated on the right of Li−1, so v ∈ R.

Claim 1 For any vertex w of R, the path Pi(w) leaves the region R.

Proof of Claim 1 The i-line Li(w) has to cross Li−1 exactly once and from right to
left; thus, Pi(w) leaves the region R. This proves Claim 1. �

The path Pi+1(v) cannot leave the region R as this would contradict (U1). Thus,
by Claim 1 for w = v, we have Ri(v) ⊆ R and so u ∈ R. Moreover, the paths
Pi−1(u) and Pi+1(u) cannot leave region Ri(v) as this would contradict (U1). Thus
by Claim 1 for w = u, the path Pi(u) leaves the region Ri(v) and so Ri(u) ⊆ Ri(v).

(ii) By (i), Ri(u) ⊆ Ri(v), so the paths Pi−1(u) and Pi+1(u) are contained
in Ri(v). Then none of them can contain v as this would contradict (U1). So all
the faces of Ri(v) incident to v are not in Ri(u) (and there is at least one such face).

(iii) By symmetry, we prove that there exists i with Ri(u) � Ri(v). If u ∈ R◦
i (v)

for some color i, then Ri(u) � Ri(v) by (ii). Suppose now that u ∈ Pi(v) for some i.
By Lemma 7, at least one of the two paths Pi−1(u) and Pi+1(u) does not contain v.
Suppose by symmetry that Pi−1(u) does not contain v. As u ∈ Pi(v) ⊆ Ri+1(v), we
have Ri+1(u) ⊆ Ri+1(v) by (i), and as none of Pi−1(u) and Pi(u) contains v, we
have Ri+1(u) � Ri+1(v). �

Lemma 9 If a toroidal graph G admits a Schnyder wood, then G is essentially 3-
connected.

Proof Let u,v, x, y be any four distinct vertices of G∞. Let us prove that there exists
a path between u and v in G∞ \{x, y}. Suppose by symmetry, that the Schnyder wood
is of Type 1 or Type 2.1. Then the monochromatic lines of color 0 and 2 form a kind
of grid; i.e., the 0-lines intersect all the 2-lines. Let L0,L

′
0 be 0-lines and L2, L′

2 be
2-lines, such that u,v, x, y are all in the interior of the bounded region R(L0,L

′
0) ∩

R(L2,L
′
2).

By Lemma 7, the three paths Pi(v), for 0 ≤ i ≤ 2, are disjoint except on v. Thus,
there exists i, such that Pi(v)∩{x, y} = ∅. Similarly there exists j , such that Pj (u)∩
{x, y} = ∅. The two paths Pi(v) and Pj (u) are infinite, so they intersect the boundary
of R(L0,L

′
0) ∩ R(L2,L

′
2). Thus, Pi(v) ∪ Pj (u) ∪ L0 ∪ L′

0 ∪ L2 ∪ L′
2 contains a path

from u to v in G∞ \ {x, y}. �

By Lemma 9, if G admits a Schnyder wood, then it is essentially 3-connected, so
it is a map and each face is a disk.

Note that if (T2) is not required in the definition of Schnyder woods, then Lemma 9
is false. Figure 13 gives an example of an orientation and a coloring of the edges of
a toroidal graph satisfying (T1), such that there are no contractible monochromatic
cycles, but where (T2) is not satisfied as there is a 0-cycle not intersecting any 2-cycle.
This graph is not essentially 3-connected; indeed, G∞ is not connected.
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Fig. 13 An orientation and a coloring of the edges of a toroidal graph satisfying (T1) but not essentially
3-connected

Fig. 14 Angle labeling around vertices and edges

5 Duality of Schnyder Woods

We are given a planar map G, and x0, x1, x2, three distinct vertices occurring in
counterclockwise order on the outer face of G. A Schnyder angle labeling [7] of G

with respect to x0, x1, x2 is a labeling of the angles of Gσ satisfying the following:

(L1) The label of the angles at each vertex form, in counterclockwise order, non-
empty intervals of 0’s, 1’s, and 2’s. The two angles at the half-edge at xi have
labels i + 1 and i − 1

(L2) The label of the angles at each inner face form, in counterclockwise order, non-
empty intervals of 0’s, 1’s, and 2’s. At the outer face the same is true in clock-
wise order.

Felsner [8] proved that, for planar maps, Schnyder woods are in bijection with
Schnyder angle labellings. In the toroidal case, we do not see a simple definition
of Schnyder angle labeling that would be equivalent to our definition of Schnyder
woods. This is due to the fact that, unlike (P2) which is local and can be checked just
by considering faces, (T2) is global. Nevertheless, we have one implication.

The angle labeling corresponding to a Schnyder wood of a toroidal map G is a
labeling of the angles of G such that the angles at a vertex v in the counterclockwise
sector between ei+1(v) and ei−1(v) are labeled i (see Fig. 14).

Lemma 10 The angle labeling corresponding to a Schnyder wood of a toroidal map
satisfies the following: the angles at each vertex and at each face form, in counter-
clockwise order, non-empty intervals of 0’s, 1’s, and 2’s.
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Proof Clearly, the property is true at each vertex by (T1). To prove that the property
is true at each face, we count the number of color changes around vertices, faces, and
edges. This number of changes is denoted d . For a vertex v there are exactly three
changes, so d(v) = 3 (see Fig. 14). For an edge e, that can be either oriented in one or
two directions, there are also exactly three changes, so d(e) = 3 (see Fig. 14). Now
consider a face F . Suppose we cycle counterclockwise around F ; then an angle col-
ored i is always followed by an angle colored i or i + 1. Consequently, d(F ) must
be a multiple of 3. Suppose that d(F ) = 0; then all its angles are colored with one
color i. In that case the cycle around face F would be completely oriented in coun-
terclockwise order in color i + 1 (and in clockwise order in color i − 1). This cycle
being contractible, this would contradict Lemma 1. So d(F ) ≥ 3.

The sum of the changes around edges must be equal to the sum of the changes
around faces and vertices. Thus 3m = ∑

e d(e) = ∑
v d(v) + ∑

F d(F ) = 3n +∑
F d(F ). Euler’s formula gives m = n + f , so

∑
F d(F ) = 3f and this is possi-

ble only if d(F ) = 3 for every face F . �

There is no converse to Lemma 10. Figure 7 gives an example of a coloring and
orientation of the edges of a toroidal triangulation not satisfying (T2) but where the
angles at each vertex and at each face form, in counterclockwise order, non-empty
intervals of 0’s, 1’s, and 2’s.

Let G be a toroidal graph given with a Schnyder wood. By Lemma 9, G is an
essentially 3-connected toroidal map, and thus the dual G∗ of G has no contractible
loop and no homotopic multiple edges. Let G̃ be a simultaneous drawing of G and
G∗ such that only dual edges intersect.

The dual of the Schnyder wood is the orientation and coloring of the edges of G∗
obtained by the following method (see Figs. 3 and 4): Let e be an edge of G and
e∗ the dual edge of e. If e is oriented in one direction only and colored i, then e∗
is oriented in two directions, entering e from the right side in color i − 1 and from
the left side in color i + 1 (the right side of e is the right side while following the
orientation of e). Symmetrically, if e is oriented in two directions in colors i + 1 and
i − 1, then e∗ is oriented in one direction only and colored i such that e is entering e∗
from its right side in color i − 1.

Lemma 11 Let G be a toroidal map. The dual of a Schnyder wood of a toroidal map
G is a Schnyder wood of the dual G∗. Moreover we have:

(i) On the simultaneous drawing G̃ of G and G∗, the i-cycles of the dual Schnyder
wood are homotopic to the i-cycles of the primal Schnyder wood and oriented in
opposite directions.

(ii) The dual of a Schnyder wood is of Type 2.i if and only if the primal Schnyder
wood is of Type 2.i.

Proof In every face of G̃, there is exactly one angle of G and one angle of G∗. Thus
a Schnyder angle labeling of G corresponds to an angle labeling of G∗. The dual of
the Schnyder wood is defined such that an edge e is leaving F in color i if and only
if the angle at F on the left of e is labeled i − 1 and the angle at F on the right of
e is labeled i + 1, and such that an edge e is entering F in color i if and only if at
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Fig. 15 Rules for the dual Schnyder wood and angle labeling

least one of the angles at F incident to e is labeled i (see Fig. 15). By Lemma 10,
the angles at a face form, in counterclockwise order, non-empty intervals of 0’s, 1’s,
and 2’s. Thus, the edges around a vertex of G∗ satisfy property (T1).

Consider G̃ with the orientation and coloring of primal and dual edges.
Let C be a i-cycle of G∗. Suppose, by contradiction, that C is contractible. Let

D be the disk delimited by C. Suppose by symmetry that C is going anticlockwise
around D. Then all the edges of G that are dual to edges of C are entering D in color
i − 1. Thus, D contains an (i − 1)-cycle of G, a contradiction to Lemma 1. Thus,
every monochromatic cycle of G∗ is non-contractible.

The dual of the Schnyder wood is defined in such a way that an edge of G and
an edge of G∗ of the same color never intersect in G̃. Thus the i-cycles of G∗ are
homotopic to i-cycles of G. Consider a i-cycle Ci (resp. C∗

i ) of G (resp. G∗). The two
cycles Ci and C∗

i are homotopic. By symmetry, we assume that the primal Schnyder
wood is not of Type 2.(i −1). Let Ci+1 be an (i + 1)-cycle of G. The two cycles Ci

and Ci+1 are not homotopic and Ci is entering Ci+1 on its left side. Thus, the two
cycles C∗

i and Ci+1 are not homotopic, and by the dual rules C∗
i is entering Ci+1 on

its right side. So Ci and C∗
i are homotopic and going in opposite directions.

Suppose the Schnyder wood of G is of Type 1. Then two monochromatic cycles
of G of different colors are not homotopic. Thus, the same is true for monochro-
matic cycles of the dual. So (T2) is satisfied and the dual of the Schnyder wood is a
Schnyder wood of Type 1.

Suppose now that the Schnyder wood of G is of Type 2. Assume by symmetry
that it is of Type 2.i. Then all monochromatic cycles of color i and j , with j ∈ {i − 1,

i + 1}, intersect. Now suppose, by contradiction, that there is a j -cycle C∗, with j ∈
{i −1, i +1}, that is not equal to a monochromatic cycle of color in {i −1, i +1}\{j}.
By symmetry we can assume that C∗ is of color i − 1. Let C be the (i − 1)-cycle of
the primal that is the first on the right side of C∗ in G̃. By definition of Type 2.i,
C−1 is an (i + 1)-cycle of G. Let R be the region delimited by C∗ and C situated on
the right side of C∗. Cycle C∗ is not an (i + 1)-cycle, so there is at least one edge
of color i + 1 leaving a vertex of C∗. By (T1) in the dual, this edge is entering the
interior of the region R. An edge of G∗ of color i + 1 cannot intersect C and cannot
enter C∗ from its right side. So in the interior of the region R there is at least one
(i + 1)-cycle C∗

i+1 of G∗. Cycle C∗
i+1 is homotopic to C∗ and going in the opposite

direction (i.e., C∗
i+1 and C∗ are not fully homotopic). If C∗

i+1 is not an (i − 1)-cycle,
then we can define R′ � R the region delimited by C∗

i+1 and C situated on the left
side of C∗

i+1 and as before we can prove that there is an (i − 1)-cycle of G∗ in the
interior of R′. So in any case, there is an (i − 1)-cycle C∗

i−1 of G∗ in the interior of
R and C∗

i−1 is fully homotopic to C∗. Let R′′ � R be the region delimited by C∗ and
C∗

i−1 situated on the right side of C∗. Clearly, R′′ does not contain C. Thus, by the
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definition of C, the region R′′ does not contain any (i −1)-cycle of G. But R′′ is non-
empty and contains at least one vertex v of G. The path Pi−1(v) cannot leave R′′, a
contradiction. So (T2) is satisfied and the dual Schnyder wood is of Type 2.i. �

By Lemma 11, we have Theorem 2.

6 Relaxing the Definition

In the plane, the proof of existence of Schnyder woods can be done without too much
difficulty, as the properties to be satisfied are only local. In the toroidal case, things
are much more complicated, as property (T2) is global. The following lemma shows
that property (T2) can be relaxed a bit in the case of Schnyder woods of Type 1.

Lemma 12 Let G be a toroidal graph given with an orientation and coloring of the
edges of G with the colors 0, 1, 2, where every edge e is oriented in one direction or
in two opposite directions. The orientation and coloring is a Schnyder wood of Type 1
if and only if it satisfies the following:

(T1’) Every vertex v satisfies the Schnyder property.
(T2’) For each pair i, j of different colors, there exists an i-cycle intersecting a j -

cycle.
(T3’) There are no monochromatic cycles Ci,Cj of different colors i, j such that

Ci = C−1
j .

Proof (�⇒) If we have a Schnyder wood of Type 1, then property (T1’) is satis-
fied, as it is equal to property (T1). Property (T1) implies that there always exist
monochromatic cycles of each color, and thus property (T2’) is a relaxation of (T2).
Property (T3’) is implied by definition of Type 1 (see Theorem 7).

(⇐�) Conversely, suppose we have an orientation and coloring satisfying (T1’),
(T2’), (T3’). We prove several properties.

Claim 2 All i-cycles are non-contractible, non-intersecting, and homotopic.

Proof of Claim 2 Suppose there is a contractible monochromatic cycle. Let C be
such a cycle containing the minimum number of faces in the closed disk D bounded
by C. Suppose by symmetry that C turns around D clockwise. Let i be the color
of C. Then, by (T1’), there is no edge of color i − 1 leaving the closed disk D. So
there is an (i − 1)-cycle in D and this cycle is C by minimality of C, a contradiction
to (T3’).

If there exist two distinct i-cycles that are intersecting, then there is a vertex that
has two outgoing edges of color i, a contradiction to (T1’). So the i-cycles are non-
intersecting. Then, by Lemma 2, they are homotopic. This proves Claim 2. �

Claim 3 If two monochromatic cycles are intersecting, then they are not homotopic.



86 Discrete Comput Geom (2014) 51:67–131

Fig. 16 An orientation and
coloring of the edges of toroidal
graph satisfying (T1’) and (T2’)
but that is not a Schnyder wood

Proof of Claim Suppose by contradiction that there exist C,C′, two distinct directed
monochromatic cycles that are homotopic and intersecting. By Claim 2, they are not
contractible and of different color. Suppose C is an (i − 1)-cycle and C′ an (i + 1)-
cycle. By (T1’), C′ is leaving C on its right side. Since C,C′ are homotopic, the
cycle C′ is entering C at least once from its right side, a contradiction with (T1’).
This proves Claim 3. �

We are now able to prove that (T2) is satisfied. Let Ci be any i-cycle of color i.
We have to prove that Ci intersects at least one (i − 1)-cycle and at least one (i + 1)-
cycle. Let j be either i − 1 or i + 1. By (T2’), there exists an i-cycle C′

i intersecting
a j -cycle C′

j of color j . The two cycles C′
i ,C

′
j are not reversal by (T3’); thus, they

are crossing. By claim (3), C′
i and C′

j are not homotopic. By Claim 2, Ci and C′
i are

homotopic. Thus, by Lemma 2, Ci and C′
j are not homotopic and intersecting.

Thus, (T1) and (T2) are satisfied, and the orientation and coloring are a Schnyder
wood. By (T3’) and Theorem 7 it is a Schnyder wood of Type 1. �

Note that for toroidal triangulations, there are no edges oriented in two directions
in an orientation and coloring of the edges satisfying (T1’), by Euler’s formula. So
(T3’) is automatically satisfied. Thus, in the case of toroidal triangulations it is suffi-
cient to have properties (T1’) and (T2’) to have a Schnyder wood. This is not true in
general, as shown by the example of Fig. 16 that satisfies (T1’) and (T2’) but that is
not a Schnyder wood. There is a monochromatic cycle of color 1 that is not intersect-
ing any monochromatic cycle of color 2, so (T2) is not satisfied.

7 Existence for Simple Triangulations

In this section we present a short proof of existence of Schnyder woods for simple
triangulations. Sections 8 and 9 contain the full proof of existence for essentially
3-connected toroidal maps.

Fijavz [13] proved a useful result concerning the existence of particular non-
homotopic cycles in toroidal triangulations with no loop and no multiple edges. (Re-
call that in this paper we are less restrictive, as we allow non-contractible loops and
non-homotopic multiple edges.)

Theorem 8 ([13]) A simple toroidal triangulation contains three non-contractible
and non-homotopic cycles that all intersect on one vertex and that are pairwise dis-
joint otherwise.
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Fig. 17 A toroidal triangulation
that does not contain three
non-contractible and
non-homotopic cycles that all
intersect on one vertex and that
are pairwise disjoint otherwise

Theorem 8 is not true for all toroidal triangulations, as shown by the example on
Fig. 17.

Theorem 8 can be used to prove the existence of particular Schnyder woods for
simple toroidal triangulations. We first need the following lemma.

Lemma 13 If G is a connected near-triangulation (i.e., all inner faces are triangles)
whose outer boundary is a cycle, and with three vertices x0, x1, x2 on its outer face
such that the three outer paths between the xi are chordless, then G′ is internally
3-connected for vertices xi .

Proof Let G′ be the graph obtained from G by adding a vertex z adjacent to the three
vertices xi . We have to prove that G′ is 3-connected. Let S be a separator of G′ of
minimum size and suppose by contradiction that 1 ≤ |S| ≤ 2. Let G′′ = G′ \ S.

For v ∈ S, the vertices of NG′(v) \ S should appear in several connected com-
ponents of G′′, otherwise S \ {v} is also a separator of G′. Since G is a near-
triangulation, the neighbors of an inner vertex v of G form a cycle, and thus there
are at least two vertex-disjoint paths between any two vertices of N(v) in G′ \ {v}. So
S contains no inner vertex of G. Similarly, the three neighbors of z in G′ belong to a
cycle of G′ \ {z} (the outer boundary of G), so S does not contain z. Thus, S contains
only vertices that are on the outer boundary of G.

Let v ∈ S. Vertex v is on the outer face of G, so its neighbors in G form a path P

where the two extremities of P are the two neighbors of v on the outer face of G. So
S contains an inner vertex u of P . Vertex u is also on the outer face of G, so uv is a
chord of the outer cycle of G. As the three outer paths between the xi are chordless,
we have that u,v lie on two different outer paths between pairs of xi . But then all the
vertices of P \ {u} are in the same components of G′′ because of z, a contradiction. �

Theorem 9 A simple toroidal triangulation admits a Schnyder wood with three
monochromatic cycles of different colors all intersecting on one vertex and that are
pairwise disjoint otherwise.

Proof Let G be a simple toroidal triangulation. By Theorem 8, let C0,C1,C2 be three
non-contractible and non-homotopic cycles of G that all intersect on one vertex x and
that are pairwise disjoint otherwise. By eventually shortening the cycles Ci , we can
assume that the three cycles Ci are chordless. By symmetry, we can assume that the
six edges ei, e

′
i of the cycles Ci incident to x appear around x in the counterclockwise

order e0, e
′
2, e1, e

′
0, e2, e

′
1 (see Fig. 18). The cycles Ci divide G into two regions,

denoted R1,R2 such that R1 is the region situated in the counterclockwise sector
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between e0 and e′
2 of x and R2 is the region situated in the counterclockwise sector

between e′
2 and e1 of x. Let Gi be the subgraph of G contained in the region Ri

(including the three cycles Ci ).
Let G′

1 (resp. G′
2) be the graph obtained from G1 (resp. G2) by replacing x by

three vertices x0, x1, x2, such that xi is incident to the edges in the counterclockwise
sector between ei+1 and e′

i (resp. e′
i and ei−1) (see Fig. 19). The two graphs G′

1
and G′

2 are near-triangulation and the Ci are chordless, so by Lemma 13, they are
internally 3-connected planar maps for vertices xi . The vertices x0, x1, x2 appear in
counterclockwise order on the outer face of G′

1 and G′
2. By a result of Miller [20] (see

also [7, 8]), the two graphs G′
i admit planar Schnyder woods rooted at x0, x1, x2. Ori-

ent and color the edges of G that intersect the interior of Ri by giving them the same
orientation and coloring as in a planar Schnyder wood of G′

i . Orient and color the
cycle Ci in color i such that it is entering x by edge e′

i and leaving x by edge ei . We
claim that the orientation and the coloring that are obtained form a toroidal Schnyder
wood of G (see Fig. 19).

Clearly, any interior vertex of the region Ri satisfies (T1). Let us show that (T1)
is also satisfied for any vertex v of a cycle Ci distinct from x. In a Schnyder wood
of G′

1, the cycle Ci is oriented in two directions, from xi−1 to xi in color i and from
xi to xi−1 in color i − 1. Thus the edge leaving v in color i + 1 is an inner edge of
G′

1 and vertex v has no edges entering in color i + 1. Symmetrically, in G′
2 the edge

leaving v in color i − 1 is an inner edge of G′
2 and vertex v has no edges entering in

color i − 1. Then one can paste G′
1 and G′

2 along Ci , orient Ci in color i, and see that
v satisfies (T1). The definition of the G′

i and the orientation of the cycles are done so
that x satisfies (T1). The cycles Ci being pairwise intersecting, (T2’) is satisfied, so
by Lemma 12, the orientation and coloring form a Schnyder wood. �

Note that in the Schnyder wood obtained by Theorem 9, we do not know if there
are several monochromatic cycles of one color or not. So given any three monochro-
matic cycles of different color, they might not all intersect on one vertex. But for
any two monochromatic cycles of different color, we know that they intersect exactly
once. We wonder whether Theorem 9 can be modified as follows: Does a simple

Fig. 18 Notation of the proof
of Theorem 9
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toroidal triangulation admit a Schnyder wood such that there is just one monochro-
matic cycle per color? Moreover, can one require that the monochromatic cycles of
different colors pairwise intersect exactly once? Or, as in Theorem 9, that they all
intersect on one vertex and that they are pairwise disjoint otherwise?

8 The Contraction Lemma

We prove the existence of Schnyder woods for essentially 3-connected toroidal maps
by contracting edges until we obtain a graph with just a few vertices. Then the graph
can be decontracted step by step to obtain a Schnyder wood of the original graph.

Given a toroidal map G, the contraction of a non-loop edge e of G is the operation
consisting of continuously contracting e until its two ends are merged. We denote the
obtained graph as G/e. On Fig. 20 the contraction of an edge e is represented. We
consider three different cases corresponding to whether the faces adjacent to the edge
e are triangles or not. Note that only one edge of each set of homotopic multiple edges
that is possibly created is preserved.

The goal of this section is to prove the following lemma, which plays a key role in
the proof of Sect. 9.

Lemma 14 If G is a toroidal map given with a non-loop edge e whose extremities
are of degree at least three and such that G/e admits a Schnyder wood of Type 1,
then G admits a Schnyder wood of Type 1.

The proof of Lemma 14 is long and technical. In the planar case, an analogous
lemma can be proved without too much difficulty (see Sect. 2.6 of [12]), as there are
special outer vertices where the contraction can be done to reduce the case analysis
and as properties (P1) and (P2) are local and not too difficult to preserve during the
decontraction process.

Fig. 19 Gluing two planar Schnyder woods into a toroidal one to prove Theorem 9
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Fig. 20 The contraction operation

In the toroidal case there is a huge case analysis for the following reasons. One has
to consider the three different kinds of contractions depicted on Fig. 20. For each of
these cases, one must consider the different ways that the edges can be oriented and
colored (around the contraction point) in G/e. For each of these cases, one must show
that the Schnyder wood G/e can be extended to a Schnyder wood of G. This would
be quite easy if one just has to satisfy (T1), which is a local property, but satisfying
(T2) is much more complicated. Instead of proving (T2), that is considering intersec-
tions between every pair of monochromatic cycles, we prove (T2’) and (T3’), which
is equivalent for our purposes by Lemma 12. Property (T2’) is simpler than (T2), as it
considers just one intersection for each pair of colors instead of all the intersections.
Even with this simplification, proving (T2’) is the main difficulty of the proof. For
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each considered case, one has to analyze the different ways in which the monochro-
matic cycles go through the contracted vertex or not and show that there always exist
a coloring and orientation of G where (T2’) is satisfied. Some cases are non-trivial
and involve the use of lemmas like Lemmas 15 and 16.

Lemma 15 Let G be a toroidal map given with a Schnyder wood and let y,w be
two vertices of G such that ei(y) is entering w. Suppose that there is a directed
path Qi−1 of color i − 1 from y to w, and a directed path Qi+1 of color i + 1
from y to w. Consider the two directed cycles Ci−1 = Qi−1 ∪ {ei(y)}−1 and Ci+1 =
Qi+1 ∪ {ei(y)}−1. Then Ci−1 and Ci+1 are not homotopic.

Proof By Lemma 1, the cycles Ci−1 and Ci+1 are not contractible. Suppose that
Ci−1 and Ci+1 are homotopic. The path Qi+1 is leaving Ci−1 at y on the right side
of Ci−1. Since Ci−1 and Ci+1 are homotopic, the path Qi+1 is entering Ci−1 at least
once from its right side. This is in contradiction with (T1). �

The sector [e1, e2] of a vertex w, for e1 and e2 two edges incident to w, is the
counterclockwise sector of w between e1 and e2, including the edges e1 and e2. The
sectors ]e1, e2], [e1, e2[, and ]e1, e2[ are defined analogously by excluding the corre-
sponding edges from the sectors.

Lemma 16 Let G be a toroidal map given with a Schnyder wood and let w,x, y

be three vertices such that ei−1(x) and ei+1(y) are entering w. Suppose that there
is a directed path Qi−1 of color i − 1 from y to w, entering w in the sector
[ei(w), ei−1(x)], and a directed path Qi+1 of color i + 1 from x to w, entering
w in the sector [ei+1(y), ei(w)]. Consider the two directed cycles Ci−1 = Qi−1 ∪
{ei+1(y)}−1 and Ci+1 = Qi+1 ∪ {ei−1(x)}−1. Then either Ci−1 and Ci+1 are not
homotopic or Ci−1 = C−1

i+1.

Proof By Lemma 1, the cycles Ci−1 and Ci+1 are not contractible. Suppose that Ci−1
and Ci+1 are homotopic and that Ci−1 
= C−1

i+1. Since Ci−1 
= C−1
i+1, the cycle Ci+1

is leaving Ci−1. By (T1) and the assumption on the sectors, Ci+1 is leaving Ci−1 on
its right side. Since Ci−1 and Ci+1 are homotopic, the path Qi+1 is entering Ci−1 at
least once from its right side. This is in contradiction with (T1). �

We are now able to prove Lemma 14.

Proof of Lemma 14 Let u,v be the two extremities of e. Vertices u and v are of
degree at least three. Let x, y (resp. z, t) be the neighbors of u (resp. v) such that
x, v, y (resp. z,u, t) appear consecutively and in counterclockwise order around u

(resp. v) (see Fig. 20(c)). Note that u and v are distinct by the definition of edge
contraction, but that x, y, z, t are not necessarily distinct, nor necessarily distinct from
u and v. Depending on whether the faces incident to e are triangles or not, we are,
by symmetry, in one of the three cases of Fig. 20(a, b, c). Let G′ = G/e and consider
a Schnyder wood of Type 1 of G′. Let w be the vertex of G′ resulting from the
contraction of e.
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Fig. 21 Decontraction rules for case (a)

For each case (a), (b), (c), there are different cases corresponding to the different
possibilities of orientation and coloring of the edges ewx, ewy, ewz, ewt in G′. For
example, for case (a), there should be 6 cases depending on if ewx and ewy are both
entering w, both leaving w, or one entering w and one leaving w (3 cases), multiplied
by the coloring, both of the same or not (2 cases). The case where w has two edges
leaving in the same color is impossible by (T1). So, by symmetry, only 5 cases remain
represented by figures a.k.0, for k = 1, . . . ,5, on Fig. 21 (in the notation α.k.l, a.k

indicates the line on the figures and � the column). For cases (b) and (c), there are
more cases to consider, but the analysis is similar. These cases are represented in the
first columns of Figs. 22 and 23. On these figures, a dotted half-edge represents the
possibility for an edge to be unidirected or bidirected. In the last case of each figure,
we have indicated where the edge is leaving in color 1, as there are two possibilities
(up or down).

In each case α.k, α ∈ {a, b, c}, we show how one can color and orient the edges of
G to obtain a Schnyder wood of G from the Schnyder wood of G′. Only the edges e,
eux , euy , evt , evz of G have to be specified; all the other edges of G keep the orien-
tation and coloring of their corresponding edge in G′. In each case α.k, there might
be several possibilities for coloring and orienting these edges to satisfy (T1). Only
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Fig. 22 Decontraction rules for case (b)

some of these possibilities, the ones that are useful for our purpose, are represented
on figures α.k.�, � ≥ 1, of Figs. 21 through 23. A dotted half-edge represents the fact
that the edge is unidirected or bidirected like the corresponding half-edge of G′.

In each case α.k, α ∈ {a, b, c}, we show that one of the colorings α.k.�, � ≥ 1,
gives a Schnyder wood of Type 1 of G. By Lemma 12, we just have to prove that,
in each case α.k, there is one coloring satisfying (T1’), (T2’), and (T3’). Properties
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Fig. 23 Decontraction rules for case (c)

(T1’) and (T3’) are satisfied for any colorings α.k.�, � ≥ 1, but this is not the case for
property (T2’). This explains why several possible colorings of G must be considered.

(T1’) One can easily check that in all the cases α.k.�, property (T1’) is satisfied
for every vertex of G. To do so one can consider the angle labeling around vertices w,
x, y, (z), (t) of G′ in the case α.k.0. Then one can see that this angle labeling ex-
ports well around vertices u,v, x, y, (z), (t) of G and thus the Schnyder property is
satisfied for these vertices. On Fig. 24, an example is given on how the angle labeling
is modified during the decontraction process. It corresponds to case c.2.1 where the
dotted half-edge is unidirected. We do not discuss this part in more detail, as it is easy
to check.
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Fig. 24 Example of (T1’) preservation during decontraction

Fig. 25 Example of (T3’) preservation during decontraction

(T3’) One can easily check that in all the cases α.k.�, property (T3’) is satisfied
for G. If (T3’) is not satisfied in G after applying one of the colorings α.k.�, then
there exist two monochromatic cycles C,C′ of different colors that are reversal. By
property (T3’) of Lemma 12, there are no reversal cycles in G′. Thus C,C′ have to
use a bidirected edge e′ of the figures that is newly created and distinct from edge e

and distinct from the half-dotted edges (otherwise the cycles are still reversal when e

is contracted). Only some cases have such an edge, and one can note that, for all these
cases, the cycle, after entering u or v by edge e′, must use the edge e that is either
unidirected or bidirected with different colors than e′, a contradiction. For example,
in case c.2.1 of Fig. 25, two reversal cycles of G that do not correspond to reversal
cycles when e is contracted, have to use edge evt . Then one of the two cycles is
entering v by evt in color 1 and thus has to continue by using the only edge leaving v

in color 1, edge e. As e and evt are colored differently, this is not possible. We do not
further detail this part, which is easy to check.

(T2’) Proving property (T2’) is the main difficulty of the proof. For each case α.k,
there is a case analysis considering the different ways in which the monochromatic
cycles of G′ go through w or not. We say that a monochromatic cycle C of G′ is safe
if C does not contain w. Depending on whether there are safe monochromatic cycles
or not for each color, there may be a different case α.k.� and a different argument that
is used to prove that property (T2’) is preserved.
• Case a.1: ewx and ewy are entering w in different colors.

We can assume by symmetry that ewx = e0(x) and ewy = e2(y) (case a.1.0 of
Fig. 21). We apply one of the colorings a.1.1, a.1.2, and a.1.3 of Fig. 21.
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We have a case analysis corresponding to whether there are monochromatic cycles
of G′ that are safe.
� Subcase a.1.{0,1,2}: There are safe monochromatic cycles of colors {0,1,2}.

Let C′
0,C

′
1,C

′
2 be safe monochromatic cycles of color 0,1,2 in G′. As the Schny-

der wood of G′ is of Type 1, they pairwise intersect in G′. Apply the coloring a.1.1
on G. As C′

0,C
′
1,C

′
2 do not contain vertex w, they are not modified in G. Thus, they

still pairwise intersect in G. So (T2’) is satisfied.
� Subcase a.1.{0,2}: There are safe monochromatic cycles of colors exactly {0,2}.

Let C′
0,C

′
2 be safe monochromatic cycles of color 0,2 in G′. Let C′

1 be a 1-cycle
in G′. As the Schnyder wood of G′ is of Type 1, C′

0,C
′
1,C

′
2 pairwise intersect in G′.

None of those intersections contains w as C′
0 and C′

2 do not contain w. By (T1), the
cycle C′

1 enters w in the sector ]ewx, ewy[ and leaves in the sector ]ewy, ewx[. Apply
the coloring a.1.1 on G. The cycle C′

1 is replaced by a new cycle C1 = C′
1 \ {w} ∪

{u,v}. The cycles C′
0,C

′
1,C

′
2 were intersecting outside w in G′ so C′

0,C1,C
′
2 are

intersecting in G. So (T2’) is satisfied.
� Subcase a.1.{1,2}: There are safe monochromatic cycles of colors exactly {1,2}.

Let C′
1,C

′
2 be safe monochromatic cycles of color 1,2 in G′. Let C′

0 be a 0-cycle
in G′. The cycles C′

0,C
′
1,C

′
2 pairwise intersect outside w. The cycle C′

0 enters w in
the sector [e1(w), ewx[, [ewx, ewx], or ]ewx, e2(w)]. Apply the coloring a.1.2 on G.
Depending on which of the three sectors C′

0 enters, it is replaced by one of the three
following cycles: C0 = C′

0 \{w}∪{u,v}, C0 = C′
0 \{w}∪{x, v}, C0 = C′

0 \{w}∪{v}.
In any of the three possibilities, C0,C

′
1,C

′
2 are intersecting in G. So (T2’) is satisfied.

� Subcase a.1.{0,1}: There are safe monochromatic cycles of colors exactly {0,1}.
This case is completely symmetric to the case a.1.{1,2}.

� Subcase a.1.{2}: There are safe monochromatic cycles of color 2 only.
Let C′

2 be a safe 2-cycle in G′. Let C′
0,C

′
1 be monochromatic cycles of color 0,1

in G′.
Suppose that there exists a path Q′

0 of color 0 from y to w such that this path
does not intersect C′

2. Suppose also that there exists a path Q′
1 of color 1 from y to w

such that this path does not intersect C′
2. Let C′′

0 = Q′
0 ∪ {ewy} and C′′

1 = Q′
1 ∪ {ewy}.

By Lemma 1, C′′
0 ,C′′

1 ,C′
2 are not contractible. Both C′′

0 ,C′′
1 do not intersect C′

2, so
by Lemma 2, they are both homotopic to C′

2. Thus, cycles C′′
0 ,C′′

1 are homotopic to
each other, contradicting Lemma 15 (with i = 2,w,y,Q′

0,Q
′
1). So we can assume

that one of Q′
0 or Q′

1 as above does not exist.
Suppose that in G′, there does not exist a path of color 0 from y to w such that

this path does not intersect C′
2. Apply the coloring a.1.1 on G. Cycle C′

1 is replaced
by C1 = C′

1 \ {w} ∪ {u,v}, and intersects C′
2. Let C0 be a 0-cycle of G. Cycle C0 has

to contain u or v or both, otherwise it is a safe cycle of G′ of color 0. In any case it
intersects C1. If C0 contains v, then C′

0 = C0 \ {v} ∪ {w}, and so C0 is intersecting
C′

2 and (T2’) is satisfied. Suppose now that C0 does not contain v. Then C0 contains
u and y, the extremity of the edge leaving u in color 0. Let Q0 be the part of C0
consisting of the path from y to u. The path Q′

0 = Q0 \ {u} ∪ {w} is from y to w.
Thus, by assumption, Q′

0 intersects C′
2. So C0 intersects C′

2 and (T2’) is satisfied.
Suppose now that in G′, there does not exist a path of color 1 from y to w such that

this path does not intersect C′
2. Apply the coloring a.1.2 on G. Depending on which

of the three sectors C′
0 enters, [e1(w), ewx[, [ewx, ewx], or ]ewx, e2(w)], it is replaced
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by one of the following three cycles: C0 = C′
0 \ {w} ∪ {u,v}, C0 = C′

0 \ {w} ∪ {x, v},
C0 = C′

0 \ {w}∪ {v}. In any of the three possibilities, C0 contains v and intersects C′
2.

Let C1 be a 1-cycle of G. Cycle C1 has to contain u or v or both, otherwise it is a
safe cycle of G′ of color 1. Vertex u has no edge entering it in color 1, so C1 does not
contain u and thus it contains v and intersects C0. Then C1 contains y, the extremity
of the edge leaving v in color 1. Let Q1 be the part of C1 consisting of the path
from y to v. The path Q′

1 = Q1 \ {v} ∪ {w} is from y to w. Thus, by assumption, Q′
1

intersects C′
2. So C1 intersects C′

2 and (T2’) is satisfied.
� Subcase a.1.{0}: There are safe monochromatic cycles of color 0 only.

This case is completely symmetric to the case a.1.{2}.
� Subcase a.1.{1}: There are safe monochromatic cycles of color 1 only.

Let C′
1 be a safe 1-cycle in G′. Let C′

0 and C′
2 be monochromatic cycles of color

0 and 2 in G′.
Suppose C′

0 is entering w in the sector ]ewx, e2(w)]. Apply the coloring a.1.3
on G. The 0-cycle C′

0 is replaced by C0 = C′
0 \ {w} ∪ {v} and thus contains v and

still intersects C′
1. Depending on which of the three sectors C′

2 enters, [e0(w), ewy[,
[ewy, ewy], or ]ewy, e1(w)], it is replaced by one of the following three cycles: C2 =
C′

2 \{w}∪{v}, C2 = C′
2 \{w}∪{y, v}, C2 = C′

2 \{w}∪{u,v}. In any case, C2 contains
v and still intersects C′

1. Cycle C0 and C2 intersect on v. So (T2’) is satisfied.
The case where C′

2 is entering w in the sector [e0(w), ewy[ is completely symmet-
ric and we apply the coloring a.1.2 on G.

It remains to deal with the case where C′
0 is entering w in the sector [e1(w), ewx]

and C′
2 is entering w in the sector [ewy, e1(w)]. Suppose that there exists a path

Q′
0 of color 0, from y to w, entering w in the sector [e1(w), ewx], such that this

path does not intersect C′
1. Suppose also that there exists a path Q′

2 of color 2, from
x to w, entering w in the sector [ewy, e1(w)], such that this path does not inter-
sect C′

1. Let C′′
0 = Q′

0 ∪ {ewy} and C′′
2 = Q′

2 ∪ {ewx}. By Lemma 1, C′′
0 ,C′

1,C
′′
2 are

not contractible. Cycles C′′
0 ,C′′

2 do not intersect C′
1, so by Lemma 2 they are homo-

topic to C′
1. Thus, cycles C′′

0 ,C′′
2 are homotopic to each other. Thus, by Lemma 16

(with i = 1,w,x, y,Q′
0,Q

′
2), we have C′′

0 = (C′′
2 )−1, contradicting (T3’) in G′. So

we can assume that one of Q′
0 or Q′

2 as above does not exist. By symmetry, sup-
pose that in G′ there does not exist a path of color 0, from y to w, entering w in
the sector [e1(w), ewx], such that this path does not intersect C′

1. Apply the col-
oring a.1.3 on G. Depending on which of the two sectors C′

2 enters, [ewy, ewy] or
]ewy, e1(w)], it is replaced by one of the following two cycles: C2 = C′

2 \{w}∪{y, v},
C2 = C′

2 \ {w} ∪ {u,v}. In any case, C2 still intersects C′
1. Let C0 be a 0-cycle of G.

Cycle C0 has to contain u or v or both, otherwise it is a safe cycle of G′ of color 0.
Suppose C0 does not contain u; then C′

0 = C0 \ {v} ∪ {w} and C′
0 is not entering w in

the sector [e1(w), ewx], a contradiction. So C0 contains u. Thus, C0 contains y, the
extremity of the edge leaving u in color 0, and it intersects C2. Let Q0 be the part of
C0 consisting of the path from y to u. The path Q′

0 = Q0 \ {u} ∪ {w} is from y to w

and entering w in the sector [e1(w), ewx]. Thus, by assumption, Q′
0 intersects C′

1. So
C0 intersects C′

1 and (T2’) is satisfied.
� Subcase a.1.{}: There are no safe monochromatic cycles.

Let C′
0,C

′
1,C

′
2 be monochromatic cycles of color 0,1,2 in G′. They all pairwise

intersect on w.
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Suppose first that C′
0 is entering w in the sector ]ewx, e2(w)]. Apply the coloring

a.1.3 on G. The 0-cycle C′
0 is replaced by C0 = C′

0 \ {w} ∪ {v} and thus contains v.
Depending on which of the three sectors C′

2 enters, [e0(w), ewy[, [ewy, ewy], or
]ewy, e1(w)], it is replaced by one of the following three cycles: C2 = C′

2 \ {w} ∪ {v},
C2 = C′

2 \ {w} ∪ {y, v}, C2 = C′
2 \ {w} ∪ {u,v}. In any case, C2 contains v. Let C1

be a 1-cycle in G. Cycle C1 has to contain u or v or both, otherwise it is a safe cycle
of G′ of color 1. Vertex u has no edge entering it in color 1, so C1 does not contain u

and thus it contains v. So C0,C1,C2 all intersect on v and (T2’) is satisfied.
The case where C′

2 is entering w in the sector [e0(w), ewy[ is completely symmet-
ric and we apply the coloring a.1.2 on G.

It remains to deal with the case where C′
0 is entering w in the sector [e1(w), ewx]

and C′
2 is entering w in the sector [ewy, e1(w)]. Apply the coloring a.1.1 on G. Cycle

C′
1 is replaced by C1 = C′

1 \ {w} ∪ {u,v}. Let C0 be a 0-cycle in G. Cycle C0 has
to contain u or v or both, otherwise it is a safe cycle of G′ of color 0. Suppose
C0 ∩ {v, x} = {v}; then C0 \ {v} ∪ {w} is a 0-cycle of G′ entering w in the sector
]ewx, e2(w)], contradicting the assumption on C′

0. Suppose C0 contains u; then C0
contains y, the extremity of the edge leaving u in color 0. So C0 contains {v, x}
or {u,y}. Similarly, C2 contains {v, y} or {u,x}. In any case, C0,C1,C2 pairwise
intersect. So (T2’) is satisfied.
• Case a.2: ewx and ewy have the same color; one is entering w, the other is leav-
ing w.

We can assume by symmetry that ewx = e1(x) and ewy = e1(w) (case a.2.0 of
Fig. 21). We apply one of the colorings a.2.1 and a.2.2 of Fig. 21.

We have a case analysis corresponding to whether there are monochromatic cycles
of G′ that are safe.
� Subcase a.2.{0,1,2}: There are safe monochromatic cycles of colors {0,1,2}.

Let C′
0,C

′
1,C

′
2 be safe monochromatic cycles of color 0,1,2 in G′. They pairwise

intersect in G′. Apply the coloring a.2.1 on G. C′
0,C

′
1,C

′
2 still pairwise intersect in G.

So (T2’) is satisfied.
� Subcase a.2.{0,2}: There are safe monochromatic cycles of colors exactly {0,2}.

Let C′
0,C

′
2 be safe monochromatic cycles of color 0,2 in G′. Let C′

1 be a 1-cycle
in G′. Cycles C′

0,C
′
2 still intersect in G. Apply the coloring a.2.1 on G. Depending

on which of the three sectors C′
1 enters, [e2(w), ewx[, [ewx, ewx], or ]ewx, e0(w)],

it is replaced by one of the following three cycles: C1 = C′
1 \ {w} ∪ {u,y}, C1 =

C′
1 \ {w} ∪ {x, v, y}, C1 = C′

1 \ {w} ∪ {v, y}. In any of the three possibilities, C1 still
intersects both C′

0,C
′
2. So (T2’) is satisfied.

� Subcase a.2.{1,2}: There are safe monochromatic cycles of colors exactly {1,2}.
Let C′

1,C
′
2 be safe monochromatic cycles of color 1,2 in G′. Let C′

0 be a 0-cycle
in G′. Cycles C′

1,C
′
2 still intersect in G. Apply the coloring a.2.2 on G. Depending

on which of the two sectors C′
0 enters, [ewy, ewy] or ]ewy, e2(w)], it is replaced by

one of the following two cycles: C0 = C′
0 \ {w} ∪ {y, v}, C0 = C′

0 \ {w} ∪ {u,v}. In
either of the two possibilities, C0 still intersects both C′

1,C
′
2. So (T2’) is satisfied.

� Subcase a.2.{0,1}: There are safe monochromatic cycles of colors exactly {0,1}.
This case is completely symmetric to the case a.2.{1,2}.

� Subcase a.2.{2}: There are safe monochromatic cycles of color 2 only.
Let C′

2 be a safe 2-cycle in G′. Let C′
0,C

′
1 be monochromatic cycles of color 0,1

in G′.
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Apply the coloring a.2.2 on G. Depending on which of the three sectors C′
1 enters,

[e2(w), ewx[, [ewx, ewx], or ]ewx, e0(w)], it is replaced by one of the following three
cycles: C1 = C′

1 \ {w} ∪ {u,y}, C1 = C′
1 \ {w} ∪ {x,u, y}, C1 = C′

1 \ {w} ∪ {v, y}.
Depending on which of the two sectors C′

0 enters, [ewy, ewy] or ]ewy, e2(w)], it is
replaced by one of the following two cycles: C0 = C′

0 \ {w} ∪ {y, v}, C0 = C′
0 \

{w} ∪ {u,v}. In any case, C0 and C1 intersect each other and intersect C′
2. So (T2’)

is satisfied.
� Subcase a.2.{0}: There are safe monochromatic cycles of color 0 only.

This case is completely symmetric to the case a.2.{0}.
� Subcase a.2.{1}: There are safe monochromatic cycles of color 1 only.

Let C′
1 be a safe 1-cycle in G′. Let C′

0,C
′
2 be monochromatic cycles of color 0,2

in G′. Suppose that there exists a path Q′
0 of color 0, from x to w, that does not

intersect C′
1. Suppose also that there exists a path Q′

2 of color 2, from x to w, that
does not intersect C′

1. Let C′′
0 = Q′

0 ∪ {ewx} and C′′
2 = Q′

2 ∪ {ewx}. By Lemma 1,
C′′

0 ,C′
1,C

′′
2 are not contractible. Both of C′′

0 ,C′′
2 do not intersect C′

1, so by Lemma 2,
they are both homotopic to C′

1. Thus, cycles C′′
0 ,C′′

2 are homotopic to each other,
contradicting Lemma 15 (with i = 1,w,x,Q′

0,Q
′
2). So we can assume that one of

Q′
0 or Q′

2 as above does not exist.
By symmetry, suppose that in G′ there does not exist a path of color 0, from x

to w, that does not intersect C′
1. Apply the coloring a.2.1 on G. Depending on which

of the two sectors C′
2 enters, [e1(w), ewy[, [ewy, ewy], it is replaced by one of the

following two cycles: C2 = C′
2 \ {w} ∪ {v,u}, C2 = C′

2 \ {w} ∪ {y,u}. In either of
the two possibilities C2 intersects C′

1. Let C0 be a 0-cycle of G. Cycle C0 has to
contain u or v or both, otherwise it is a safe cycle of G′ of color 0. Vertex v has no
edge entering it in color 0, so C0 does not contain v and so it contains u and x, the
extremity of the edge leaving u in color 0. Thus, C0 intersects C2. Let Q0 be the part
of C0 consisting of the path from x to u. The path Q′

0 = Q0 \ {u} ∪ {w} of G′ is from
x to w, and thus by assumption Q′

0 intersects C′
1. So C0 intersects C′

1 and (T2’) is
satisfied.
� Subcase a.2.{}: There are no safe monochromatic cycles.

Let C′
0,C

′
1,C

′
2 be monochromatic cycles of color 0,1,2 in G′.

Suppose C′
1 is entering w in the sector [e2(w), ewx]. Apply the coloring a.2.1

on G. Cycle C′
1 is replaced by C1 = C′

1 \ {w} ∪ {u,y} or C1 = C′
1 \ {w} ∪ {x, v, y}.

Cycle C′
0 is replaced by C0 = C′

0 \ {w} ∪ {u,x} or C0 = C′
0 \ {w} ∪ {y,u, x}. Cycle

C′
2 is replaced by C2 = C′

2 \ {w} ∪ {v,u} or C2 = C′
2 \ {w} ∪ {y,u}. So C0,C1,C2 all

intersect each other and (T2’) is satisfied.
The case where C′

1 is entering w in the sector [ewx, e0(w)] is completely symmet-
ric, and we apply the coloring a.2.2 on G.
• Cases a.3, a.4, a.5:

The proof is simpler for the remaining cases (cases a.3.0, a.4.0, a.5.0 on Fig. 21).
For each situation, there is only one way to extend the coloring to G in order to pre-
serve (T1’) and this coloring also preserves (T2’). Indeed, in each coloring of G, for
cases a.3.1, a.4.1, a.5.1 on Fig. 21, one can check that every non-safe monochromatic
cycle C′ is replaced by a cycle C with C′ \ {w} ∪ {u} ⊆ C. Thus, all non-safe cycles
intersect on u and a non-safe cycle of color i intersects all safe cycles of colors i − 1
and i + 1. So (T2’) is always satisfied.
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Fig. 26 (a) The graph obtained by contracting the edge e of the graph (b). It is not possible to color and
orient the black edges of (b) to obtain a Schnyder wood

It remains to analyze the situation for the decontraction cases (b) and (c). The
colorings that are needed are represented on Figs. 22 and 23. The proofs are similar
to those for case (a) and we omit them. �

Note that we are not able to prove a lemma analogous to Lemma 14 for Type 2
Schnyder woods. In the example of Fig. 26, it is not possible to decontract the
graph G′ (Fig. 26(a)) and extend its Schnyder wood to G (Fig. 26(b)) without modi-
fying the edges that are not incident to the contracted edge e. Indeed, if we keep the
edges non-incident to e unchanged, there are only two possible ways to extend the
coloring in order to preserve (T1), but none of them fulfills (T2).

9 Existence for Essentially 3-Connected Toroidal Maps

We are given a map G embedded on a surface. The angle map [22] of G is a map
A(G) on this surface whose vertices are the vertices of G plus the vertices of G∗
(i.e., the faces of G), and whose edges are the angles of G, each angle being incident
with the corresponding vertex and face of G. Note that if G contains no homotopic
multiple edges, then every face of G has degree at least three in A(G).

Mohar and Rosenstiehl [23] proved that a map G is essentially 2-connected if and
only if the angle map A of G has no pair of (multiple) edges bounding a disk (i.e.,
no walk of length 2 bounding a disk). As every face in an angle map is a quadrangle,
such a disk contains some vertices of G. The following claim naturally extends this
characterization to essentially 3-connected toroidal maps.

Lemma 17 A toroidal map G is essentially 3-connected if and only if the angle map
A(G) has no walk of length at most 4 bounding a disk which is not a face.
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Proof In G∞ any minimal separator of size 1 or 2, S = {v1} or S = {v1, v2},
corresponds to a separating cycle of length 2 or 4 in A(G∞), C = (v1, f1) or
C = (v1, f1, v2, f2), i.e., a cycle of length at most 4 bounding a disk D which is
not a face.

(�⇒) Any walk in A(G) of length at most 4 bounding a disk which is not a face
lifts to a cycle of length at most 4 bounding a disk which is not a face in A(G∞).
Thus, such a walk implies the existence of a small separator in G∞, contradicting its
3-connectedness.

(⇐�) According to [23], if G is essentially 2-connected, A(G) has no walk of
length 2 bounding a disk. Let us now show that if G is essentially 2-connected but
not essentially 3-connected, A(G) has a walk of length 4 bounding a disk which is
not a face.

If G is essentially 2-connected but not essentially 3-connected, then A(G∞) has
a cycle C of length 4 bounding a disk which is not a face, and this cycle corresponds
to a contractible walk W of length 4 in A(G). Since W is contractible, it contains
a subwalk bounding a disk. A(G) being bipartite, this subwalk has even length, and
since A(G) is essentially 2-connected, it has no such walk of length 2. Thus, W

bounds a disk. Finally, this disk is not a single face, since otherwise C would bound
a single face in A(G∞). �

A non-loop edge e of an essentially 3-connected toroidal map is contractible if
the contraction of e keeps the map essentially 3-connected. We have the following
lemma.

Lemma 18 An essentially 3-connected toroidal map that is not reduced to a single
vertex has a contractible edge.

Proof Let G be an essentially 3-connected toroidal map with at least 2 vertices. Note
that for any non-loop e, the map A(G/e) has no walk of length 2 bounding a disk
which is not a face; otherwise, A(G) contains a walk of length at most 4 bounding a
disk which is not a face and thus, by Lemma 17, G is not essentially 3-connected.

Suppose by contradiction that contracting any non-loop edge e of G yields a non-
essentially 3-connected map G/e. By Lemma 17, it means that the angle map A(G)

has no walk of length at most 4 bounding a disk which is not a face. For any non-
loop e, let W4(e) be the 4-walk of A(G/e) bounding a disk, which is maximal in
terms of the faces it contains. Among all the non-loop edges, let e be the one such that
the number of faces in W4(e) is minimum. Let W4(e) = (v1, f1, v2, f2) and assume
that the endpoints of e, say a and b, are contracted into v2 (see Fig. 27(a)). Note
that, by maximality of W4(e), v1 and v2 do not have any common neighbor f out
of W4(e), such that (v1, f, v2, f1) bounds a disk.

Assume one of f1 or f2 has a neighbor inside W4(e). By symmetry, assume v3
is a vertex inside W4(e) such that there is a face F = (v1, f1, v3, fw) in A(G/e),
with eventually fw = f2. Consider now the contraction of the edge v1v3. Let
P(v1, v3) = (v1, fx, vy, fz, v3) be the path from v1 to v3 corresponding to W4(v1v3)

and P(a, b) = (a, f2, v1, f1, b) the path corresponding to W4(e). Suppose that
fz = f2; then (v1, f2, v3, fw) bounds a face by Lemma 17 and fw has degree two
in A(G), a contradiction. So fz 
= f2.
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Fig. 27 Notation of the proof of Lemma 18

Fig. 28 Notation of the proof
of Lemma 18

Suppose that all the faces of W4(v1v3) are in W4(e). Then with F , W4(e) contains
more faces than W4(v1v3), a contradiction to the choice of e. So in A(G), P(v1, v3)

must cross the path P(a, b). Then vy or fz must intersect P(a, b). Suppose fz 
= f1.
Then vy = a or b. In this case, (v1, fx, v2, f1) bounds a disk, a contradiction. Thus,
fz = f1 and the cycle (v1, fx, vy, f1) bounds a face by Lemma 17. This implies that
W4(v1v3) bounds a face, a contradiction.

Assume now that neither f1 nor f2 has a neighbor inside W4(e). Let f ′
1, f ′

2, f3,
and f ′

3 be vertices of A(G) such that (v1, f1, b, f ′
1), (v1, f2, a, f ′

2), and (a, f3, b, f ′
3)

are faces (see Fig. 28). Suppose f ′
1 = f ′

2 = f ′
3. Then in A(G/e), the face f ′

1 is deleted
(of the two homotopic multiple edges between v1, v2 that are created, only one is
kept in G/e). Then W4(e) bounds a face, a contradiction. Thus, there exists some i

such that f ′
i 
= f ′

i+1. Assume that i = 1 (resp. i = 2 or 3), and let v3 and f ′′ be such
that there is a face (v1, f

′
1, v3, f

′′) in A(G) (resp. (a, f ′
2, v3, f

′′) or (b, f ′
3, v3, f

′′)).
As above, considering the contraction of the edge v1v3 (resp. av3 or bv3) yields a
contradiction. �
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Fig. 29 The two essentially 3-connected toroidal maps on one vertex

Fig. 30 The family of basic toroidal maps, having only Schnyder woods of Type 2

Fig. 31 The brick, an
essentially 3-connected toroidal
map with two vertices

Lemma 18 shows that an essentially 3-connected toroidal map can be contracted
step by step by keeping it essentially 3-connected until a map with just one vertex
is obtained. The two essentially 3-connected toroidal maps on one vertex are repre-
sented on Fig. 29 with a Schnyder wood. The graph of Fig. 29(a), the 3-loops, admits
a Schnyder wood of Type 1, and the graph of Fig. 29(b), the 2-loops, admits a Schny-
der wood of Type 2.

It would be convenient if one could contract any essentially 3-connected toroidal
map to obtain one of the two graphs of Fig. 29 and then decontract the graph to obtain
a Schnyder wood of the original graph. Unfortunately, for Type 2 Schnyder woods
we are not able to prove that property (T2) can be preserved during the decontraction
process (see Sect. 8). Fortunately, most essentially 3-connected toroidal maps admit
Schnyder woods of Type 1. A toroidal map is basic if it consists of a non-contractible
cycle on n vertices, n ≥ 1, plus n homotopic loops (see Fig. 30). We prove in this
section that non-basic essentially 3-connected toroidal maps admit Schnyder woods
of Type 1. For this purpose, instead of contracting these maps to one of the two graphs
of Fig. 29, we contract them to the graph of Fig. 29(a) or to the graph of Fig. 31, the
brick. (One can draw the universal cover of the brick to understand its name.)
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Lemma 19 A non-basic essentially 3-connected toroidal map can be contracted to
the 3-loops (Fig. 29(a)) or to the brick (Fig. 31).

Proof Let us prove the lemma by induction on the number of edges of the map. As
the 3-loop and the brick are the only non-basic essentially 3-connected toroidal maps
with at most 3 edges, the lemma holds for the maps with at most 3 edges. Consider
now a non-basic essentially 3-connected toroidal map G with at least 4 edges. As
G has at least 2 vertices, it has at least one contractible edge by Lemma 18. If G

has a contractible edge e whose contraction yields a non-basic map G′, then by the
induction hypothesis on G′ we are done. Let us prove that such an edge always exists.
We assume, by contradiction, that the contraction of any contractible edge e yields a
basic map G′. Let us denote vi , with 1 ≤ i ≤ n, the vertices of G′ in such a way that
(v1, v2, . . . , vn) is a cycle of G′. We can assume that v1 is the vertex resulting from
the contraction of e. Let u and v be the endpoints of e in G.

Suppose first that u or v is incident to a loop in G. By symmetry, we can assume
that v is incident to a loop and that u is in the cylinder between the loops around
v and vn (note that if n = 1 then vn = v), and note that u is the only vertex here.
Since G is non-basic and u has at least 3 incident edges, 2 of them go to the same
vertex but are non-homotopic. Since after the contraction of e there is only one edge
left in the cylinder, we can deduce that u has at least 2 edges in common with v. On
the other side since G is essentially 3-connected u has an edge e′ with vn. This edge
e′ is contractible, since its contraction yields a graph containing the basic graph on
n vertices. But since this graph has 2 non-homotopic edges linking (uvn) and v, it
is non-basic. So G has a contractible edge whose contraction produces a non-basic
graph, contradicting our assumption.

Suppose now that u and v do not have an incident loop; we thus have that G

contains a cycle C of length 2 containing e. Let e′ be the other edge of C. Since G

is essentially 3-connected, both u and v have at least degree three, and at least one of
them has an incident edge on the left (resp. right) of C. If n = 1, since G has at least 4
edges, there are 2 (non-homotopic) edges, say f1 and f2 between u and v and distinct
from e and e′. In this case, since the cycles (e, f1) and (e, f2) were not homotopic,
the edges f1 and f2 remain non-homotopic in G′. So in this case G has one vertex
and 3 edges, and it is thus non-basic. Assume now that n ≥ 2. In this case, u and
v are contained in a cylinder bordered by the loops at v2 and at vn (with eventually
n = 2). In this case, we can assume that u has at least one incident edge f1 on the
left of C to vn, and that v has at least one incident edge f2 on the right of C to v2.
In this case, one can contract f1 and note that the obtained graph, which contains
at least 3 non-homotopic edges around v (e, e′ and f2), is essentially 3-connected
and non-basic. So G has a contractible edge whose contraction produces a non-basic
graph, contradicting our assumption. �

Lemma 20 A basic toroidal map admits only Schnyder woods of Type 2.

Proof A basic toroidal map admits Schnyder woods of Type 2, as shown by Fig. 30.
Suppose that a basic toroidal map G on n vertices admits a Schnyder wood of Type 1.
Consider one of the vertical loops e and suppose by symmetry that it is oriented
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upward in color 1. In a Schnyder wood of Type 1, all the monochromatic cycles
of different colors are not homotopic; thus, all the loops homotopic to e are also
oriented upward in color 1 and they are not bi-oriented. There remains just a cycle on
n vertices for edges of color 0 and 2. Thus, the Schnyder wood is the one of Fig. 30,
a contradiction. �

We are now able to prove the following theorem.

Theorem 10 A toroidal graph admits a Schnyder wood of Type 1 if and only if it is
an essentially 3-connected non-basic toroidal map.

Proof (�⇒) If G is a toroidal graph given with a Schnyder wood of Type 1, then, by
Lemma 9, G is essentially 3-connected and by Lemma 20, G is not basic.

(⇐�) Let G be a non-basic essentially 3-connected toroidal map. By Lemma 19,
G can be contracted to the 3-loops or to the brick. Both of these graphs admit Schny-
der woods of Type 1 (see Figs. 29(a) and 31). So by Lemma 14 applied successively,
G admits a Schnyder wood of Type 1. �

Theorem 10 and Lemma 20 imply Theorem 1. One related open problem is to
characterize which essentially 3-connected toroidal maps have Schnyder woods of
Type 2.

Here is a remark about how to compute a Schnyder wood for an essentially 3-
connected toroidal triangulation. Instead of looking carefully at the technical proof
of Lemma 14 to determine which coloring of the decontracted graph must be chosen
among the possible choices, one can try the possible cases α.k.�, � ≥ 1, and then
check which obtained coloring is a Schnyder wood. To do so, one just has to check
if (T2’) is satisfied. Checking that (T2’) is satisfied can be done by the following
method: start from any vertex v, walk along P0(v),P1(v),P2(v), and mark the three
monochromatic cycles C0,C1,C2 reached by the three paths Pi . Property (T2’) is
then satisfied if the cycles C0,C1,C2 pairwise intersect.

The existence of Schnyder woods for toroidal triangulations implies the following
theorem.

Theorem 11 A toroidal triangulation contains three non-contractible and non-
homotopic cycles that are pairwise edge-disjoint.

Proof One just has to apply Theorem 10 to obtain a Schnyder wood of Type 1 and
then, for each color i, choose arbitrarily an i-cycle. These cycles are edge-disjoint
as, by Euler’s formula, there are no bi-oriented edges in Schnyder woods of toroidal
triangulations. �

The conclusion of Theorem 11 is weaker than the one of Theorem 8, but it is
not restricted to simple toroidal triangulations. Recall that Theorem 8 is not true for
general toroidal triangulations, as shown by the graph of Fig. 17.

A non-empty family R of linear orders on the vertex set V of a simple graph G is
called a realizer of G if for every edge e, and every vertex x not in e, there is some
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order <i∈ R so that y <i x for every y ∈ e. The dimension [10] of G is defined as
the least positive integer t for which G has a realizer of cardinality t . Realizers are
usually used on finite graphs, but here we allow G to be an infinite simple graph.

Schnyder woods were originally defined by Schnyder [26] to prove that a finite
planar graph G has dimension at most three. A consequence of Theorem 1 is an
analogous result for the universal cover of a toroidal graph.

Theorem 12 The universal cover of a toroidal graph has dimension at most three.

Proof By eventually adding edges to G, we may assume that G is a toroidal trian-
gulation. By Theorem 1, it admits a Schnyder wood. For i ∈ {0,1,2}, let <i be the
order induced by the inclusion of the regions Ri in G∞. That is, u <i v if and only if
Ri(u) � Ri(v). Let <′

i be any linear extension of <i and consider R= {<′
0,<

′
1,<

′
2}.

Let e be any edge of G∞ and v be any vertex of G∞ not in e. Edge e is in a region
Ri(v) for some i; thus, Ri(u) ⊆ Ri(v) for every u ∈ e by Lemma 8(i). As there are
no edges oriented in two directions in a Schnyder wood of a toroidal triangulation,
we have Ri(u) 
= Ri(v) and so u <i v. Thus R is a realizer of G∞. �

10 Orthogonal Surfaces

Given two points u = (u0, u1, u2) and v = (v0, v1, v2) in R3, we note u ∨ v =
(max(ui, vi))i=0,1,2 and u ∧ v = (min(ui, vi))i=0,1,2. We define an order ≥ among
the points in R3, in such a way that u ≥ v if ui ≥ vi for i = 0,1,2.

Given a set V of pairwise incomparable elements in R3, we define the set of ver-
tices that dominates V as DV = {u ∈ R3 | ∃v ∈ V such that u ≥ v}. The orthogonal
surface SV generated by V is the boundary of DV . (Note that orthogonal surfaces
are well defined even when V is an infinite set.) If u,v ∈ V and u ∨ v ∈ SV , then SV
contains the union of the two line segments joining u and v to u ∨ v. Such arcs are
called elbow geodesics. The orthogonal arc of v ∈ V in the direction of the standard
basis vector ei is the intersection of the ray v + λei with SV .

Let G be a planar map. A geodesic embedding of G on the orthogonal surface SV
is a drawing of G on SV satisfying the following:

(D1) There is a bijection between the vertices of G and V .
(D2) Every edge of G is an elbow geodesic.
(D3) Every orthogonal arc in SV is part of an edge of G.
(D4) There are no crossing edges in the embedding of G on SV .

Miller [20] (see also [8, 11]) proved that a geodesic embedding of a planar map
G on an orthogonal surface SV induces a Schnyder wood of G. The edges of G are
colored with the direction of the orthogonal arc contained in the edge. An orthogonal
arc intersecting the ray v + λei corresponds to the edge leaving v in color i. Edges
represented by two orthogonal arcs correspond to edges oriented in two directions.

Conversely, it has been proved that a Schnyder wood of a planar map G can be
used to obtain a geodesic embedding of G. Let G be a planar map given with a
Schnyder wood. The method is the following (see [8] for more details): For every
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vertex v, one can divide G into the three regions bounded by the three monochromatic
paths going out from v. The region vector associated to v is the vector obtained by
counting the number of faces in each of these three regions. The mapping of each
vertex on its region vector gives the geodesic embedding. (Note that in this approach,
the vertices are all mapped on the same plane, as the sum of the coordinates of each
region vector is equal to the total number of inner faces of the map.)

Our goal is to generalize geodesic embedding to the torus. More precisely, we
want to represent the universal cover of a toroidal map on an infinite and periodic
orthogonal surface.

Let G be a toroidal map. Consider any flat torus representation of G in a parallel-
ogram P . The graph G∞ is obtained by replicating P to tile the plane. Given any of
these parallelograms Q, let Qtop (resp. Qright) be the copy of P just above (resp. on
the right of) Q. Given a vertex v in Q, we denote vtop (resp. vright) its copies in Qtop

(resp. Qright).
A mapping of the vertices of G∞ in Rd , d ∈ {2,3}, is periodic with respect to

vectors S and S′ of Rd , if there exists a flat torus representation P of G such that for
any vertex v of G∞, vertex vtop is mapped on v + S and vright is mapped on v + S′.
A geodesic embedding of a toroidal map G is a geodesic embedding of G∞ on SV∞ ,
where V∞ is a periodic mapping of G∞ with respect to two non-collinear vectors
(see example of Fig. 5).

As in the plane, Schnyder woods can be used to obtain geodesic embeddings of
toroidal maps. For that purpose, we need to generalize the region vector method. The
idea is to use the regions Ri(v) to compute the coordinates of the vertex v of G∞.
The problem is that, contrarily to the planar case, these regions are unbounded and
contain an infinite number of faces. The method is thus generalized by the following.

Let G be a toroidal map, given with a Schnyder wood and a flat torus representa-
tion in a parallelogram P .

Recall that Ci = {C0
i , . . . ,C

ki−1
i } denotes the set of i-cycles of G such that there is

no i-cycle in the region R(C
j
i ,C

j+1
i ). Recall that Lj

i denotes the set of i-lines of G∞

corresponding to C
j
i . The positive side of an i-line is defined as the right side while

“walking” along the directed path by following the orientation of the edges colored i.

Lemma 21 For any vertex v, the two monochromatic lines Li−1(v) and Li+1(v)

intersect. Moreover, if the Schnyder wood is of Type 2.i, then Li+1(v) = (Li−1(v))−1

and v is situated on the right of Li+1(v).

Proof Let j, j ′ be such that Li−1(v) ∈ Lj

i−1 and Li+1(v) ∈ Lj ′
i+1. If the Schnyder

wood is of Type 1 or Type 2.j with j 
= i, then the two cycles C
j

i−1 and C
j ′
i+1 are not

homotopic, and so the two lines Li−1(v) and Li+1(v) intersect.
If the Schnyder wood is of Type 2.i, we consider the case where v ∈ Li−1(v), and

the case where v does not belong to either Li−1(v) or Li+1(v). Then v lies between
two consecutive (i + 1)-lines (which are also (i − 1)-lines). Let us denote those two
lines Li+1 and L′

i+1, such that L′
i+1 is situated on the right of Li+1 and v /∈ L′

i+1.
By property (T1), Pi+1(v) and Pi−1(v) cannot reach L′

i+1. Thus, Li+1 = Li+1(v) =
(Li−1(v))−1. �
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The size of the region R(C
j
i ,C

j+1
i ) of G, denoted f

j
i = |R(C

j
i ,C

j+1
i )|, is equal

to the number of faces in R(C
j
i ,C

j+1
i ). Remark that for each color, we have that

∑ki−1
j=0 f

j
i equals the total number of faces f of G. If L and L′ are consecutive i-

lines of G∞ with L ∈ Lj
i and L′ ∈ Lj+1

i , then the size of the (unbounded) region

R(L,L′), denoted |R(L,L′)|, is equal to f
j
i . If L and L′ are any i-lines, the size of

the (unbounded) region R(L,L′), denoted |R(L,L′)|, is equal to the sum of the size
of all the regions delimited by consecutive i-lines inside R(L,L′). For each color i,
choose arbitrarily an i-line L∗

i in L0
i that is used as an origin for i-lines. Given an

i-line L, we define the value fi(L) of L as follows: fi(L) = |R(L,L∗
i )| if L is on the

positive side of L∗
i and fi(L) = −|R(L,L∗

i )| otherwise.
Consider two vertices u,v such that Li−1(u) = Li−1(v) and Li+1(u) = Li+1(v).

Even if the two regions Ri(u) and Ri(v) are unbounded, their difference is bounded.
Let di(u, v) be the number of faces in Ri(u) \ Ri(v) minus the number of faces
in Ri(v) \ Ri(u). For any vertex, by Lemma 21, there exists zi(v), a vertex on the
intersection of the two lines Li−1(v) and Li+1(v). Let N be a constant ≥ n (in this
section we can have N = n, but in Sect. 12 we need to choose N bigger). We are now
able to define the region vector of a vertex of G∞, that is, a mapping of this vertex
in R3.

Definition 4 (Region vector) The i-th coordinate of the region vector of a vertex v

of G∞ is equal to vi = di(v, zi(v)) + N × (fi+1(Li+1(v)) − fi−1(Li−1(v))) (see
Fig. 32).

For each color i, let ci (resp. c′
i ), be the algebraic number of times an i-cycle is

traversing the vertical (resp. horizontal) side of the parallelogram P (which was the
parallelogram containing the flat torus representation of G) from right to left (resp.
from bottom to top). This number increases by one each time a monochromatic cycle
traverses the side in the given direction and decreases by one when it traverses in the
other direction. Let S and S′ be the two vectors of R3 with coordinates Si = N(ci+1 −
ci−1)f and S′

i = N(c′
i+1 − c′

i−1)f . Note that S0 + S1 + S2 = 0 and S′
0 + S′

1 + S′
2 = 0

We use the example of the toroidal map G of Fig. 2 to illustrate the region vec-
tor method. This toroidal map has n = 3 vertices, f = 4 faces, and e = 7 edges. Let
N = n = 3. There are two edges that are oriented in two directions. The Schny-
der wood is of Type 1, with two 1-cycles. We choose as origin the three bold
monochromatic lines of Fig. 33. We give them value 0 and compute the other val-
ues fi(L) as explained formally at the beginning of this section; i.e., we compute
the “number” of faces between L and the origin L∗ and put a minus if we are
on the left of L∗. (This corresponds to values indicated on the border of Fig. 33,
which are values 0,−4,−8,−12 for lines of color 0, values −4,−2,0,2,4 for
lines of color 1, and values 0,4 for lines of color 2.) Then we compute the re-
gion vector of the points according to Definition 4. For example, the point v of
Fig. 33 has the following values (the three points zi(v) are represented on the
figure): v0 = d0(v, z0(v)) + N × (f1(L1(v)) − f2(L2(v))) = 0 + 3(0 − 0) = 0,
v1 = d1(v, z1(v)) + N × (f2(L2(v)) − f0(L0(v))) = 0 + 3(0 − (−4)) = 12, v2 =
d2(v, z2(v)) + N × (f0(L0(v)) − f1(L1(v))) = 1 + 3(−4 − 0) = −11. We compute
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Fig. 32 Coordinate 1 of vertex v is equal to the number of faces in the region d+
1 , minus the number of

faces in the region d−
1 , plus N times (f 0

2 + f 1
2 ) − (−f 0

0 − f 1
0 )

similarly the region vectors of all the vertices that are in the black box represent-
ing one copy of the graph and let V = {(0,0,0), (0,12,−11), (6,12,−18)} be the
set of these vectors. Then we compute the ci ’s and c′

i ’s by algebraically counting
the number of times the monochromatic cycles cross the sides of the black box.
A monochromatic cycle of color 0 goes −1 time from right to left and 2 times
from bottom to top. So c0 = −1 and c′

0 = −2. Similarly, c1 = 0, c′
1 = 1, c2 = 1,

c′
2 = 0. Then we compute Si = N(ci+1 − ci−1)f and S′

i = N(c′
i+1 − c′

i−1)f and
obtain S = (−12,24,−12), S′ = (12,24,−36). Then the region vectors of the ver-
tices of G∞ are {u ∈ R3 | ∃v ∈ V, k1, k2 ∈ Z such that u = v + kS + k′S}. In this
example, the points are not coplanar; they lie on the two different planes of equations
x + y + z = 0 and x + y + z = 1. The geodesic embedding that is obtained by map-
ping each vertex to its region vector is the geodesic embedding of Fig. 5. The black
parallelogram has as sides the vectors S,S′ and represents a basic tile.

Lemma 22 The sum of the coordinates of a vertex v equals the number of faces in
the bounded region delimited by the lines L0(v), L1(v), and L2(v) if the Schnyder
wood is of Type 1, and this sum equals zero if the Schnyder wood is of Type 2.

Proof We have v0 + v1 + v2 = d0(v, z0(v)) + d1(v, z1(v)) + d2(v, z2(v)) =∑
i (|Ri(v) \ Ri(zi(v))| − |Ri(zi(v)) \ Ri(v)|). We use the characteristic function 1

to deal with infinite regions. We note 1(R), the function defined on the faces of
G∞ that has value 1 on each face of region R and 0 elsewhere. Given a function



110 Discrete Comput Geom (2014) 51:67–131

Fig. 33 Computation of the region vectors for the Schnyder wood of Fig. 2

g : F(G∞) −→ Z, we note that |g| = ∑
F∈F(G∞) g(F ) (when the sum is finite).

Thus,
∑

i vi = ∑
i (|1(Ri(v)\Ri(zi(v)))|− |1(Ri(zi(v))\Ri(v))|) = |∑i (1(Ri(v)\

Ri(zi(v)))−1(Ri(zi(v))\Ri(v)))|. Now we compute g = ∑
i (1(Ri(v)\Ri(zi(v)))−

1(Ri(zi(v)) \ Ri(v))). We have:

g =
∑

i

(
1
(
Ri(v) \ Ri

(
zi(v)

)) + 1
(
Ri(v) ∩ Ri

(
zi(v)

))

− 1
(
Ri

(
zi(v)

) \ Ri(v)
) − 1

(
Ri(v) ∩ Ri

(
zi(v)

)))

As Ri(v) \ Ri(zi(v)) and Ri(zi(v)) \ Ri(v) are disjoint from Ri(v) ∩ Ri(zi(v)), we
have:

g =
∑

i

(
1
(
Ri(v)

) − 1
(
Ri

(
zi(v)

))) =
∑

i

1
(
Ri(v)

) −
∑

i

1
(
Ri

(
zi(v)

))

Because the interior of the three regions Ri(v), for i = 0,1,2, is disjoint and spans the
whole plane P (by definition), we have

∑
i 1(Ri(v)) = 1(∪i (Ri(v))) = 1(P). More-

over, the regions Ri(zi(v)), for i = 0,1,2, are also disjoint and
∑

i 1(Ri(zi(v))) =
1(∪i (Ri(zi(v)))) = 1(P \ T ), where T is the bounded region delimited by the lines
L0(v), L1(v), and L2(v). So g = 1(P) − 1(P \ T ) = 1(T ). And thus

∑
i vi = |g| =

|1(T )|. �

Lemma 22 shows that if the Schnyder wood is of Type 1, then the set of points
are not necessarily coplanar as in the planar case [12], but all the copies of a vertex
lie on the same plane (the bounded region delimited by the lines L0(v), L1(v) and
L2(v) has the same number of faces for any copies of a vertex v). Surprisingly, for
Schnyder woods of Type 2, all the points are coplanar.
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Lemma 23 The mapping is periodic with respect to S and S′.

Proof Let v be any vertex of G∞. Then v
top
i − vi = N(fi+1(Li+1(v

top)) −
fi+1(Li+1(v))) − N(fi−1(Li−1(v

top)) − fi−1(Li−1(v))) = N(ci+1 − ci−1)f . So
vtop = v + S. Similarly, vright = v + S′. �

For each color i, let γi be the integer such that two monochromatic cycles of G of
respective colors i − 1 and i + 1 intersect exactly γi times, with the convention that
γi = 0 if the Schnyder wood is of Type 2.i. By Lemma 3, γi is properly defined and
does not depend on the choice of the monochromatic cycles. Note that if the Schnyder
wood is of Type 2.i, then γi−1 = γi+1 and if the Schnyder wood is not of Type 2.i, then
γi 
= 0. Let γ = max(γ0, γ1, γ2). Let Z0 = ((γ1 + γ2)Nf,−γ1Nf,−γ2Nf ), Z1 =
(−γ0Nf, (γ0 + γ2)Nf,−γ2Nf ), and Z2 = (−γ0Nf,−γ1Nf, (γ0 + γ1)Nf ).

Lemma 24 For any vertex u, we have {u + k0Z0 + k1Z1 + k2Z2 | k0, k1, k2 ∈ Z} ⊆
{u + kS + k′S′ | k, k′ ∈ Z}.
Proof Let u,v be two copies of the same vertex, such that v is the first copy of u

in the direction of L0(u). (That is, L0(u) = L0(v) and on the path P0(u) \ P0(v)

there are not two copies of the same vertex.) Then vi − ui = N(fi+1(Li+1(v)) −
fi+1(Li+1(u)))−N(fi−1(Li−1(v))−fi−1(Li−1(u))). We have |R(L0(v),L0(u))| =
0, |R(L1(v),L1(u))| = γ2f , and |R(L2(v),L2(u))| = γ1f . So v0 − u0 =
N(γ1 + γ2)f , v1 − u1 = −Nγ1f , and v2 − u2 = −Nγ2f . Thus, v = u + Z0, and
similarly for the other colors. So the first copy of u in the direction of Li(u) is equal
to u+Zi . By Lemma 23, all the copies of u are mapped on {u+kS +k′S′ | k, k′ ∈ Z},
and so we have the result. �

Lemma 25 We have dim(Z0,Z1,Z2) = 2, and if the Schnyder wood is not of
Type 2.i, then dim(Zi−1,Zi+1) = 2.

Proof We have γ0Z0 + γ1Z1 + γ2Z2 = 0 and so dim(Z0,Z1,Z2) ≤ 2. We can as-
sume by symmetry that the Schnyder wood is not of Type 2.1 and so γ1 
= 0. Thus,
Z0 
= 0 and Z2 
= 0. Suppose by contradiction that dim(Z0,Z2) = 1. Then there exist
α 
= 0, β 
= 0, such that αZ0 +βZ2 = 0. The sum of this equation for the coordinates
0 and 2 gives (α + β)γ1 = 0 and thus α = −β . Then the equation for coordinate 0
gives γ0 + γ1 + γ2 = 0, contradicting the fact that γ1 > 1 and γ0, γ2 ≥ 0. �

Lemma 26 The vectors S,S′ are not collinear.

Proof By Lemma 24, the set {u + k0Z0 + k1Z1 + k2Z2 | k0, k1, k2 ∈ Z} is a subset
of {u + kS + k′S′ | k, k′ ∈ Z}. By Lemma 25, we have dim(Z0,Z1,Z2) = 2, thus
dim(S,S′) = 2. �

Lemma 27 If u,v are two distinct vertices such that v is in Li−1(v), u is in Pi−1(v),
both u and v are in the region R(Li+1(u),Li+1(v)), and Li+1(u) and Li+1(v) are
two consecutive (i + 1)-lines with Li+1(u) ∈ Lj

i+1 (see Fig. 34), then di(zi(v), v) +
di(u, zi(u)) < (n − 1) × f

j

i+1.
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Fig. 34 The gray area,
corresponding to the quantity
di (zi (v), v) + di (u, zi (u)), has

size bounded by (n − 1) × f
j
i+1

Proof Let Qi+1(v) the subpath of Pi+1(v) between v and Li+1(v) (maybe Qi+1(v)

has length 0 if v = zi(v)). Let Qi+1(u) be the subpath of Pi+1(u) between u and
Li+1(u) (maybe Qi+1(u) has length 0 if u = zi(u)). The path Qi+1(v) cannot contain
two different copies of a vertex of G, otherwise Qi+1(v) will correspond to a non-
contractible cycle of G and thus will contain an edge of Li+1(v). So the length of
Qi+1(v) is ≤ n − 1.

The total number of times a copy of a given face of G can appear in the region
R = Ri(zi(v)) \ Ri(v), corresponding to di(zi(v), v), can be bounded as follows.
Region R is between two consecutive copies of Li+1(u). So in R, all the copies of
a given face are separated by a copy of Li−1(v). Each copy of Li−1(v) intersecting
R must intersect Qi+1(v) on a specific vertex. As Qi+1(v) has at most n vertices,
a given face can appear at most n − 1 times in R. Similarly, the total number of
times that a copy of a given face of G can appear in the region Ri(u) \ Ri(zi(u)),
corresponding to di(u, zi(u)), is ≤ (n − 1).

A given face of G can appear in only one of the two gray regions of Fig. 34.
So a face is counted ≤ n − 1 times in the quantity di(zi(v), v) + di(u, zi(u)). Only
the faces of the region R(C

j

i+1,C
j+1
i+1 ) can be counted, and there is at least one face

of R(C
j

i+1,C
j+1
i+1 ) (for example, one incident to v) that is not counted. So in total

di(zi(v), v) + di(u, zi(u)) ≤ (n − 1) × (f
j

i+1 − 1) < (n − 1) × f
j

i+1. �

Clearly, the symmetric of Lemma 27, where the roles of i + 1 and i − 1 are ex-
changed, is also true.

The bound of Lemma 27 is somehow sharp. In the example of Fig. 35, the
rectangle represents a toroidal map G and the universal cover is partially repre-
sented. If the map G has n vertices and f faces (n = 5 and f = 5 in the example),
then the gray region, representing the quantity d1(z1(v), v) + d1(u, z1(u)), has size
n(n−1)

2 = Ω(n × f ).

Lemma 28 Let u,v be vertices of G∞ such that Ri(u) ⊆ Ri(v), then ui ≤ vi .
Moreover, if Ri(u) � Ri(v), then vi − ui > (N − n)(|R(Li−1(u),Li−1(v))| +
|R(Li+1(u),Li+1(v))|) ≥ 0.
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Fig. 35 Example of a toroidal map where d1(u, z1(u)) has size Ω(n × f )

Fig. 36 Positions of u and v in the proof of Lemma 28

Proof We distinguish two cases depending on whether the Schnyder wood is of
Type 2.i or not.
• Case 1: The Schnyder wood is not of Type 2.i.

Suppose first that u and v are both in a region delimited by two consecutive lines

of color i−1 and two consecutive lines of color i+1. Let L
j

i−1,L
j+1
i−1 , Lj ′

i+1,L
j ′+1
i+1 be

these lines such that L
j+1
i−1 is on the positive side of L

j

i−1, Lj ′+1
i+1 is on the positive side

of L
j ′
i+1, and L�

k ∈ L�
k (see Fig. 36). We distinguish cases corresponding to equality

or not between lines Li−1(u), Li−1(v) and Li+1(u), Li+1(v).
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� Case 1.1: Li−1(u) = Li−1(v) and Li+1(u) = Li+1(v). Then vi − ui =
di(v, zi(v)) − di(u, zi(u)) = di(v,u). Thus clearly, if Ri(u) ⊆ Ri(v), then ui ≤ vi

and if Ri(u) � Ri(v), vi − ui > 0 = (N − n)(|R(Li−1(u),Li−1(v))| +
|R(Li+1(u),Li+1(v))|).
� Case 1.2: Li−1(u) = Li−1(v) and Li+1(u) 
= Li+1(v). As u ∈ Ri(v), we have

Li+1(u) = L
j ′
i+1 and Li+1(v) = L

j ′+1
i+1 . Then vi − ui = di(v, zi(v)) − di(u, zi(u)) +

N(fi+1(Li+1(v)) − fi+1(Li+1(u))) = di(v, zi(v)) − di(u, zi(u)) + Nf
j ′
i+1. Let u′

be the intersection of Pi+1(u) with L
j+1
i−1 (maybe u = u′). Let v′ be the intersection

of Pi+1(v) with L
j+1
i−1 (maybe v = v′). Since Li+1(u) 
= Li+1(v), we have u′ 
= v′.

Since u ∈ Ri(v), we have u′ ∈ Ri(v
′) and so u′ ∈ Pi−1(v

′). Then, by Lemma 27,

di(zi(v
′), v′)+di(u

′, zi(u
′)) < (n−1)f

j ′
i+1. If Li−1(u) = L

j+1
i−1 , then one can see that

di(v, zi(v)) − di(u, zi(u)) ≥ di(v
′, zi(v

′)) − di(u
′, zi(u

′)). If Li−1(u) = L
j

i−1, one

can see that di(v, zi(v)) − di(u, zi(u)) ≥ di(v
′, zi(v

′)) − di(u
′, zi(u

′)) − f
j ′
i+1. So fi-

nally, vi −ui = di(v, zi(v))−di(u, zi(u))+Nf
j ′
i+1 ≥ di(v

′, zi(v
′))−di(u

′, zi(u
′))+

(N − 1)f
j ′
i+1 > (N − n)f

j ′
i+1 = (N − n)(|R(Li−1(u),Li−1(v))| +

|R(Li+1(u),Li+1(v))|) ≥ 0.
� Case 1.3: Li−1(u) 
= Li−1(v) and Li+1(u) = Li+1(v). This case is completely
symmetric to the previous case.
� Case 1.4: Li−1(u) 
= Li−1(v) and Li+1(u) 
= Li+1(v). As u ∈ Ri(v), we

have Li+1(u) = L
j ′
i+1, Li+1(v) = L

j ′+1
i+1 , Li−1(u) = L

j+1
i−1 , and Li−1(v) = L

j

i−1.
Then vi − ui = di(v, zi(v)) − di(u, zi(u)) + N(fi+1(Li+1(v)) − fi+1(Li+1(u))) −
N(fi−1(Li−1(v)) − fi−1(Li−1(u))) = di(v, zi(v)) − di(u, zi(u)) + Nf

j ′
i+1 + Nf

j

i−1.

Let u′ be the intersection of Pi+1(u) with L
j+1
i−1 (maybe u = u′). Let u′′ be the inter-

section of Pi−1(u) with L
j ′
i+1 (maybe u = u′′). Let v′ be the intersection of Pi+1(v)

with L
j+1
i−1 (maybe v = v′). Let v′′ be the intersection of Pi−1(v) with L

j ′
i+1 (maybe

v = v′′). Since Li+1(u) 
= Li+1(v), we have u′ 
= v′. Since u ∈ Ri(v), we have
u′ ∈ Ri(v

′) and so u′ ∈ Pi−1(v
′). Then, by Lemma 27, di(zi(v

′), v′)+di(u
′, zi(u

′)) <

(n−1)f
j ′
i+1. Symmetrically, di(zi(v

′′), v′′)+di(u
′′, zi(u

′′)) < (n−1)f
j

i−1. Moreover,
we have di(v, zi(v))−di(u, zi(u)) ≥ di(v

′, zi(v
′))−di(u

′, zi(u
′))+di(v

′′, zi(v
′′))−

di(u
′′, zi(u

′′)) − f
j ′
i+1 − f

j

i−1. So finally, vi − ui = di(v, zi(v)) − di(u, zi(u)) +
Nf

j ′
i+1 + Nf

j

i−1 ≥ di(v
′, zi(v

′)) − di(u
′, zi(u

′)) + di(v
′′, zi(v

′′)) − di(u
′′, zi(u

′′)) +
(N − 1)f

j ′
i+1 + (N − 1)f

j

i−1 > (N − n)f
j ′
i+1 + (N − n)f

j

i−1 = (N − n)(|R(Li−1(u),

Li−1(v))| + |R(Li+1(u),Li+1(v))|) ≥ 0.
Suppose now that u and v do not lie in a region delimited by two consecutive lines

of color i − 1 and/or in a region delimited by two consecutive lines of color i + 1.
One can easily find distinct vertices w0, . . . ,wr (wi , 1 ≤ i < r chosen at intersec-
tions of monochromatic lines of colors i − 1 and i + 1) such that w0 = u, wr = v,
and for 0 ≤ � ≤ r −1, we have Ri(w�) � Ri(w�+1) and w�,w�+1 are both in a region
delimited by two consecutive lines of color i − 1 and in a region delimited by two
consecutive lines of color i +1. Thus, by the first part of the proof, (w�)i − (w�+1)i >

(N −n)(|R(Li−1(w�+1),Li−1(w�))|+|R(Li+1(w�+1),Li+1(w�))|). Thus vi −ui >
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(N − n)
∑

�(|R(Li−1(w�+1),Li−1(w�))| + |R(Li+1(w�+1),Li+1(w�))|). For any
a, b, c such that Ri(a) ⊆ Ri(b) ⊆ Ri(c), we have |R(Lj (a),Lj (b))| +
|R(Lj (b),Lj (c))| = |R(Lj (a),Lj (c))|. Thus, we obtain the result by summing the
size of the regions.
• Case 2: The Schnyder wood is of Type 2.i.

Suppose first that u and v are both in a region delimited by two consecutive lines
of color i + 1.

Let L
j

i+1,L
j+1
i+1 be these lines such that L

j+1
i+1 is on the positive side of L

j

i+1, and

L�
i+1 ∈ L�

i+1. We can assume that we do not have both u and v in L
j+1
i+1 (by eventually

choosing other consecutive lines of color i + 1). We consider two cases:
� Case 2.1: v /∈ L

j+1
i+1 . Then by Lemma 21, L

j

i+1 = Li+1(u) = (Li−1(u))−1 =
Li+1(v) = (Li−1(v))−1. Then vi − ui = di(v, zi(v)) − di(u, zi(u)) = di(v,u). Thus
clearly, if Ri(u) ⊆ Ri(v), then ui ≤ vi and if Ri(u) � Ri(v), then vi − ui > 0 =
(N − n)(|R(Li−1(u),Li−1(v))| + |R(Li+1(u),Li+1(v))|).
� Case 2.2: v ∈ L

j+1
i+1 . Then L

j+1
i+1 = Li+1(v) = (Li−1(v))−1 and di(v, zi(v)) = 0.

By assumption u /∈ L
j+1
i+1 and by Lemma 21, L

j

i+1 = Li+1(u) = (Li−1(u))−1.
Then vi − ui = di(v, zi(v)) − di(u, zi(u)) + N(fi+1(Li+1(v)) − fi+1(Li+1(u))) −
N(fi−1(Li−1(v)) − fi−1(Li−1(u))) = −di(u, zi(u)) + 2Nf

j

i+1. Let Li and L′
i

be two consecutive i-lines such that u lies in the region between them and L′
i

is on the right of Li . Let u′ be the intersection of Pi+1(u) with Li (maybe
u = u′). Let u′′ be the intersection of Pi−1(u) with L′

i (maybe u = u′′). Then, by

Lemma 27, di(u
′, zi(u

′)) < (n − 1)f
j

i+1 and di(u
′′, zi(u

′′)) < (n − 1)f
j

i+1. Thus,

we have di(u, zi(u)) ≤ di(u
′, zi(u

′)) + di(u
′′, zi(u

′′)) + f
j

i+1 < (2(n − 1) + 1)f
j

i+1.

So finally, vi − ui > −(2n − 1)f
j

i+1 + 2Nf
j

i+1 > 2(N − n)f
j

i+1 = (N − n) ×
(|R(Li−1(u),Li−1(v))| + |R(Li+1(u),Li+1(v))|) ≥ 0.

If u and v do not lie in a region delimited by two consecutive lines of color i + 1,
then as in case 1, one can find intermediate vertices to obtain the result. �

Lemma 29 If two vertices u,v are adjacent, then for each color i, we have
|vi − ui | ≤ 2Nf .

Proof Since u,v are adjacent, they are both in a region delimited by two con-
secutive lines of color i − 1 and in a region delimited by two consecutive lines
of color i + 1. Let L

j

i−1,L
j+1
i−1 be these two consecutive lines of color i − 1 and

L
j ′
i+1,L

j ′+1
i+1 these two consecutive lines of color i + 1 where L�

k ∈ L�
k , L

j+1
i−1 is on

the positive side of L
j

i−1, and L
j ′+1
i+1 is on the positive side of L

j ′
i+1 (see Fig. 36

when the Schnyder wood is not of Type 2.i). If the Schnyder wood is of Type 2.i,

we assume that L
j+1
i−1 = (L

j ′
i+1)

−1 and L
j

i−1 = (L
j ′+1
i+1 )−1. Let z be a vertex on

the intersection of L
j+1
i−1 and L

j ′
i+1. Let z′ be a vertex on the intersection of L

j

i−1

and L
j ′+1
i+1 . Thus, we have Ri(z) ⊆ Ri(u) ⊆ Ri(z

′) and Ri(z) ⊆ Ri(v) ⊆ Ri(z
′). So by

Lemma 28, zi ≤ ui ≤ z′
i and zi ≤ vi ≤ z′

i . So |vi − ui | ≤ z′
i − zi = N(fi+1(L

j ′+1
i+1 ) −

fi+1(L
j ′
i+1)) − N(fi−1(L

j

i−1) − fi−1(L
j+1
i−1 )) = Nf

j ′
i+1 + Nf

j

i−1 ≤ 2Nf . �
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We are now able to prove the following theorem.

Theorem 13 If G is a toroidal map given with a Schnyder wood, then the mapping
of each vertex of G∞ on its region vector gives a geodesic embedding of G.

Proof By Lemmas 23 and 26, the mapping of G∞ on its region vector is periodic
with respect to S, S′ that are not collinear. For any pair u,v of distinct vertices of G∞,
by Lemma 8(iii), there exists i, j with Ri(u) � Ri(v) and Rj (v) � Rj (u); thus, by
Lemma 28, ui < vi and vj < uj . So V∞ is a set of pairwise incomparable elements
of R3.

(D1) V∞ is a set of pairwise incomparable elements, so the mapping between
vertices of G∞ and V∞ is a bijection.

(D2) Let e = uv be an edge of G∞. We show that w = u∨v is on the surface SV∞ .
By definition, u ∨ v is in DV∞ . Suppose, by contradiction, that w /∈ SV∞ . Then there
exists x ∈ V∞ with x < w. Let x also denote the corresponding vertex of G∞.
Edge e is in a region Ri(x) for some i. So u,v ∈ Ri(x) and thus by Lemma 8(i),
Ri(u) ⊆ Ri(x) and Ri(v) ⊆ Ri(x). Then by Lemma 28, wi = max(ui, vi) ≤ xi ,
a contradiction. Thus, the elbow geodesic between u and v is on the surface.

(D3) Consider a vertex v ∈ V and a color i. Let u be the extremity of the arc ei(v).
We have u ∈ Ri−1(v) and u ∈ Ri+1(v), so by Lemma 8(i), Ri−1(u) ⊆ Ri−1(v) and
Ri+1(u) ⊆ Ri+1(v). Thus, by Lemma 8(iii), Ri(v) � Ri(u). So, by Lemma 28,
vi < ui , ui−1 ≤ vi−1, and ui+1 ≤ vi+1. So the orthogonal arc of vertex v in the direc-
tion of the basis vector ei is part of the elbow geodesic of the edge ei(v).

(D4) Suppose there exists a pair of crossing edges e = uv and e′ = u′v′ on the
surface SV∞ . The two edges e, e′ cannot intersect on orthogonal arcs, so they intersect
on a plane orthogonal to one of the coordinate axes. Up to symmetry we may assume
that we are in the situation of Fig. 37 with u1 = u′

1, u2 > u′
2, and v2 < v′

2. Between
u and u′, there is a path consisting of orthogonal arcs only. With (D3), this implies
that there is a bidirected path P ∗ colored 0 from u to u′ and colored 2 from u′ to u.
We have u ∈ R2(v), so by Lemma 8(i), R2(u) ⊆ R2(v). We have u′ ∈ R2(u), so
u′ ∈ R2(v). If P0(v) contains u′, then there is a contractible cycle containing v,u,u′
in G1 ∪ G−1

0 ∪ G−1
2 , contradicting Lemma 1, so P0(v) does not contain u′. If P1(v)

contains u′, then u′ ∈ P1(u) ∩ P0(u), contradicting Lemma 7. So u′ ∈ R◦
2(v). Thus,

the edge u′v′ implies that v′ ∈ R2(v). So by Lemma 28, v′
2 ≤ v2, a contradiction. �

Theorems 1 and 13 imply Theorem 3.
One can ask: What is the “size” of the obtained geodesic embedding of Theo-

rem 13? Of course, this mapping is infinite so there is no real size, but as the object
is periodic, one can consider the smallest size of the vectors such that the mapping
is periodic with respect to them. There are several such pairs of vectors, one is S,S′.
Recall that Si = N(ci+1 − ci−1)f and S′

i = N(c′
i+1 − c′

i−1)f . Unfortunately, the size
of S,S′ can be arbitrarily large. Indeed, the values of ci+1 − ci−1 and c′

i+1 − c′
i−1 are

unbounded, as a toroidal map can be artificially “very twisted” in the considered flat
torus representation (independent of the number of vertices or faces). Nevertheless,
we can prove the existence of bounded size vectors for which the mapping is periodic
with respect to them.
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Fig. 37 A pair of crossing
elbow geodesics

Lemma 30 If G is a toroidal map given with a Schnyder wood, then the mapping of
each vertex of G∞ on its region vector gives a periodic mapping of G∞ with respect
to non-collinear vectors Y and Y ′, where the size of Y and Y ′ is in O(γNf ). In
general, we have γ ≤ n, and in the case where G is a simple toroidal triangulation
given with a Schnyder wood obtained by Theorem 9, we have γ = 1.

Proof By Lemma 24, the vectors Zi−1,Zi+1 (when the Schnyder wood is not of
Type 2.i) span a subset of S,S′ (it can happen that this subset is strict). Thus, in
the parallelogram delimited by the vectors Zi−1,Zi+1 (that is, a parallelogram by
Lemma 25), there is a parallelogram with sides Y,Y ′ containing a copy of V . The
size of the vectors Zi is in O(γNf ) and so the size of Y and Y ′ is also.

In general, we have γi ≤ n, as each intersection between two monochromatic cy-
cles of G of color i − 1 and i + 1 corresponds to a different vertex of G and thus
γ ≤ n. In the case of simple toroidal triangulation given with a Schnyder wood ob-
tained by Theorem 9, we have, for each color i, γi = 1, and thus γ = 1. �

As in the plane, one can give weights to faces of G. Then all their copies in G∞
have the same weight, and instead of counting the number of faces in each region one
can compute the weighted sum.

Note that the geodesic embeddings of Theorem 13 are not necessarily rigid.
A geodesic embedding is rigid [11, 20] if for every pair u,v ∈ V such that u ∨ v is
in SV , u and v are the only elements of V that are dominated by u ∨ v. The geodesic
embedding of Fig. 5 is not rigid, as the bend corresponding to the loop of color 1 is
dominated by three vertices of G∞. We do not know if it is possible to build a rigid
geodesic embedding from the Schnyder wood of a toroidal map. Maybe a technique
similar to the one presented in [11] can be generalized to the torus.

It has already been mentioned that in the geodesic embeddings of Theorem 13 the
points corresponding to vertices are not coplanar. The problem of building a coplanar
geodesic embedding from the Schnyder wood of a toroidal map is open. In the plane,
there are some examples of maps G [11] for which it is not possible to require both
rigidity and coplanarity. Thus, the same is true in the torus for the graph G+.

Another question related to coplanarity is whether one can require that the points
of the orthogonal surface corresponding to edges of the graph (i.e., bends) are copla-
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nar. This property is related to contact representation by homotopic triangles [11]. It
is known that in the plane, not all Schnyder woods are supported by such surfaces.
Kratochvil’s conjecture [19], recently proved [17], states that every 4-connected pla-
nar triangulation admits a contact representation by homothetic triangles. Can this be
extended to the torus?

When considering not necessarily homothetic triangles, it has been proved [14]
that there is a bijection between Schnyder woods of planar triangulations and con-
tact representations by triangles. This result has been generalized to internally 3-
connected planar maps [16] by exhibiting a bijection between Schnyder woods of
internally 3-connected planar maps and primal-dual contact representations by tri-
angles (i.e., representations where both the primal and the dual are represented). It
would be interesting to generalize these results to the torus.

11 Duality of Orthogonal Surfaces

Given an orthogonal surface generated by V , let FV be the maximal points of SV ,
i.e., the points of SV that are not dominated by any vertex of SV . If A,B ∈ FV and
A ∧ B ∈ SV , then SV contains the union of the two line segments joining A and B

to A ∧ B . Such arcs are called dual elbow geodesics. The dual orthogonal arc of
A ∈ FV in the direction of the standard basis vector ei is the intersection of the ray
A + λei with SV .

Given a toroidal map G, let G∞∗ be the dual of G∞. A dual geodesic embedding
of G is a drawing of G∞∗ on the orthogonal surface SV∞ , where V∞ is a periodic
mapping of G∞ with respect to two non-collinear vectors, satisfying the following
(see the example of Fig. 38):

(D1*) There is a bijection between the vertices of G∞∗ and FV∞ .
(D2*) Every edge of G∞∗ is a dual elbow geodesic.
(D3*) Every dual orthogonal arc in SV∞ is part of an edge of G∞∗.
(D4*) There are no crossing edges in the embedding of G∞∗ on SV∞ .

Let G be a toroidal map given with a Schnyder wood. Consider the mapping of
each vertex on its region vector. We consider the dual of the Schnyder wood of G.
By Lemma 11, it is a Schnyder wood of G∗. A face F of G∞ is mapped on the point∨

v∈F v. Let G̃∞ be a simultaneous drawing of G∞ and G∞∗ such that only dual
edges intersect. To avoid confusion, we denote Ri the regions of the primal Schnyder
wood and R∗

i the regions of the dual Schnyder wood.

Lemma 31 For any face F of G∞, we have that
∨

v∈F v is a maximal point of SV∞ .

Proof Let F be a face of G∞. For any vertex u of V∞, there exists a color i, such that
the face F is in the region Ri(u). Thus for v ∈ F , we have v ∈ Ri(u). By Lemma 28,
we have vi ≤ ui and so Fi ≤ ui . So F = ∨

v∈F v is a point of SV∞ .
Suppose, by contradiction, that F is not a maximal point of SV∞ . Then there is a

point α ∈ SV∞ that dominates F and, for at least one coordinate j , we have Fj < αj .
By Lemma 10, the angles at F form, in counterclockwise order, non-empty intervals



Discrete Comput Geom (2014) 51:67–131 119

Fig. 38 Dual geodesic embedding of the toroidal map of Fig. 2

of 0’s, 1’s, and 2’s. For each color, let zi be a vertex of F with angle i. We have that
F is in the region Ri(z

i). So zi−1 ∈ Ri(z
i) and by Lemma 8(i), we have Ri(z

i−1) ⊆
Ri(z

i). Since F is in Ri−1(z
i−1), it is not in Ri(z

i−1) and thus Ri(z
i−1) � Ri(z

i).
Then by Lemma 28, we have (zi−1)i < (zi)i and symmetrically (zi+1)i < (zi)i . So
Fj−1 = (zj−1)j−1 > (zj )j−1 and Fj+1 > (zj )j+1. Thus, α strictly dominates zj ,
a contradiction to α ∈ SV∞ . Thus, F is a maximal point of SV∞ . �

Lemma 32 If two faces A,B are such that R∗
i (B) ⊆ R∗

i (A), then Ai ≤ Bi .

Proof Let v ∈ B be a vertex whose angle at B is labeled i. We have v ∈ R∗
i (B) and

so v ∈ R∗
i (A). In G̃∞, the path Pi(v) cannot leave R∗

i (A), the path Pi+1(v) cannot
intersect Pi+1(A), and the path Pi−1(v) cannot intersect Pi−1(A). Thus, Pi+1(v)

intersects Pi−1(A) and the path Pi−1(v) cannot intersect Pi+1(A). So A ∈ Ri(v).
Thus, for all u ∈ A, we have u ∈ Ri(v), so Ri(u) ⊆ Ri(v), and so ui ≤ vi . Then
Ai = maxu∈A ui ≤ vi ≤ maxw∈B wi = Bi . �

Theorem 14 If G is a toroidal map given with a Schnyder wood and each vertex of
G∞ is mapped on its region vector, then the mapping of each face of G∞∗ on the
point

∨
v∈F v gives a dual geodesic embedding of G.

Proof By Lemmas 23 and 26, the mapping is periodic with respect to non-collinear
vectors.

(D1*) Consider a counting of elements on the orthogonal surface, where we count
two copies of the same object just once (note that we are on an infinite and periodic
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object). We have that the sum of primal orthogonal arcs plus dual ones is exactly 3m.
There are 3n primal orthogonal arcs and thus there are 3m−3n = 3f dual orthogonal
arcs. Each maximal point of SV∞ is incident to 3 dual orthogonal arcs and there is no
dual orthogonal arc incident to two distinct maximal points. So there are f maximal
points. Thus by Lemma 31, we have a bijection between faces of G∞ and maximal
points of SV∞ .

Let V∞∗ be the maximal points of SV∞ . Let D∗
V∞ ={A ∈R3 | ∃B ∈ V∞∗ such that

A ≤ B}. Note that the boundary of D∗
V∞ is SV∞ .

(D2*) Let e = AB be an edge of G∞∗. We show that w = A ∧ B is on the sur-
face SV∞ . By definition, w is in D∗

V∞ . Suppose, by contradiction, that w /∈ SV∞ . Then
there exists C, a maximal point of SV∞ with w < C. By the bijection (D1*) between
maximal points and vertices of G∞∗, the point C corresponds to a vertex of G∞∗,
also denoted C. Edge e is in a region R∗

i (C) for some i. So A,B ∈ R∗
i (C) and thus,

by Lemma 8(i), R∗
i (A) ⊆ R∗

i (C) and R∗
i (B) ⊆ R∗

i (C). Then by Lemma 32, we have
Ci ≤ min(Ai,Bi) = wi , a contradiction. Thus, the dual elbow geodesic between A

and B is also on the surface.
(D3*) Consider a vertex A of G∞∗ and a color i. Let B be the extremity

of the arc ei(A). We have B ∈ R∗
i−1(A) and B ∈ R∗

i+1(A), so by Lemma 8(i),
R∗

i−1(B) ⊆ R∗
i−1(A) and R∗

i+1(B) ⊆ R∗
i+1(A). Thus by Lemma 32, Ai−1 ≤ Bi−1

and Ai+1 ≤ Bi+1. As A and B are distinct maximal points of SV∞ , they are incom-
parable, and thus Bi < Ai . So the dual orthogonal arc of vertex A in the direction of
the basis vector ei is part of edge ei(A).

(D4*) Suppose there exists a pair of crossing edges e = AB and e′ = A′B ′ of G∞∗
on the surface SV∞ . The two edges e, e′ cannot intersect on orthogonal arcs, so they
intersect on a plane orthogonal to one of the coordinate axes. Up to symmetry we
may assume that we are in the situation A1 = A′

1, A′
0 > A0, and B ′

0 < B0. Between
A and A′ there is a path consisting of orthogonal arcs only. With (D3*), this implies
that there is a bidirected path P ∗ colored 2 from A to A′ and colored 0 from A′ to A.
We have A ∈ R0(B), so by Lemma 8(i), R0(A) ⊆ R0(B). We have A′ ∈ R0(A), so
A′ ∈ R0(B). If P2(B) contains A′, then there is a contractible cycle containing A,
A′, B in G∗

1 ∪ G∗−1
0 ∪ G∗−1

2 , contradicting Lemma 1, so P2(B) does not contain A′.
If P1(B) contains A′, then A′ ∈ P1(A) ∩ P2(A), contradicting Lemma 7. So A′ ∈
R◦

0(B). Thus, the edge A′B ′ implies that B ′ ∈ R0(B). So by Lemma 32, B ′
0 ≥ B0,

a contradiction. �

Theorems 13 and 14 can be combined to obtain a simultaneous representation of
a Schnyder wood and its dual on an orthogonal surface. The projection of this 3-
dimensional object on the plane of the equation x + y + z = 0 gives a representation
of the primal and the dual where edges are allowed to have one bend and two dual
edges have to cross on their bends (see the example of Fig. 39).

Theorem 15 An essentially 3-connected toroidal map admits a simultaneous flat
torus representation of the primal and the dual where edges are allowed to have
one bend and two dual edges have to cross on their bends. Such a representation is
contained in a (triangular) grid of size O(n2f ) × O(n2f ) in general and O(nf ) ×
O(nf ) if the map is a simple triangulation. Furthermore, the length of the edges are
in O(nf ).
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Fig. 39 Simultaneous
representation of the primal and
the dual of the toroidal map of
Fig. 2 with edges having one
bend (in gray)

Proof Let G be an essentially 3-connected toroidal map. By Theorem 1 (or Theo-
rem 9 if G is a simple triangulation), G admits a Schnyder wood (where monochro-
matic cycles of different colors intersect just once if G is simple). By Theorems 13
and 14, the mapping of each vertex of G∞ on its region vector gives a primal and
dual geodesic embedding. Thus, the projection of this embedding on the plane of the
equation x +y +z = 0 gives a representation of the primal and the dual of G∞ where
edges are allowed to have one bend and two dual edges have to cross on their bends.

By Lemma 30, the obtained mapping is a periodic mapping of G∞ with respect to
non-collinear vectors Y and Y ′ where the size of Y and Y ′ is in O(γNf ), with γ ≤ n

in general and γ = 1 in case of a simple triangulation. Let N = n. The embedding
gives a representation in the flat torus of sides Y,Y ′ where the size of the vectors Y

and Y ′ is in O(n2f ) in general and in O(nf ) if the graph is simple and the Schnyder
wood is obtained by Theorem 9. By Lemma 29, the lengths of the edges in this
representation are in O(nf ). �

12 Straight-Line Representation of Toroidal Maps

The geodesic embedding obtained by the region vector method can be used to obtain
a straight-line representation of a toroidal map (see Fig. 40). For this purpose, we
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Fig. 40 Straight-line
representation of the graph of
Fig. 2 obtained by projecting the
geodesic embedding of Fig. 5

have to choose N bigger than previously. Note that Fig. 40 is the projection of the
geodesic embedding of Fig. 5 obtained with the value of N = n. In this particular
case this gives a straight-line representation, but in this section we only prove that
such a technique works for triangulations and for N sufficiently large. To obtain a
straight-line representation of a general toroidal map, one first has to triangulate it.

Let G be a toroidal triangulation given with a Schnyder wood and V ∞ the set of
region vectors of vertices of G∞. The Schnyder wood is of Type 1 by Theorem 7.
Recall that γi is the integer such that two monochromatic cycles of G of colors i − 1
and i + 1 intersect exactly γi times.

Lemma 33 For any vertex v, the number of faces in the bounded region delimited by
the three lines Li(v) is strictly less than (5 min(γi) + max(γi))f .

Proof Suppose by symmetry that min(γi) = γ1. Let Li = Li(v) and zi = zi(v). Let T

be the bounded region delimited by the three monochromatic lines Li . The boundary
of T is a cycle C oriented clockwise or counterclockwise. Assume that C is oriented
counterclockwise (the proof is similar if oriented clockwise). The region T is on the
left sides of the lines Li . We have zi−1 ∈ Pi(zi+1).

We define, for j, k ∈ N, monochromatic lines L2(j), L0(k) and vertices z(j, k) as
follows (see Fig. 41). Let L2(1) be the first 2-line intersecting L0 \ {z1} while walk-
ing from z1, along L0 in the direction of L0. Let L0(1) be the first 0-line of color 0
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Fig. 41 Notation of the proof of Lemma 33

intersecting L2 \ {z1} while walking from z1, along L2 in the reverse direction of L2.
Let z(1,1) be the intersection between L2(1) and L0(1). Let z(j,1), j ≥ 0, be the
consecutive copies of z(1,1) along L0(1) such that z(j + 1,1) is after z(j,1) in the
direction of L0(1). Let L2(j), j ≥ 0, be the 2-line of color 2 containing z(j,1). Note
that we may have L2 = L2(0), but in any case L2 is between L2(0) and L2(1). Let
z(j, k), k ≥ 0, be the consecutive copies of z(j,1) along L2(j) such that z(j, k+1) is
after z(j, k) in the reverse direction of L2(j). Let L0(k), k ≥ 0, be the 0-line contain-
ing z(1, k). Note that we may have L0 = L0(0), but in any case L0 is between L0(0)

and L0(1). Let S(j, k) be the region delimited by L2(j),L2(j +1),L0(k),L0(k+1).
All the regions S(j, k) are copies of S(0,0). The region S(0,0) may contain several
copies of a face of G, but the number of copies of a face in S(0,0) is equal to γ1. Let
R be the unbounded region situated on the right of L0(1) and on the right of L2(1). As
P0(v) cannot intersect L0(1) and P2(v) cannot intersect L2(1), vertex v is in R. Let
P(j, k) be the subpath of L0(k) between z(j, k) and z(j + 1, k). All the lines L0(k)

are composed only of copies of P(0,0). The interior vertices of the path P(0,0) can-
not contains two copies of the same vertex, otherwise there will be a vertex z(j, k)

between z(0,0) and z(1,0). Thus, all interior vertices of a path P(j, k) correspond
to distinct vertices of G.

The Schnyder wood is of Type 1, thus 1-lines are crossing 0-lines. As a line L0(k)

is composed only of copies of P(0,0), any path P(j, k) is crossed by a 1-line. Let
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L′
1 be the first 1-line crossing P(1,1) on a vertex x while walking from z(1,1)

along L0(1). By (T1), line L′
1 is not intersecting R \ {z(1,1)}. As v ∈ R, we have

that L1 is on the left of L′
1 (maybe L1 = L′

1). Thus, the region T is included in the
region T ′ delimited by L0,L

′
1,L2.

Let y be the vertex where L′
1 is leaving S(1,1). We claim that y ∈ L2(1). Note that

by (T1), we have y ∈ L2(1)∪P(1,2). Suppose, by contradiction, that y is an interior
vertex of P(1,2). Let dx be the length of the subpath of P(1,1) between z(1,1)

and x. Let dy be the length of the subpath of P(1,2) between z(1,2) and y. Suppose
dy < dx ; then there should be a distinct copy of L′

1 intersecting P(1,1) between
z(1,1) and x on a copy of y, a contradiction to the choice of L′

1. So dx ≤ dy . Let A

be the subpath of L′
1 between x and y. Let B be the subpath of P(1,1) between x

and the copy of y (if dx = dy , then B is just a single vertex). Consider all the copies
of A and B between lines L2(1) and L2(2). They form an infinite line L situated on
the right of L2(1) that prevents L′

1 from crossing L2(1), a contradiction.
By the positions of x and y, we have that L′

1 intersects S(0,1) and S(1,0). We
claim that L′

1 cannot intersect both S(0,3) and S(3,0). Suppose by contradiction that
L′

1 intersects both S(0,3) and S(3,0). Then L′
1 is crossing S(0,2) without crossing

L2(0) or L2(1). Similarly, L′
1 is crossing S(2,0) without crossing L0(0) or L0(1).

Thus, by superposing what happens in S(0,2) and S(2,0) in a square S(j, k), we
have that there are two crossing 1-lines, a contradiction. Thus, L′

1 intersects at most
one of S(0,3) and S(3,0).

Suppose that L′
1 does not intersect S(3,0). Then the part of T ′ situated right of

L0(2) (the left part of Fig. 41) is strictly included in (S(0,0) ∪ S(1,0) ∪ S(2,0) ∪
S(0,1) ∪ S(1,1)). Thus, this part of T ′ contains at most 5γ1f faces. Now consider
the part of T ′ situated on the left of L0(2) (the right part of Fig. 41). Let y′ be the
intersection of L′

1 with L2. Let Q be the subpath of L′
1 between y and y′. By the

definition of L2(1), there are no 2-lines between L2 and L2(1). So Q cannot intersect
a 2-line on one of its interior vertices. Thus, Q is crossing at most γ2 consecutive 0-
lines (that are not necessarily lines of type L0(k)). Let L′

0 be the γ2 +1-th consecutive
0-line that is on the left of L0(2) (counting L0(2)). Then the part of T ′ situated on the
left of L0(2) is strictly included in the region delimited by L0(2),L′

0,L2,L2(1), and
thus contains at most γ2 copies of a face of G. Thus, T ′ contains at most (γ2 + 5γ1)f

faces.
Symmetrically, if L′

1 does not intersect S(0,3) we have that T ′ contains at most
(γ0 + 5γ1)f faces. Then in any case, T ′ contains at most (max(γ0, γ2)+ 5γ1)f faces
and the lemma is true. �

The bound of Lemma 33 is somehow sharp. In the example of Fig. 42, the rect-
angle represents a toroidal triangulation G and the universal cover is partially repre-
sented. For each value of k ≥ 0, there is a toroidal triangulation G with n = 4(k + 1)

vertices, where the gray region, representing the region delimited by the three
monochromatic lines Li(v), contains 4

∑2k+1
j=1 +3(2k + 2) = Ω(n × f ) faces. Fig-

ure 42 represents such a triangulation for k = 2.
For planar graphs the region vector method gives vertices that all lie on the same

plane. This property is very helpful in proving that the positions of the points on
P give straight-line representations. In the torus, things are more complicated, as
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Fig. 42 Example of a toroidal
triangulation where the number
of faces in the region delimited
by the three monochromatic
lines Li(v) contains Ω(n × f )

faces

our generalization of the region vector method does not give coplanar points. But
Lemmas 22 and 33 show that all the points lie in the region situated between the two
planes of equations x+y+z = 0 and x+y+z = t , with t = (5 min(γi)+max(γi))f .
Note that t is bounded by 6nf by Lemma 30 and this is independent from N . Thus,
from “far away” it looks like the points are coplanar and by taking N sufficiently
large, non-coplanar points are “far enough” from each other to enable the region
vector method to give straight-line representations.

Let N = t + n.

Lemma 34 Let u,v be two vertices such that ei−1(v) = uv, Li = Li(u) = Li(v),
and such that both u, v are in the region R(Li,L

′
i ) for L′

i an i-line consecutive to Li .
Then vi+1 − ui+1 < |R(Li,L

′
i )| and ei−1(v) is going counterclockwise around the

closed disk bounded by {ei−1(v)} ∪ Pi(u) ∪ Pi(v).

Proof Let y be the first vertex of Pi(v) that is also in Pi(u). Let Qu (resp. Qv) be
the part of Pi(u) (resp. Pi(v)) between u (resp. v) and y.

Let D be the closed disk bounded by the cycle C = (Qv)
−1 ∪ {ei−1(v)} ∪ Qu.

If C is going clockwise around D, then Pi+1(v) is leaving v in D and thus has to
intersect Qu or Qv . In both cases, there is a cycle in Gi+1 ∪ (Gi)

−1 ∪ (Gi−1)
−1,

a contradiction to Lemma 6. So C is going clockwise around D.
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Fig. 43 (a) Case 1 and (b) case 2 of the proof of Lemma 35

As Li(u) = Li(v) and Li−1(u) = Li−1(v), we have vi+1 − ui+1 = di+1(v,u),
and this is equal to the number of faces in D. We have D � R(Li,L

′
i ). Suppose D

contains two copies of a given face. Then, these two copies are on different sides of a
1-line. By property (T1), it is not possible to have a 1-line entering D. So D contains
at most one copy of each face of R(Li,L

′
i ). �

Lemma 35 For any face F of G∞, incident to vertices u,v,w (given in counterclock-
wise order around F ), the cross product −→vw ∧ −→vu has strictly positive coordinates.

Proof Consider the angle labeling corresponding to the Schnyder wood. By
Lemma 10, the angles at F are labeled in counterclockwise order 0,1,2. As−→uv ∧ −→uw = −→vw ∧ −→vu = −→wu ∧ −→wv, we may assume that u,v,w are such that u is
in the angle labeled 0, vertex v in the angle labeled 1, and vertex w in the angle
labeled 2. The face F is either a cycle completely directed into one direction or it has
two edges oriented in one direction and one edge oriented in the other. Let

−→
X = −→vw ∧ −→vu =

⎛

⎝
(w1 − v1)(u2 − v2) − (w2 − v2)(u1 − v1)

−(w0 − v0)(u2 − v2) + (w2 − v2)(u0 − v0)

(w0 − v0)(u1 − v1) − (w1 − v1)(u0 − v0)

⎞

⎠

By symmetry, we consider the following two cases:
• Case 1: The edges of the face F are in counterclockwise order e1(u), e2(v), e0(w)

(see Fig. 43(a)).
We have v ∈ P1(u), so v ∈ R0(u) ∩ R2(u) and u ∈ R◦

1(v) (as there are no edges
oriented in two directions). By Lemma 8, we have R0(v) ⊆ R0(u), R2(v) ⊆ R2(u),
and R1(u) � R1(v). In fact, the first two inclusions are strict as u /∈ R0(v) ∪ R2(v).
So by Lemma 28, we have v0 < u0, v2 < u2, u1 < v1. We can prove similar in-
equalities for the other pairs of vertices and we obtain w0 < v0 < u0, u1 < w1 < v1,
v2 < u2 < w2. By just studying the signs of the different terms occurring in the
values of the coordinates of

−→
X , it is clear that

−→
X has strictly positive coordi-

nates. (For the first coordinates, it is easier if written in the following form: X0 =
(u1 − w1)(v2 − w2) − (u2 − w2)(v1 − w1).)
• Case 2: The edges of the face F are in counterclockwise order e0(v), e2(v), e0(w)

(see Fig. 43(b)).
As in the previous case, one can easily obtain the following inequalities: w0 <

v0 < u0, u1 < w1 < v1, u2 < v2 < w2 (the only difference with case 1 is between u2
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and v2). Exactly as in the previous case, it is clear that X0 and X2 are strictly positive.
But there is no way to reformulate X1 to have a similar proof. Let A = w2 − v2,
B = u0 − v0, C = v0 −w0, and D = v2 −u2, so X1 = AB −CD and A,B,C,D are
all strictly positive.

Vertices u,v,w are in the region R(L1,L
′
1) for L′

1 a 1-line consecutive to L1. We
consider two cases depending on equality or not between L1(u) and L1(v).
� Subcase 2.1: L1(u) = L1(v).

We have X1 = A(B − D) + D(A − C).
We have B − D = (u0 + u2) − (v0 + v2) = (v1 − u1) + (

∑
ui − ∑

vi).
Since u ∈ P0(v), we have L0(u) = L0(v). Suppose that L2(u) = L2(v); then by
Lemma 22, we have

∑
ui = ∑

vi , and thus B − D = v1 − u1 > 0. Suppose now
that L2(u) 
= L2(v). By Lemmas 22 and 33,

∑
ui − ∑

vi > −t . By Lemma 28,
v1 − u1 > (N − n)|R(L2(u),L2(v))| ≥ N − n. So B − D > N − n − t ≥ 0.

We have A−C = (w0 +w2)− (v0 +v2) = (v1 −w1)+ (
∑

wi −∑
vi) >

∑
wi −∑

vi . Suppose that L1(v) = L1(w); then by Lemma 22, we have
∑

vi = ∑
wi and

thus A − C = v1 − w1 > 0. Then X1 > 0. Suppose now that L1(v) 
= L1(w). By
Lemma 34, D = v2 − u2 < |R(L1,L

′
1)|. By Lemma 28, A = w2 − v2 > (N − n) ×

|R(L1,L
′
1)|. By Lemmas 22 and 33,

∑
wi − ∑

vi > −t , so A − C > −t . Then
X1 > (N − n − t)|R(L1,L

′
1)| > 0.

� Subcase 2.2: L1(u) 
= L1(v).
We have X1 = B(A − C) + C(B − D).
Suppose that L1(w) 
= L1(v). Then L1(w) = L1(u). By Lemma 34 e0(w) is going

counterclockwise around the closed disk D bounded by {e0(w)} ∪ P1(w) ∪ P1(u).
Then v is inside D and P1(v) has to intersect P1(w) ∪ P1(u), so L1(v) = L1(u),
contradicting our assumption. So L1(v) = L1(w).

By Lemma 28, B = u0 − v0 > (N − n)|R(L1,L
′
1)|. We have A − C =

(w0 + w2) − (v0 + v2) = (v1 − w1) + (
∑

wi − ∑
vi). By Lemma 22, we have∑

vi = ∑
wi and thus A − C = v1 − w1 > 0. By (the symmetric of) Lemma 34,

C = v0 −w0 < |R(L1,L
′
1)|. By Lemmas 22 and 33, B −D = (u0 +u2)−(v0 +v2) =

(v1 − u1) + (
∑

ui − ∑
vi) > −t . So X1 > (N − n − t)|R(L1,L

′
1)| > 0. �

Let G be an essentially 3-connected toroidal map. Consider a periodic map-
ping of G∞, embedded graph H (finite or infinite), and a face F of H . Denote
(f1, f2, . . . , ft ) the counterclockwise facial walk around F . Given a mapping of
the vertices of H in R2, we say that F is correctly oriented if for any triplet
1 ≤ i1 < i2 < i3 ≤ t , the points fi1 , fi2 , and fi3 form a counterclockwise triangle.
Note that a correctly oriented face is drawn as a convex polygon.

Lemma 36 Let G be an essentially 3-connected toroidal map given with a periodic
mapping of G∞ such that every face of G∞ is correctly oriented. This mapping gives
a straight-line representation of G∞.

Proof We proceed by induction on the number of vertices n of G. Note that the
theorem holds for n = 1, so we assume that n > 1. Given any vertex v of G,
let (u0, u1, . . . , ud−1) be the sequence of its neighbors in counterclockwise order
(subscript understood modulo d). Every face being correctly oriented, for every
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i ∈ [0, d − 1] the oriented angle (oriented counterclockwise) (−→vui,
−−−→vui+1) < π . Let

the winding number kv of v be the integer such that 2kvπ = ∑
i∈[0,d−1](−→vui,

−−−→vui+1).
It is clear that kv ≥ 1. Let us prove that kv = 1 for every vertex v.

Claim 4 For any vertex v, its winding number kv = 1.

Proof of Claim 4 In a flat torus representation of G, we can sum up all the angles by
grouping them around the vertices or around the faces.

∑

v∈V (G)

∑

ui∈N(v)

(−→vui,
−−−→vui+1) =

∑

F∈F(G)

∑

fi∈F

(
−−−→
fifi−1,

−−−→
fifi+1)

The faces being correctly oriented, they form convex polygons. Thus, the angles of a
face F sum at (|F | − 2)π .

∑

v∈V (G)

2kvπ =
∑

F∈F(G)

(|F | − 2)π

∑

v∈V (G)

kv = 1

2

∑

F∈F(G)

|F | − f

∑

v∈V (G)

kv = m − f

So by Euler’s formula
∑

v∈V (G) kv = n, and thus kv = 1 for every vertex v. This
proves Claim 4. �

Let v be a vertex of G that minimizes the number of loops whose ends are on v.
Thus, either v has no incident loop, or every vertex is incident to at least one loop.

Assume that v has no incident loop. Let v′ be any copy of v in G∞ and de-
note its neighbors (u0, u1, . . . , ud−1) in counterclockwise order. As kv = 1, the points
u0, u1, . . . , ud−1 form a polygon P containing the point v′ and the segments [v′, ui]
for any i ∈ [0, d − 1]. It is well known that any polygon admits a partition into tri-
angles by adding some of the chords. Let us call O the outerplanar graph with outer
boundary (u0, u1, . . . , ud−1), obtained by this “triangulation” of P . Let us now con-
sider the toroidal map G′ = (G \ {v}) ∪ O and its periodic embedding obtained from
the mapping of G∞ by removing the copies of v. It is easy to see that in this em-
bedding every face of G′ is correctly oriented (including the inner faces of O , or the
faces of G that have been shortened by an edge uiui+1). Thus by the induction hy-
pothesis, the mapping gives a straight-line representation of G′∞. It is also a straight-
line representation of G∞ minus the copies of v where the interiors of each copy of
the polygons P are pairwise disjoint and do not intersect any vertex or edge. Thus,
one can add the copies of v on their initial positions and add the edges with their
neighbors without intersecting any edge. The obtained drawing is thus a straight-line
representation of G∞.

Assume now that every vertex is incident to at least one loop. Since these loops
are non-contractible and do not cross each other, they form homothetic cycles. Thus,
G is as depicted in Fig. 44, where the dotted segments stand for edges that may be
in G but not necessarily. Since the mapping is periodic, the edges corresponding to
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Fig. 44 The graph G if every
vertex is incident to a loop

loops of G form several parallel lines, cutting the plane into infinite strips. Since for
any 1 ≤ i ≤ n, kvi

= 1, a line of copies of vi divides the plane, in such a way that their
neighbors which are copies of vi−1 and their neighbors which are copies of vi+1 are
in distinct half-planes. Thus, adjacent copies of vi and vi+1 are on two lines bounding
a strip. Then one can see that the edges between copies of vi and vi+1 are contained
in this strip without intersecting each other. Thus, the obtained mapping of G∞ is a
straight-line representation. �

A plane is positive if it has equation αx + βy + γ z = 0 with α,β, γ ≥ 0.

Theorem 16 If G is a toroidal triangulation given with a Schnyder wood, and V ∞
the set of region vectors of vertices of G∞, then the projection of V ∞ on a positive
plane gives a straight-line representation of G∞.

Proof Let α,β, γ ≥ 0 and consider the projection of V ∞ on the plane P of the
equation αx + βy + γ z = 0. A normal vector of the plane is given by the vector−→n = (α,β, γ ). Consider a face F of G∞. Suppose that F is incident to vertices
u,v,w (given in counterclockwise order around F ). By Lemma 35, (−→uv ∧ −→uw).−→n
is positive. Thus, the projection of the face F on P is correctly oriented. So by
Lemma 36, the projection of V ∞ on P gives a straight-line representation of G∞. �

Theorems 1 and 16 imply Theorem 4. Indeed, any toroidal graph G can be trans-
formed into a toroidal triangulation G′ by adding a linear number of vertices and
edges and such that G′ is simple if and only if G is simple (see for example the proof
of Lemma 2.3 of [21]). Then by Theorem 1, G′ admits a Schnyder wood. By The-
orem 16, the projection of the set of region vectors of vertices of G′∞ on a positive
plane gives a straight-line representation of G′∞. The grid where the representation is
obtained can be the triangular grid, if the projection is done on the plane of equation
x + y + z = 0, or the square grid, if the projection is done on one of the planes of
equations x = 0, y = 0, or z = 0. By Lemma 30, and the choice of N , the obtained
mapping is a periodic mapping of G∞ with respect to non-collinear vectors Y and
Y ′ where the size of these vectors is in O(γ 2n2) with γ ≤ n in general and γ = 1 if
the graph is simple and the Schnyder wood obtained by Theorem 9. By Lemma 29,
the lengths of the edges in this representation are in O(n3) in general and in O(n2) if
the graph is simple. When the graph is not simple, there is a non-contractible cycle of
length 1 or 2 and thus the size of one of the two vectors Y , Y ′ is in O(n3). Thus, the
grid obtained in Theorem 4 has size in O(n3)×O(n4) in general and O(n2)×O(n2)

if the graph is simple.
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The method presented here gives a polynomial algorithm to obtain flat torus
straight-line representations of any toroidal maps in polynomial size grids. Indeed, all
the proofs lead to polynomial algorithms, even the proof of Theorem 8 [13], which
uses results from Robertson and Seymour [25] on disjoint paths problems.

It would be nice to extend Theorem 16 to obtain convex straight-line representa-
tions for essentially 3-connected toroidal maps.

13 Conclusion

We have proposed a generalization of Schnyder woods to toroidal maps with appli-
cation to graph drawing. Along these lines, several questions were raised. We recall
some briefly:

• Does the set of Schnyder woods of a given toroidal map have a kind of lattice
structure?

• Does any simple toroidal triangulation admit a Schnyder wood where the set of
edges of each color induces a connected subgraph?

• Is it possible to use Schnyder woods to embed the universal cover of a toroidal map
on rigid or coplanar orthogonal surfaces?

• Which toroidal maps admit (primal-dual) contact representation by (homothetic)
triangles in a flat torus?

• Can geodesic embeddings be used to obtain convex straight-line representations
for essentially 3-connected toroidal maps?

The guideline of Castelli Aleardi et al. [3] to generalize Schnyder woods to higher
genus was to preserve the tree structure of planar Schnyder woods and to use this
structure for efficient encoding. For that purpose they introduce several special rules
(even in the case of genus 1). Our main guideline while working on this paper was
that the surface of genus 1, the torus, seems to be the perfect surface to define Schny-
der woods. Euler’s formula gives exactly m = 3n for toroidal triangulations. Thus,
a simple and symmetric object can be defined by relaxing the tree constraint. For
genus 0, the plane, there are not enough edges in planar triangulations to have out-
degree three for every vertex. For higher genus (the double torus, . . . ) there are too
many edges in triangulations. An open problem is to find what would be the natural
generalization of our definition of toroidal Schnyder woods to higher genus.

The results presented here motivated Castelli Aleardi and Fusy [4] to develop di-
rect methods to obtain straight-line representations for toroidal maps. They manage to
generalize planar canonical ordering to the cylinder to obtain straight-line representa-
tions of simple toroidal triangulations in grids of size O(n) ×O(n2), thus improving
the size of our grid, which is O(n2) × O(n2) in the case of a simple toroidal map.
It should be interesting to investigate further the links between the two methods, as
canonical orderings are strongly related to Schnyder woods.

Planar Schnyder woods appear to have many applications in various areas like
enumeration [1], compact coding [24], representation by geometric objects [14, 16],
graph spanners [2], graph drawing [7, 18], etc. In this paper we use a new definition
of Schnyder wood for graph drawing purposes, and it would also be interesting to see
if it can be used in other computer science domains.
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