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We present unified bijections for maps on the torus with 
control on the face-degrees and essential girth (girth of the 
periodic planar representation). A first step is to show that for 
d ≥ 3 every toroidal d-angulation of essential girth d can be 
endowed with a certain ‘canonical’ orientation (formulated as 
a weight-assignment on the half-edges). Using an adaptation 
of a construction by Bernardi and Chapuy, we can then 
derive a bijection between face-rooted toroidal d-angulations 
of essential girth d (with the condition that, apart from the 
root-face contour, no other closed walk of length d encloses 
the root-face) and a family of decorated unicellular maps. The 
orientations and bijections can then be generalized, for any 
d ≥ 1, to toroidal face-rooted maps of essential girth d with a 
root-face of degree d (and with the same root-face contour 
condition as for d-angulations), and they take a simpler 
form in the bipartite case, as a parity specialization. On 
the enumerative side we obtain explicit algebraic expressions 
for the generating functions of rooted essentially simple 
triangulations and bipartite quadrangulations on the torus. 
Our bijective constructions can be considered as toroidal 
counterparts of those obtained by Bernardi and the first 
author in the planar case, and they also build on ideas 
introduced by Despré, Gonçalves and the second author for 
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essentially simple triangulations, of imposing a balancedness 
condition on the orientations in genus 1.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The enumerative study of (rooted) maps has been a very active research topic since 
Tutte’s seminal results on the enumeration of planar maps [37,38], later extended to 
higher genus by Bender and Canfield [4]. Tutte’s approach is based on so-called loop-
equations for the associated generating functions with a catalytic variable for the root-
face degree. Powerful methods have been developed to compute the solution of such 
equations (originally solved by guessing/checking), both in the planar case [28,13] and 
in higher genus [22].

The striking simplicity of counting formulas discovered by Tutte (e.g., the number of 
rooted planar simple triangulations with n + 3 vertices is equal to 2

n(n+1)
(4n+1
n−1

)
) asked 

for bijective explanations. The first such constructions, bijections from maps to certain 
decorated trees, were introduced by Cori and Vauquelin [20] and Arquès [3] and later 
further developed by Schaeffer [35], who also introduced with Marcus the first bijection 
(for bipartite quadrangulations) that extends to higher genus [35, Chap. 6]. The bijection 
has been adapted in [19] to a form better suited for computing the generating functions, 
and has been recently extended to non-orientable surfaces [17,11].

In the planar case many natural families of maps considered in the literature are given 
by restrictions on the face-degrees and on the girth (length of a shortest cycle). For in-
stance loopless triangulations are (planar) maps with all face-degrees equal to 3 and 
girth at least 2. The bijections developed over the years for such families (in particular, 
simple quadrangulations [35, Sect. 2.3.3], loopless triangulations [35, Sect. 2.3.4], simple 
triangulations [32], irreducible quadrangulations [25] and triangulations [24]) shared the 
feature that each map of the considered family can be endowed with a ‘canonical’ orien-
tation that is usually specified by outdegree prescriptions (so-called α-orientations [23]), 
which is then exploited to associate to the map a decorated tree structure. For instance 
simple triangulations with a distinguished outer face can be endowed with an orienta-
tion where all outer vertices have outdegree 1 and all inner vertices have outdegree 3, 
such orientations being closely related to Schnyder woods [36]. In recent works [7,2] the 
methodology has been given a unified formalism, where each such bijective construction 
can be obtained as a specialization of a ‘meta’-bijection between certain oriented maps 
and certain decorated trees, which itself is an adaptation of a bijection developed in [5]
(and extended in [6] to higher genus) to count tree-rooted planar maps. A success of 
this strategy has been to solve for the first time [8] the problem of counting planar maps 
with control on the face-degrees and on the girth (this has been subsequently recovered 
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Fig. 1. (a) Examples of 3-orientations for a toroidal essentially simple triangulation (the first example is not 
balanced as the bold cycle has outdegree 3 on the upper side and outdegree 1 on the lower side, the second 
example is balanced). (b) Examples of 5

3 -orientations for a toroidal pentagulation of essential girth 5 (the 
first example is not balanced as the bold cycle has total weight 4 on the upper side and total weight 2 on 
the lower side, the second example is balanced).

in [15] and extended to the so-called irreducible setting), and to adapt the bijections to 
hypermaps [9] and maps with boundaries [10].

Up to now this general strategy based on canonical orientations has been mostly 
applied in the planar case, while the only bijections known to extend to any genus 
g ≥ 0 deal with maps (or bipartite maps) with control on the face-degrees but not on 
the girth: bijections to labeled mobiles [14,19,16] or to blossoming trees and unicellular 
maps [34,29]. It has however recently appeared [21] that in the case of genus 1, a bijection 
based on canonical orientations can be designed for essentially simple triangulations.1
The canonical orientations used in this construction are 3-orientations (all vertices have 
outdegree 3) with an additional ‘balancedness’ property (every non-contractible cycle 
has the same number of outgoing edges to the left side as to the right side), see Fig. 1(a) 
for examples. The existence of such orientations builds on an earlier work on toroidal 
Schnyder woods [27] (see also [30]), and the bijection thus obtained can be considered 
as a toroidal counterpart of the one in [32]. This strategy has also been recently applied 
to essentially 4-connected triangulations [12], where the obtained bijection (based on 
certain ‘balanced’ transversal structures) is now a toroidal counterpart of the one in [24].

Main results and outline of the article.
In this article, we extend the strategy of [21] to toroidal maps of prescribed essential 

girth and face-degrees, thereby obtaining bijections with certain decorated unicellular 
maps. Our bijections can be seen as toroidal counterparts of those given in [7] for planar 
toroidal d-angulations of essential girth d ≥ 3, and in [8] for planar maps with prescribed 
girth and face-degrees.

Our first results deal with toroidal d-angulations of essential girth d, for d ≥ 3. In the 
planar case it is known [7] that d-angulations of girth d, with a marked face considered as 
the outer face, can be endowed with certain ‘weighted biorientations’ (given by assigning 

1 A map M on the torus is said to have ‘essentially’ property P if the periodic planar representation M∞

of M has property P ; thus M is essentially simple means that M∞ is simple. Similarly the essential girth
of M is defined as the girth of M∞.



4 É. Fusy, B. Lévêque / Journal of Combinatorial Theory, Series A 175 (2020) 105270
a weight in N to every half-edge) called d
d−2 -orientations, such that for every inner edge 

(resp. inner vertex) the sum of the weights of the incident half-edges is d − 2 (resp. 
d). Moreover, each d-angulation of girth d admits a ‘canonical’ such orientation, called 
the minimal one. The meta-bijection given in [7] can then be applied to the minimal 
d

d−2 -orientations, giving a correspondence with well-characterized decorated trees.
We will prove that a parallel strategy can be applied in genus 1. Precisely, we show 

in Section 3 that every toroidal d-angulation of essential girth d ≥ 3 admits a so-called 
balanced d

d−2 -orientation, where again every half-edge is assigned a weight-value in N
such that the total weight of each edge (resp. vertex) is d − 2 (resp. d) and ‘balanced’ 
means that for every non-contractible cycle C, the total weight of half-edges incident to 
each side of C is the same, see Fig. 1 for examples (d = 3 on the left side, d = 5 on the 
right side). Similarly as in the planar case, when the d-angulation has a distinguished 
face, the map admits a ‘canonical’ such orientation, called the minimal one. An extension 
of the ‘meta-bijection’ to higher genus (described in Section 4.2 and obtained by adapting 
the construction of [6]) can then be applied to these orientations, yielding a bijection, 
stated in Section 4.5, between face-rooted toroidal d-angulations of essential girth d (with 
the extra condition that apart from the root-face contour, there is no other closed walk 
of length d that encloses the root-face) and a family of well-characterized decorated 
unicellular maps of genus 1.

Similarly as in the planar case [8], the strategy can then be extended to face-rooted 
toroidal maps of essential girth d ≥ 1, with root-face degree d (with the same root-
face contour conditions as for d-angulations). The canonical orientations in that case 
have similar weight conditions, now allowing for half-edges of negative weights, and the 
obtained bijections, stated in Section 4.6, keep track of the distribution of the face-
degrees, and have a simpler form in the bipartite case (which can be seen as a parity 
specialization of the general bijection, as in the planar case [7,8]).

Regarding counting results, we show in Section 5 that in certain cases (essentially 
simple triangulations and essentially simple bipartite quadrangulations), the generating 
function of the corresponding mobiles can be computed by a similar approach as in [19], 
and the expressions simplify nicely. Unfortunately, for general d, even if the corresponding 
unicellular decorated trees are well-characterized, we have not succeeded in deriving an 
explicit simple expression of the generating function of rooted toroidal d-angulations of 
essential girth d, as was done in the planar case [7,8,15].

Higher genus extensions?
It is unclear to us if our results could be extended to higher genus. The nice property 

of the torus is that the Euler characteristic is zero, which is compatible with orientations 
having homogeneous outdegrees (e.g. for triangulations on the torus there are exactly 3
times more edges than vertices, and the orientations exploited to derive a bijection are 
those with outdegree 3 at each vertex).

In higher genus it has been shown in [1] that every simple triangulation has an ori-
entation where every vertex-outdegree is a nonzero multiple of 3, hence all vertices have 
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outdegree 3 except for O(g) special vertices whose outdegree is a multiple of 3 larger than 
3 (e.g. in genus 2 all vertices have outdegree 3 except for either two vertices of outdegree 
6 or one vertex of outdegree 9), and the presence of these special vertices makes it more 
difficult to come up with a natural canonical orientation amenable to a bijection.

2. Preliminaries

2.1. Maps and essential girth for toroidal maps

A map M of genus g is an embedding of a connected graph (possibly with loops and 
multiple edges) on the orientable surface Σ of genus g, such that all components of Σ\M
are homeomorphic to open disks; we will mostly consider maps of genus 1, which we call 
toroidal maps. A map is called rooted if it has a marked corner, and is called face-rooted
if it has a marked face. The dual M∗ of M is the map obtained by inserting a vertex 
in each face of M , every edge e ∈ M yielding a dual edge e∗ in M∗ that connects the 
vertices dual to the faces on each side of e. A walk in M is a (possibly infinite) sequence 
of edges traversed in a given direction, such that the head of an edge in the sequence 
coincides with the tail of the next edge in the sequence (possibly two successive edges in 
the sequence are the same edge traversed in opposite directions). A path in M is a walk 
with no repeated vertices. A closed walk in M is a finite walk such that the head of the 
first edge in the sequence coincides with the tail of the last edge. We identify two closed 
walks if they differ by a cyclic shift of the sequence of edges. Hence a closed walk can 
be seen as a cyclic sequence of edges such that the head of each edge coincides with the 
tail of the next edge in the sequence. A closed walk is called non-repetitive if it does not 
pass twice by a same edge taken in the same direction. A cycle is a closed walk with no 
repeated vertices.

The girth of a map M is the length of a shortest cycle in M . The essential girth of a 
toroidal map M is the girth of the universal cover M∞ (periodic planar representation). 
As we will see, the essential girth is at least the girth. A contractible closed walk of M
(resp. of M∞) is defined as a non-repetitive closed walk W having a contractible region 
on its right, which is called the interior of W .

Lemma 1. Let M be a toroidal map. Then the essential girth of M coincides with the 
length of a shortest contractible closed walk in M .

Proof. Let d be the essential girth of M and let d′ be the length of a shortest con-
tractible closed walk in M . We first make a few observations. Any contractible closed 
walk W of M∞ yields a contractible closed walk w in M , called the projection of W . Any 
contractible closed walk of M∞ that projects to w is called a replication of W (in the 
periodic planar representation, a replication of W is a translate of W by an integer linear 
combination of two vectors spanning an elementary cell). A closed walk of M∞ is called 
admissible if its interior does not overlap with the interior of any of its other replications. 
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Clearly, for W a contractible closed walk of M∞, the projection of W is a contractible 
closed walk of M iff W is admissible. This ensures that there is a contractible closed 
walk of length d′ in M∞, from which a cycle can be extracted. Hence d′ ≥ d. It remains 
to show that d ≥ d′. For this, we just have to find an admissible cycle of length d in 
M∞. Let C be a cycle of length d in M∞, with the property that the interior of C does 
not contain the interior of another cycle of length d. We are going to show that C is 
admissible. Let C ′ �= C be a replication of C, and let R, R′ be the respective interiors of 
C and C ′. Assume by contradiction that R ∩R′ �= ∅. Note that we have

|∂R| + |∂R′| ≥ |∂(R ∩R′)| + |∂(R ∪R′)|,

(indeed we have ∂(R∪R′) ⊆ ∂R∪∂R′, ∂(R∩R′) ⊆ ∂R∪∂R′, and ∂(R∪R′) ∩∂(R∩R′) ⊆
∂R∩ ∂R′, so that for every edge e of M , the contribution of e to |∂R| + |∂R′| is at least 
its contribution to |∂(R ∩R′)| + |∂(R ∪R′)|). Hence

2d ≥ |∂(R ∩R′)| + |∂(R ∪R′)|.

Since d is the minimal cycle-length in M∞ we must have |∂(R ∩R′)| = |∂(R ∪R′)| = d. 
Hence the contour of R ∩ R′ is a cycle of length d, contradicting the initial hypothesis 
on C. �

The characterization given in Lemma 1 easily ensures that the girth of M is at most 
its essential girth (indeed, a cycle can be extracted from a shortest contractible closed 
walk). If M has essential girth d, a d-angle of M is a contractible closed walk of length 
d. It is called maximal if its interior is not contained in the interior of another d-angle. 
A toroidal map M is called essentially simple if it has essential girth at least 3 (it means 
that M∞ is simple, i.e., has no loop nor multiple edges).

For d ≥ 3, a map is called a d-angulation if all its faces have degree d. For d = 3, 4, 5, 
such maps are respectively called triangulations, quadrangulations, pentagulations. Note 
that a toroidal d-angulation has essential girth less than or equal to d (and it can be 
strictly less), since every face-contour is a d-angle. A toroidal d-angulation of essential 
girth d is called a d-toroidal map.2 Note that 3-toroidal maps are exactly essentially 
simple toroidal triangulations. By Euler’s formula, one can check that, in a toroidal 
map with all face-degrees even, a contractible closed walk must have even length. In 
particular, 4-toroidal maps are the same as essentially simple quadrangulations.

2.2. Constrained orientations and weighted biorientations of maps

For M a map with vertex-set V and edge-set E, and α : V → N, an α-orientation [23]
of M is an orientation of M such that every vertex has outdegree α(v). A biorientation of 

2 The extra condition on the root-face contour mentioned in the abstract and introduction amounts to 
considering d-toroidal maps where the root-face contour is a maximal d-angle.
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Fig. 2. (a) Rule to obtain an α
β -orientation of M from an α-orientation of H (with H the β-expansion of 

M). (b) Rule to obtain an α-orientation of H from an α
β -orientation of M .

M is the assignment of a direction to every half-edge (half-edges can be either outgoing 
or ingoing at their incident vertex). The outdegree of a vertex v is the total number of 
outgoing half-edges incident to v. An N-biorientation of M is a biorientation of M where 
every half-edge is given a value in N, which is in Z>0 if the half-edge is outgoing and 
equal to zero if the half-edge is ingoing. The weight of a vertex is the total weight of 
its incident half-edges. The weight of an edge is the total weight of its two half-edges. 
Note that an orientation can be identified with an N-biorientation where every edge has 
weight 1. For α : V → N and β : E → N, an αβ -orientation of M is an N-biorientation of 
M such that every vertex v has weight α(v) and every edge e has weight β(e). In all this 
paper, we assume that β takes only strictly positive values. By doing so we can define the 
β-expansion of M as the map H obtained from M after replacing every edge e = {u, v}
of M by a group of β(e) parallel edges connecting u and v. Note that every α-orientation 
of H yields an αβ -orientation of M , see Fig. 2.(a). Conversely every αβ -orientation X of 
M yields an α-orientation of H, called the β-expansion of X, with the convention that 
the edge-directions in the group of parallel edges are chosen in the unique way consistent 
with the weights and such that there is no clockwise cycle within the group, as shown in 
Fig. 2(b).

Assume M is a face-rooted map, with f its marked face. An orientation of M is called 
non-minimal if there exists a non-empty set S of faces such that f /∈ S and every edge 
on the boundary of S has a face in S on its right (and a face not in S on its left). It 
is called minimal otherwise. An αβ -orientation of M is called minimal if its β-expansion 
H is minimal (where the root-face of H is the one corresponding to f). Equivalently, an 
α
β -orientation of M is non-minimal if there exists a non-empty set S of faces such that 
f /∈ S and every edge on the boundary of S either is simply directed with a face in S on 
its right or is bidirected.

Consider an orientation of M and a non-contractible cycle C∗ of M∗ given with a 
traversal direction (i.e., a cyclic ordering (h0, . . . , h2k−1) of the half-edges on the cycle 
such that any two successive half-edges h2i, h2i+1 are opposite on the same edge, and 
any two successive half-edges h2i+1, h(2i+2) mod 2k are at the same vertex). Let δR(C∗)
(resp. δL(C∗)) be the number of edges of M crossing C∗ from left to right (resp. from 
right to left). Then the δ-score of C∗ is defined as δ(C∗) = δR(C∗) − δL(C∗). Two α-
orientations X, X ′ are called δ-equivalent if every non-contractible cycle of M∗ has the 
same δ-score in X and in X ′. The following statement is easily deduced from the results 
and observations in [33] (in particular the fact that the set of contours of non-root faces 
plus two non-homotopic non-contractible cycles form a basis of the cycle-space):
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Theorem 2 ([33]). Let M be a face-rooted map on the orientable surface of genus g en-
dowed with an α-orientation X. Then M has a unique α-orientation X0 that is minimal3
and δ-equivalent to X.

Moreover, suppose that M is a toroidal map and X, X ′ are two α-orientations of M . If 
there exist two non-contractible non-homotopic4 cycles of M that have the same δ-score 
in X and in X ′, then X, X ′ are δ-equivalent.

We now define the analogue of the function γ introduced in [21,26] for Schnyder woods 
(see also [30] for a detailed presentation).

If M is endowed with an orientation, and C is a non-contractible cycle of M given 
with a traversal direction, we denote by γR(C) (resp. γL(C)) the total number of edges 
going out of a vertex on C on the right (resp. left) side of C, and define the γ-score of 
C as γ(C) = γR(C) − γL(C). Two α-orientations X, X ′ of M are called γ-equivalent if 
every non-contractible cycle of M has the same γ-score in X as in X ′. The following 
theorem is an analog (and a consequence) of Theorem 2; we only state it in genus 1, to 
keep the proof simpler and as it is the focus of the article.

Corollary 3. Let M be a face-rooted toroidal map endowed with an α-orientation X. Then 
M has a unique α-orientation X0 that is minimal and γ-equivalent to X.

Moreover, for two α-orientations X, X ′ of M to be γ-equivalent, it is enough that two 
non-contractible non-homotopic cycles of M have the same γ-score in X and in X ′.

Proof. The completion-map of M is the map M̂ obtained by superimposing M and M∗. 
The vertices of M̂ are of 3 types: primal vertices (those of M), dual vertices (those of 
M∗) and edge-vertices (those, of degree 4, at the intersection of an edge e ∈ M with its 
dual edge e∗ ∈ M∗). Let α̂ be the function from the vertex-set of M̂ to N such that, if v
is a primal vertex of M̂ then α̂(v) = α(v), if v is a dual vertex of M̂ then α̂(v) = deg(v), 
and if v is an edge-vertex of M̂ then α̂(v) = 1. Note that any α-orientation Z of M yields 
an α̂-orientation Ẑ of M̂ : each edge of M̂ corresponding to a half-edge of an edge e ∈ M

is assigned the direction of e in Z, and each edge of M̂ corresponding to a half-edge of an 
edge e∗ ∈ M∗ is directed toward the incident edge-vertex. Clearly the mapping sending 
Z to Ẑ is a bijection from the α-orientations of M to the α̂-orientations of M̂ , with the 
property that Z is minimal if and only if Ẑ is minimal.

Let C be a non-contractible cycle of M given with a traversal direction. Let (c1, . . . , ck)
be the cyclic sequence of corners of M that are encountered when walking “just to the 
right” of C. Since every corner of M corresponds to a face of M̂∗, the cyclic sequence 
(c1, . . . , ck) identifies to a non-contractible cycle of M̂∗, which we denote by C∗, see 
Fig. 3 (note that C∗ is clearly homotopic to C). It is then easy to see that for every 
α-orientation Z of M , we have

3 It is actually proved in [33] that the set of α-orientations that are δ-equivalent to X is a distributive 
lattice, of which X0 is the minimum element.
4 Two closed curves on a surface are called homotopic if one can be continuously deformed into the other.
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Fig. 3. Left: a non-contractible cycle C of M . Middle: the situation in M̂ in the right neighborhood of 
C. Right: the corresponding non-contractible cycle C∗ of M̂∗ (which passes by vertices, represented as 
triangles, that are in the faces corresponding to the corners incident to C on its right side).

γZ
R(C) = δẐR(C∗).

Hence, for two α-orientations X, X ′ of M , and for C a non-contractible cycle of M
given with a traversal direction, we have γX(C) = γX′(C) iff γX

R (C) = γX′

R (C) iff 
δX̂R (C∗) = δX̂

′

R (C∗) iff δX̂(C∗) = δX̂
′(C∗). Hence X, X ′ are γ-equivalent if and only if 

X̂, X̂ ′ are δ-equivalent, where we use the second statement in Theorem 2 to have the 
‘only if’ direction.5

It is then easy to prove the theorem. For X an α-orientation of M , Theorem 2 en-
sures that there exists an α̂-orientation X̂0 of M̂ that is minimal and δ-equivalent to X̂. 
By what precedes, X0 is γ-equivalent to X (and is minimal), hence we have the exis-
tence part. Moreover, if there was another α-orientation X1 minimal and γ-equivalent 
to X, then X̂1 would be minimal, δ-equivalent to X̂, and different from X̂0, yielding a 
contradiction. This gives the uniqueness part.

We now prove the second statement of the theorem. Let X, X ′ be two α-orientations of 
M that have the same γ-score for two non-contractible non-homotopic cycles C1, C2. By 
what precedes, C∗

1 and C∗
2 have the same δ-score in X̂ and in X̂ ′. Hence, by Theorem 2, 

X̂ and X̂ ′ are δ-equivalent, so that X and X ′ are γ-equivalent. �
More generally if M is endowed with an N-biorientation and C is a non-contractible 

cycle of M given with a traversal direction, we denote by γR(C) (resp. γL(C)) the total 
weight of half-edges incident to a vertex on C on the right (resp. left) side of C, and 
define the γ-score of C as γ(C) = γR(C) − γL(C).

Two αβ -orientations, X, X ′ are called γ-equivalent if every non-contractible cycle of M
has the same γ-score in X and in X ′. The following theorem is a generalization (and a 
consequence) of Corollary 3 that will be useful for our purpose.

5 While we do not need it here, we also mention that it is easy to prove by similar arguments that X̂, X̂′

are δ-equivalent iff X, X′ are δ-equivalent. Hence the γ-equivalence classes on α-orientations are the same 
as the δ-equivalence classes on α-orientations (which are distributive lattices).
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Corollary 4. Let M be a face-rooted toroidal map endowed with an α
β -orientation X. 

Then M has a unique αβ -orientation X0 that is minimal and γ-equivalent to X.
Moreover, for two αβ -orientations X, X ′ of M to be γ-equivalent, it is enough that two 

non-contractible non-homotopic cycles of M have the same γ-score in X and in X ′.

Proof. Let H be the β-expansion of M . For Z an α
β -orientation of M , let Z̄ be the 

β-expansion of Z, i.e., the α-orientation of H obtained from Z by applying the rule of 
Fig. 2(b). For C a non-contractible cycle of M given with a traversal direction, let C̄ be 
the non-contractible cycle of H that goes along C in the “rightmost” way, i.e. for each 
edge e of C, the cycle C̄ passes by the rightmost edge in the group of β(e) edges arising 
from e. Clearly

γZ
R(C) = γZ̄

R(C̄).

Hence, for two α
β -orientations X, X ′ of M and for C a non-contractible cycle of M

given with a traversal direction, we have γX(C) = γX′(C) iff γX
R (C) = γX′

R (C) iff 
γX̄
R (C̄) = γX̄′

R (C̄) iff γX̄(C̄) = γX̄′(C̄). Hence X, X ′ are γ-equivalent if and only if 
X̄, X̄ ′ are γ-equivalent (we use the second statement in Corollary 3 to have the ‘only if’ 
direction).

For X an α
β -orientation of M , Corollary 3 ensures that H has an α-orientation X̄0

that is minimal and γ-equivalent to X̄. Let X0 be the αβ -orientation obtained from X̄0 by 

applying the rule of Fig. 2(a). Since X̄0 is minimal, there is no clockwise cycle inside any 
group of β(e) edges associated to an edge e ∈ M . Hence X̄0 is the β-expansion of X0, 
so that (by definition) X0 is minimal, and moreover it is γ-equivalent to X. This proves 
the existence part. If there was another αβ -orientation X1 minimal and γ-equivalent to 

X, then X̄1 would be minimal, γ-equivalent to X̄, and different from X̄0, contradicting 
Corollary 3. This proves the uniqueness part.

Let us now prove the second statement of the theorem. Let X, X ′ be two α-orientations 
of M that have the same γ-score for two non-contractible non-homotopic cycles C1, C2. 
By what precedes, C̄1 and C̄2 have the same γ-score in X̄ and in X̄ ′. Hence, by Corol-
lary 3, X̄ and X̄ ′ are γ-equivalent, so that X and X ′ are γ-equivalent. �
3. Balanced d

d−2 -orientations on the torus

Let M be a toroidal map. We say that an N-biorientation of M is balanced if the 
γ-score of any non-contractible cycle of M is 0. Note that Corollary 4 implies that if M
is face-rooted and admits a balanced αβ -orientation, then M admits a unique balanced αβ -
orientation that is minimal. For a toroidal d-angulation M , we define a d

d−2 -orientation
of M as an N-biorientation of M such that every vertex has weight d and every edge has 
weight d − 2 (our bijections for toroidal d-angulations of essential girth d will crucially 
rely on minimal balanced d -orientation). The purpose of this section is to show that 
d−2
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a toroidal d-angulation admits a d
d−2 -orientation iff it has essential girth d, and that in 

that case it admits a balanced d
d−2 -orientation.

3.1. Necessary condition on the essential girth

The following lemma gives a necessary condition for a toroidal d-angulation to admit 
a d

d−2 -orientation.

Lemma 5. If a toroidal d-angulation admits a d
d−2 -orientation then it has essential girth d

(i.e. it is a d-toroidal map).

To prove it, note that the essential girth is clearly at most d since faces have degree d. 
The fact that the essential girth is at least d is actually a direct consequence of the 
following statement (which will also be useful in proofs later):

Claim 1. Let M be a toroidal d-angulation endowed with a d
d−2 -orientation, and let W

be a contractible closed walk of length k, with R the (contractible) enclosed region. Let ε
be the sum of the weights of half-edges in R that are incident to a vertex on W . Then 
ε = k − d.

Proof. Let n′, m′, f ′ be respectively the numbers of vertices, edges and faces of M that 
are (strictly) inside R. Since all faces of M have degree d we have (i) df ′ = 2m′+k. Since 
the weight of every vertex (resp. edge) is d (resp. d −2), we have (ii) dn′ + ε = (d −2)m′. 
Finally, since R is contractible, the Euler relation ensures that (iii) n′ − m′ + f ′ = 1. 
Taking (i)+(ii) gives d(n′−m′+f ′) = k−ε, which together with (iii) gives d = k−ε. �

We will see in the Section 3.3 that, conversely, any d-toroidal map admits a d
d−2 -

orientation, and even more, it admits a balanced one.

3.2. Sufficient condition for balancedness

The next lemma shows that γ behaves well with respect to homotopy in d
d−2 -

orientations:

Lemma 6. Let M be a d-toroidal map endowed with a d
d−2 -orientation, let C be a non-

contractible cycle of M given with a traversal direction, and let {B1, B2} be a basis for 
the homotopy of M , such that B1, B2 are non-contractible cycles whose intersection is a 
single vertex or a common path. Let k1, k2 ∈ Z2, such that C is homotopic to k1B1+k2B2. 
Then γ(C) = k1 γ(B1) + k2 γ(B2).

Proof. Let v and u be the two extremities of the path B1∩B2 (possibly v = u, if B1∩B2
is reduced to a single vertex). Consider a drawing of M∞ obtained by replicating a flat 
representation of M to tile the plane. Let v0 be a copy of v in M∞. Consider the walk W
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Fig. 4. Intersection of the basis.

Fig. 5. Replicating “k1B1” and “k2B2” in the universal cover.

starting from v0 and following k1 times the edges corresponding to B1 and then k2 times 
the edges corresponding to B2 (we are going backward if ki is negative). This walk ends 
at a copy v1 of v. Since C is non-contractible we have k1 or k2 not equal to 0 and thus v1

is distinct from v0. Let W∞ be the infinite walk obtained by replicating W (forward and 
backward) from v0. Note that their might be some repetition of vertices in W∞ if the 
intersection of B1, B2 is a path. But in that case, by the choice of B1, B2, the walk W∞ is 
almost a path, except maybe at all the transitions from “k1B1” to “k2B2”, or (exclusive 
or) at all the transitions from “k2B2” to “k1B1”, where it can go back and forth a path 
corresponding to the intersection of B1 and B2. The existence or not of such “back and 
forth” parts depends on the signs of k1, k2 and the way B1, B2 are going through their 
common path. Fig. 5 gives an example of this construction with (k1, k2) = (1, 1) and 
(k1, k2) = (1, −1) when B1, B2 intersect on a path and are oriented the same way along 
this path as in Fig. 4.
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Fig. 6. Case (k1, k2) = (1, 1).

We “simplify” W∞ by removing all the parts that consist of going back and forth 
along a path (if any) and call B∞ the obtained walk that is now without repetition of 
vertices. By the choice of v, the walk B∞ goes through copies of v. If v0, v1 are no more 
a vertex along B∞, because of a simplification at the transition from “k2B2” to “k1B1”, 
then we replace v0 and v1 by the next copies of v along W∞, i.e., at the transition from 
“k1B1” to “k2B2”.

Since C is homotopic to k1B1+k2B2, we can find an infinite path C∞, that corresponds 
to copies of C replicated, that does not intersect B∞ and situated on the right side of 
B∞. Now we can find a copy B′∞ of B∞, such that C∞ lies between B∞ and B′∞

without intersecting them. We choose two copies v′0, v′1 of v0, v1 on B′∞ such that the 
vectors v0v1 and v′0v

′
1 are equal.

Let R0 be the region bounded by B∞ and B′∞. Let R1 (resp. R2) be the subregion 
of R0 delimited by B∞ and C∞ (resp. by C∞ and B′∞). We consider R0, R1, R2 as 
cylinders, where the lines (v0, v′0), (v1, v′1) (or part of them) are identified. Let B, B′, C ′

be the cycles of R0 corresponding to B∞, B′∞, C∞ respectively.
Let x be the sum of the weights of the half-edges of M incident to B and in the strict 

interior of R1. Let y be the sum of the weights of the half-edges of M incident to B′ and 
in the strict interior of R2. Let x′ (resp. y′) be the sum of the weights of the half-edges 
of M incident to C ′ and in the strict interior of R2 (resp. R1). Note that C ′ corresponds 
to exactly one copy of C, so γ(C) = x′ − y′. Similarly, B (and B′ as well) “almost” 
corresponds to k1 copies of B1 followed by k2 copies of B2, except for the fact that we 
may have removed a back and forth part (if any). In any case we have the following:

Claim. k1 γ(B1) + k2 γ(B2) = x − y.

Proof of the claim. We prove the case where the common intersection of B1, B2 is a 
path (if the intersection is a single vertex, the proof is very similar and even simpler). 
We assume, by possibly reversing one of B1 or B2, that B1, B2 are oriented the same 
way along their intersection, so we are in the situation of Fig. 4.

Fig. 6 shows how to compute k1 γ(B1) + k2 γ(B2) + y − x when (k1, k2) = (1, 1). 
Then, one can check that the weight of each half-edge of M is counted exactly the same 
number of times positively and negatively. So everything compensates and we obtain 
k1 γ(B1) + k2 γ(B2) + y − x = 0.
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Fig. 7. Case (k1, k2) = (1, −1). (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Fig. 7 shows how to compute k1 γ(B1) + k2 γ(B2) + y− x when (k1, k2) = (1, −1). As 
above, most of the things compensate but, in the end, we obtain k1 γ(B1) +k2 γ(B2) +y−x

equals the sum of the weights of the half-edges incident to u minus the sum of the weights 
of the half-edges incident to v. Since the sum of the weights of the half-edges at each 
vertex is equal to d, we again conclude that k1 γ(B1) + k2 γ(B2) + y − x = 0.

One can easily be convinced that when |k1| ≥ 1 and |k2| ≥ 1 then the same arguments 
apply. The only difference is that the red or green part of the figures in the universal 
cover would be longer (with repetitions of B1 and B2). These parts being “smooth”, they 
do not affect the way we compute the equality. Finally, if one of k1 or k2 is equal to zero, 
the analysis is much simpler and the conclusion holds. �

For i ∈ {0, 1, 2}, let Gi be the cylinder map made of all the vertices and edges 
of M∞ that are in the cylinder region Ri. Let k (resp. k′) be the length of B (resp. 
C ′). Let n1, m1, f1 be respectively the number of vertices, edges and faces of G1. Since 
G1 is a d-angulation we have 2m1 = df1 + (k + k′). The total weight of the edges of 
G1 is (d − 2)m1 = dn1 − (x′ + y). Combining these equalities with Euler’s formula 
n1 −m1 + f1 = 0, one obtains k + k′ = x′ + y. Similarly, by considering G2, one obtains 
k + k′ = x + y′. Thus x′ + y = x + y′, which gives γ(C) = k1 γ(B1) + k2 γ(B2) using the 
claim. �

Lemma 6 implies the following:

Lemma 7. Let M be a d-toroidal map endowed with a d
d−2 -orientation. If the γ-score of 

two non-contractible non-homotopic cycles of M is 0, then the orientation is balanced.

Proof. Consider two non-contractible non-homotopic cycles C, C ′ of M , each with a 
chosen traversal direction, such that γ(C) = γ(C ′) = 0. Consider a homotopy basis 
{B1, B2} of M , such that B1, B2 are non-contractible cycles whose intersection is a 
single vertex or a path. Note that one can easily obtain such a basis by considering a 
spanning tree T of M , and a spanning tree T ∗ of M∗ that contains no edges dual to T . 
By Euler’s formula, there are exactly 2 edges in M that are not in T nor dual to edges 
of T ∗. Each of these edges forms a unique cycle with T . These two cycles, given with 
any traversal direction, form the wanted basis.
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Let k1, k2, k′1, k
′
2 ∈ Z4, such that C (resp. C ′) is homotopic to k1B1 + k2B2 (resp. 

k′1B1 + k′2B2). Since C is non-contractible we have (k1, k2) �= (0, 0). By possibly ex-
changing B1, B2, we can assume, without loss of generality that k1 �= 0. By Lemma 6, 
we have k1γ(B1) + k2γ(B2) = γ(C) = 0 = γ(C ′) = k′1γ(B1) + k′2γ(B2). So γ(B1) =
(−k2/k1)γ(B2) and thus (−k2k

′
1/k1 + k′2)γ(B2) = 0. So k′2 = k2k

′
1/k1 or γ(B2) = 0. 

Suppose by contradiction, that γ(B2) �= 0. Then (k′1, k′2) =
k′
1

k1
(k1, k2), and C ′ is homo-

topic to k
′
1

k1
C. Since C and C ′ are both non-contractible cycles, it is not possible that one 

is homotopic to a multiple of the other, with a multiple different from −1, 1. So C, C ′

are homotopic, a contradiction. So γ(B2) = 0 and thus γ(B1) = 0. Then by Lemma 6
we have γ(C) = 0 for any non-contractible cycle C of M , and thus the orientation is 
balanced. �
3.3. Existence of balanced toroidal d

d−2 -orientations

The main goal of this section is to prove the following existence result:

Proposition 8. Any toroidal d-angulation with essential girth d admits a balanced d
d−2 -

orientation.

In the case of toroidal triangulations, essentially toroidal 3-connected maps, or essen-
tially 4-connected toroidal triangulations, the proof of existence of analogous “balanced 
orientations” can be done by doing edge-contractions until reaching a map with few ver-
tices (see [30,12]). We do not know if such a strategy could be applied for d ≥ 5 (indeed 
the contraction of an edge in a d-toroidal map results in some faces of size strictly less 
than d). So we use a different technique in the current paper.

The method consists in defining orientations that are “totally unbalanced” —which 
we call biased orientations— then taking linear combinations of these biased orientations 
to obtain a balanced orientation but with rational weights, and finally proving that the 
orientation that is minimal and γ-equivalent to it is a balanced orientation with integer 
weights.

3.3.1. Biased orientations
Consider a d-toroidal map M , and let C be a non-contractible cycle of M of length 

k given with a traversal direction. A biased orientation w.r.t. C is a d
d−2 -orientation of 

M such that γ(C) = 2k. Note that in a d
d−2 -orientation of M , the sum of the weights of 

the half-edges incident to vertices of C is dk and the sum of the half-edges that are on 
C is (d − 2)k. So we have γL(C) + γR(C) = dk − (d − 2)k = 2k. Thus a d

d−2 -orientation 
of M is a biased orientation w.r.t. C if and only if all the half-edges incident to the left 
side of C have weight 0.

The goal of this section is to prove the following lemma:
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Lemma 9. Let M be a d-toroidal map and C a non-contractible cycle of M that is shortest 
in its homotopy class and is given with a traversal direction. Then M admits a biased 
orientation w.r.t. C.

To prove Lemma 9 we need to introduce some more general terminology concerning 
α-orientations.

If S is a subset of vertices of a graph M , then E[S] denotes the set of edges of M
with both ends in S. We need the following lemma6 from [7]:

Lemma 10 ([7]). A graph G admits an α
β -orientation if and only if 

∑
e∈E(G) β(e) =∑

v∈V (G) α(v), and, for every subset of vertices S of G, we have 
∑

e∈E[S] β(e) ≤∑
v∈S α(v).

Consider a non-contractible cycle C of M that is a shortest cycle in its class of homo-
topy and given with a traversal direction. Consider the annular map A obtained from M
by cutting M along C and open it as a planar map where vertices of C are duplicated 
to form the outer face and a special inner face of A. Without loss of generality, we as-
sume that A is represented such that the special inner face is on the left side of C. Let 
α : V (A) → N be such that α(v) = 0 if v is an outer-vertex of A and α(v) = d otherwise. 
Let β : E(A) → N be such that β(e) = 0 if e is an outer-edge of A and β(e) = (d − 2)
otherwise. Then one can transform any αβ -orientation of A to a biased orientation of M
by gluing back the two copies of C and giving to the half-edges of C the weight they 
have on the special face of A. Indeed, it is clear by the definition of A and the choice 
of α, β, that in the obtained d

d−2 -orientation of M all the weights on half-edges incident 
to the left side of C are equal to 0, and thus the orientation is biased w.r.t. C by the 
above discussion. So the existence of a biased orientation (Lemma 9), is reduced to the 
existence of an αβ -orientation of A. It is proved in Theorem 24 of [8] that A admits an 
α
β -orientation, where the proof is done first in the bipartite case (case of even d) using 
Lemma 10, and then the general case is derived from the bipartite case using a subdivi-
sion argument. We reproduce here in the general case the arguments given in [8] for the 
bipartite case, for the sake of completeness and since this is one of the key ingredients 
to obtain a balanced orientation of M .

Lemma 11 (Theorem 24 in [8]). The annular map A admits an αβ -orientation.

Proof. It is not difficult to check that by Euler formula that the first condition of 
Lemma 10 is satisfied. Let us now prove that the second condition of the lemma is 
also satisfied.

6 This lemma can be seen as an application of Hall’s theorem regarding the existence of a perfect matching 
in the bipartite graph obtain from G by copying β(e) times each edge e, then subdividing once each edge 
of the resulting graph, and finally copying α(v) times each initial vertex of G.
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Let S be any subset of vertices of A. Suppose first that A[S], the subgraph of A induced 
by S, is connected. We consider two cases whether S contains some outer vertices of A
or not.

• S contains at least one outer vertex of A:
Let S′ be the set of vertices obtained by adding to S all the outer vertices of A. Since 
α equals to 0 for outer vertices, we have 

∑
v∈S α(v) =

∑
v∈S′ α(v). Moreover, E[S]

is a subset of E[S′], so 
∑

e∈E[S] β(e) ≤
∑

e∈E[S′] β(e).
Let n′, m′, f ′ be the number of vertices, edges and faces of A′ = A[S′]. Euler’s formula 
says that n′ − m′ + f ′ = 2. The outer face of A′ has size k. Since C is a shortest 
cycle in its class of homotopy, the inner face of A′ containing the special face of 
A has size at least k. Moreover M is a d-angulation, so all the other inner faces 
of A have size at least d. So finally 2m′ ≥ d (f ′ − 2) + 2k. By combining the two 
(in)equalities, we obtain d n′ − (d − 2) m′ − 2k ≥ 0. So 

∑
v∈S α(v) −

∑
e∈E[S] β(e) ≥∑

v∈S′ α(v) −
∑

e∈E[S′] β(e) = d(n′ − k) − (d − 2)(m′ − k) ≥ 0.
• S does not contain any outer vertices of A:

Let n′, m′, f ′ be the number of vertices, edges and faces of A′ = A[S]. Then Euler’s 
formula says that n′ −m′ + f ′ = 2. The planar map A′ has at most two faces that 
can be of size strictly less than d: its outer face, and the face of A′ containing the 
special face of A. Note that these two faces are not necessarily distinct and can also 
be of size more than d. In any case we have 2m′ > d (f ′ − 2). By combining the 
two (in)equalities, we obtain d n′ − (d − 2) m′ > 0. So 

∑
v∈S α(v) −

∑
e∈E[S] β(e) =

dn′ − (d − 2)m′ > 0.

In both cases, the second condition of Lemma 10 is satisfied when A[S] is connected. 
If A[S] is not connected, then we can sum over the different connected components to 
obtain the result. �

By the above remarks, Lemma 11 implies Lemma 9.

3.3.2. Linear combinations of biased orientations
Consider a d-toroidal map M and B1, B2 two non-contractible non-homotopic cycles 

of M that are both shortest cycles in their respective class of homotopy. Suppose that 
B1, B2 are given with a traversal direction. Let k1 (resp. k2) be the length of B1 (resp. 
B2).

Consider D1, D2, D3, D4 the four d
d−2 -orientations of M that are biased with re-

spect to B1, −B1, B2, −B2 respectively. The γ-score of B1, B2 in these four orientations 
are given in Table 1 where a, b are integers in {−2k2, . . . , 2k2} and c, d are integers in 
{−2k1, . . . , 2k1}.

For 1 ≤ i ≤ 4, let wi be the weight function of Di. i.e., the function defined on the 
half-edges of M such that the weight of a half-edge h is wi(h) in the d -orientation Di. 
d−2
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Table 1
γ-score of the orientations D1, D2, D3, D4.

D1 D2 D3 D4

γ(B1) 2k1 −2k1 c d
γ(B2) a b 2k2 −2k2

Let k = 2k1k2. Let w be the weight function defined on the set of half-edges of M by 
the following:

w =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2k + bc)k2 × w1 + (2k − ac)k2 × w2 − (a + b)k × w3 if a + b < 0

w1 + w2 if a + b = 0

(2k − bd)k2 × w1 + (2k + ad)k2 × w2 + (a + b)k × w4 if a + b > 0

Note that in all cases, with weight function w, the γ-score of both B1, B2 is zero. 
Indeed, we have:

⎡
⎣ (2k + bc)k2 (2k − ac)k2 −(a + b)k 0

1 1 0 0
(2k − bd)k2 (2k + ad)k2 0 (a + b)k

⎤
⎦×

⎡
⎢⎢⎣

2k1 a

−2k1 b

c 2k2

d −2k2

⎤
⎥⎥⎦ =

⎡
⎣0 0

0 a + b

0 0

⎤
⎦ .

Note also that in all cases, for 1 ≤ i ≤ 4 the coefficient of wi is in N, hence w(h) ∈ N

for every half-edge h of M . We denote by σ the sum of the coefficients, i.e.,

σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2k + bc)k2 + (2k − ac)k2 − (a + b)k if a + b < 0,

2 if a + b = 0,

(2k − bd)k2 + (2k + ad)k2 + (a + b)k if a + b > 0.

Note that σ ≥ 1 in all cases.
Then the total w-weight at any vertex (resp. edge) of M equals σd (resp. σ(d − 2)). 

Hence w is the weight function of a σd
σ(d−2) -orientation Dσ of M . In a sense Dσ/σ, 

obtained from Dσ by dividing all the weights by σ, is a d
d−2 -orientation of M but with 

rational weights instead of integers. Note that the proof of Lemma 7 is not using the fact 
that the weights are integers thus the conclusion holds with rational weights as well.

We have defined the linear combination of biased orientations in such a way that we 
precisely have γ(B1) = γ(B2) = 0 for the orientation Dσ. A variant of Lemma 7 with 
rational weights implies that Dσ is a balanced σd

σ(d−2) -orientations and Dσ/σ can be 

viewed as a balanced d
d−2 -orientation of M but with rational weights. So we almost have 

what we are looking for, except for the rational weights that we would like to be integers.

3.3.3. Integrality by minimality
We use the same terminology as in the previous subsection.
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Fig. 8. The three possible cases for MQ.

Let M be a d-toroidal map, with a distinguished face f0. By Corollary 4, the map 
M has a unique minimal σd

σ(d−2) -orientation Dσ
min that is γ-equivalent to Dσ, i.e. that 

is balanced. In the next lemma, we now prove that the weights of Dσ
min are multiple 

of σ. So Dσ
min/σ, obtained from Dσ

min by dividing all the weights by σ, is a balanced 
d

d−2 -orientation of M with integer weights and thus this proves Proposition 8.

Lemma 12. All the weights of Dσ
min are multiples of σ.

Proof. Since the total weight of an edge is a multiple of σ, for each edge e ∈ M either 
its two half-edges are not multiple of σ or they are both multiple of σ. We denote by 
Q the set of edges with weights (on both half-edges) not multiple of σ, and let MQ be 
the embedded graph induced by edges in Q and their incident vertices. Note that MQ

is embedded on the torus but is not necessarily a map as some of its faces may not be 
homeomorphic to an open disk. Since the total weight at any vertex is a multiple of σ, a 
vertex of M can not be incident to a single edge in Q, hence all the vertices of MQ have 
degree at least 2.

Suppose by contradiction, that MQ has at least two faces (the embedded subgraph 
MQ is not necessarily a map, a ‘face’ refers here to a connected component of the torus 
cut by MQ). Let f be a face of MQ not containing f0. Let F be the set of edges on 
the border of f . The weights of the half-edges of F are not multiple of σ. So none of 
their weights is equal to 0. So in the underlying biorientation of M , all edges of F are 
bioriented. Thus, in the σ(d − 2)-expansion H of M , the set S of faces of H within f is 
such that every edge on the boundary of S has a face in S on its right, contradicting the 
minimality of Dσ

min. So MQ has a unique face.
Since the vertices of MQ have degree at least 2 and MQ has a unique face, the embed-

ded toroidal graph MQ has to be one of the graphs depicted in Fig. 8, i.e. it is either a 
non-contractible cycle, or the union of two non-contractible cycles that are edge-disjoint 
and intersect at a unique vertex, or it is the union of three edge-disjoint paths such that 
the union of any two of these paths forms a non-contractible cycle.

In any case, there exists a non-contractible cycle C of M such that on each side of 
C there is a single incident half-edge in Q. This implies that the sum of the weights of 
incident half-edges on the left (resp. right) side of C is not a multiple of σ.
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On the other hand, since Dσ
min is balanced we have γ(C) = 0. Let 	 be the length of 

C, so that the sum of the weights of the half-edges of M incident to each side of C is 
equal to 1

2 (σd	 − σ(d − 2)	) = σ	. This is a multiple of σ, giving a contradiction. �
3.4. Bipartite case

For the particular case where d is even and the map is bipartite, we can prove the 
existence of balanced orientations with even weights, as discussed below.

Consider a d-toroidal map M where d is even, i.e. d = 2b with b ≥ 2. Note that d/2 = b

and (d − 2)/2 = b − 1. So if the weights of a d
d−2 -orientation of M are even, they can be 

divided by two to obtain a b
b−1 -orientation of M , i.e., an N-biorientation where every 

vertex has weight b and every edge has weight b − 1. Then one can ask the question of 
existence of balanced b

b−1 -orientations in that case. The answer to this question is given 
as follows.

Proposition 13. When d = 2b with b ≥ 2, a toroidal d-angulation M with essential 
girth d admits a balanced b

b−1 -orientation if and only if M is bipartite. In this case, for 
any choice of a distinguished face f0 of M , the unique balanced d

d−2 -orientation that 
is minimal has all its weights that are even (hence is a balanced b

b−1 -orientation upon 
dividing the weights by 2).

Proof. If M admits a balanced b
b−1 -orientation we want to show that M is bipartite. 

Since the face-degrees of M are even it is enough to check that every non-contractible 
cycle C of M has even length. Recall that γR(C) (resp. γL(C)) is the sum of the weights of 
the half-edges incident to the right (resp. left) side of C. Since the orientation is balanced, 
we have γR(C) = γL(C). Denoting by k the length of C, the sum of the weights of all the 
half-edges of C is equal to (b − 1)k. The sum of the weights of all the half-edges incident 
to vertices of C is bk. Hence bk = (b − 1)k + γR(C) + γL(C) = (b − 1)k + 2γR(C). So 
k = 2γR(C) and thus k is even.

Now suppose that M is bipartite, and consider an arbitrary face f0 of M . By Proposi-
tion 8, M admits a balanced d

d−2 -orientation. By Corollary 4 we can consider the unique 
minimal d

d−2 -orientations D that is balanced. We have the following:

Claim. The weights of D are even.

Proof of the claim. The proof follows the same arguments as the proof of Lemma 12. 
Since each edge has even total weight, either its two half-edges have both even weights, 
or they have both odd weights. We let Q be the set of edges with odd weights, and 
assume for contradiction that Q is not empty. Let MQ be the embedded graph induced 
by the edges in Q and their incident vertices. Since every vertex has even total weight, 
it can not be incident to a single edge in Q, hence all vertices of MQ have degree at 
least 2.
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Suppose by contradiction that MQ has at least two faces. Let f be a face of MQ

not containing f0. Let F be the set of edges on the border of f . The weights of the 
half-edges of F are odd, hence non-zero. Hence, in the underlying biorientation of 
M , all edges of F are bioriented. Thus, in the (d − 2)-expansion H of M , the set 
of faces S of H corresponding to f is such that every edge on the boundary of S
has a face in S on its right, contradicting the minimality of D. So MQ has a unique 
face.

Since the vertices of MQ have degree at least 2 and MQ has a unique face, 
we again have the property that MQ is in one of the configurations shown in 
Fig. 8. In any case, there exists a non-contractible cycle C of M that has a sin-
gle edge in Q on each side. Hence γL(C) is odd. On the other hand, since each 
edge has weight d − 2 and each vertex has weight d, we have γL(C) + γR(C) = 2	, 
with 	 the length of C. Since the orientation is balanced, we have γL(C) = 	; 
and since the map is bipartite 	 is even, contradicting the fact that γL(C) is
odd. �

The claim ensures that all the weights of D are even. Thus, dividing all the weights 
of D by 2, one obtains a balanced b

(b−1) -orientation of M . �
4. Bijective results

In this section we state our main bijective results. Similarly as in the planar case [7,8], 
our starting point is a ‘meta-bijection’ Φ+ in any genus g between a family of oriented 
maps and a family of decorated unicellular maps. The families are defined in Section 4.1
and Φ+ is presented in Section 4.2 in the oriented setting, and then extended in Sec-
tion 4.3 to the weighted bioriented setting. In Section 4.5 we then specialize Φ+ to the 
balanced d

d−2 -orientations studied in Section 3, and obtain a bijection for toroidal d-
angulations of essential girth d (Theorem 19) which admits a parity specialization in the 
bipartite case (Corollary 20). Each of these two bijections can be further extended to 
a bijection for toroidal maps of fixed essential girth with a certain root-face condition 
(Theorem 21, and Theorem 22 in the bipartite case, both stated in Section 4.6 without 
proofs, which are delayed to Section 6.3).

4.1. Terminology for oriented maps and mobiles

Consider a face-rooted map M of genus g ≥ 0. Suppose that M is given with an 
orientation of its edges such that every vertex has at least one outgoing edge. For an 
edge e ∈ M , the rightmost walk starting from e, is the (necessarily unique and eventually 
looping) walk starting from e by following the orientation of e, then taking at each step 
the rightmost outgoing edge, i.e., for any pair e′, e′′ of consecutive edges along the walk, 
all edges between e′ and e′′ in counterclockwise order around their common vertex are 
ingoing.
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Fig. 9. The local rule applied by the bijection Φ+ to each edge.

An orientation of M is called a right orientation if the following conditions are satis-
fied:

• every vertex has at least one outgoing edge,
• for every edge e of M , the rightmost walk starting from e eventually loops on the 

contour of the root-face f0 with f0 on its right side.

For d ≥ 1 and g ≥ 0, we denote by Og
d the family of right orientations of face-rooted 

maps of genus g whose root-face has degree d.
Let us now define the unicellular maps to be set in bijective correspondence with 

Og
d. A mobile of genus g is defined as a unicellular map of genus g that is bipartite (it 

has black vertices and white vertices and every edge connects a black vertex to a white 
vertex) such that each corner at a black vertex is allowed to carry additional dangling 
half-edges called buds, represented as outgoing arrows. The excess of a mobile T is the 
number of edges minus the number of buds in T , and the family of mobiles of genus g
and excess d is denoted by T g

d .

4.2. Bijection Φ+ between Og
d and T g

d

Let d ≥ 1. Similarly as in the planar case developed in [7] we adapt the bijection 
from [6] into a bijection7 between Og

d and T g
d (see Section 6.1 for proof details). For 

O ∈ Og
d we denote by Φ+(O) the embedded graph obtained by inserting a black vertex 

in each face of O, then applying the local rule of Fig. 9 to every edge of O (thereby 
creating an edge and a bud), and finally erasing the isolated black vertex in the root-face 
of O (since the root-face contour is directed clockwise, this black vertex is incident to d
buds and no edge). See Fig. 10 for an example.

Theorem 14 (Oriented case). For d ≥ 1 and g ≥ 0, the mapping Φ+, with the local rule 
of Fig. 9, is a bijection between the family Og

d of oriented maps and the family T g
d of 

mobiles.

The proof of Theorem 14 is delayed to Section 6.1.
The inverse mapping Ψ+ is done as follows. Starting from a mobile T ∈ T g

d , we insert 
an ingoing bud in every corner of a black vertex u that is just after an edge (not a bud) 

7 It should also be possible, for any d ≤ 0, to adapt the bijection from [6] into a bijection between the 
family of genus g mobiles of excess d and a well-characterized family of genus g oriented map, but we will 
not need it here to get our bijections for toroidal maps with prescribed essential girth.
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Fig. 10. The bijection Φ+ from a toroidal orientation in O1
4 to a toroidal mobile of excess 4 (the root-face is 

indicated by the small clockwise circular arrow).

Fig. 11. The inverse mapping Ψ+: from a mobile in T 1
4 to an orientation in O1

4 .

in counterclockwise order around u. Since T has excess d, there are d more ingoing buds 
than outgoing buds. We then match the outgoing and ingoing buds according to a walk 
(with the face on our right) around the unique face of T , considering outgoing buds as 
opening parentheses and ingoing buds as closing parentheses. Every matched pair yields 
a directed edge, and we are left with d unmatched ingoing buds (all in the same face 
of the obtained figure), which we call the exposed buds of T . For each such bud, the 
consecutive half-edge in clockwise order around the incident black vertex is called an 
exposed half-edge of T .

We then join the exposed buds to a newly created vertex v∞, see Fig. 11 for an 
example. Let X be the oriented map obtained after erasing the edges of T and the white 
vertices; and let O be the dual map endowed with the face-rooted dual orientation (that 
is, for every edge e ∈ O, with e∗ ∈ X the dual edge, we orient e from the left side of e∗
to the right side of e∗), where the root-face is taken to be the face dual to v∞. Then Ψ+
is the mapping that maps T to O (it is quite easy to check that Φ+(Ψ+(T )) = T when 
superimposing O, X and T ).

4.3. Extension of Φ+ to the weighted bioriented setting

Similarly as in [7] we may now extend this bijection to the context of biorientations, 
and then to weighted biorientations. Recall from Section 2, that in a bioriented map M , 
every half-edge receives a direction (ingoing or outgoing). For i ∈ {0, 1, 2} an edge is 
said to be i-way if it has i outgoing half-edges among its two incident half-edges. For 
O a bioriented map, the induced oriented map O′ = μ(O) is obtained by replacing each 
2-way edge by a double edge (enclosing a face of degree 2) directed counterclockwise, and 
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Fig. 12. Top-row: the bijection Φ+ from a biorientation in O1
3 to a bimobile in T 1

3 , applying the local rules of 
Fig. 14. The bottom-row shows that the construction amounts to applying the bijection Φ+ in the oriented 
setting, upon blowing each 2-way edge into a counterclockwise 2-cycle and inserting a sink of degree 2 in 
the middle of every 0-way edge.

inserting a vertex of (out)degree 2 in the middle of each 0-way edge, see the left column 
of Fig. 12 for an example. For d ≥ 1 and g ≥ 0 we can now extend the definition of the 
families Og

d to the bioriented setting: a face-rooted bioriented map is said to belong to 
Og

d if the induced oriented face-rooted map is in Og
d.

Let us now formulate rightmost walks directly on the biorientation to be a bit more 
explicit on the properties that a biorientation needs to satisfy to be in Og

d. Consider a 
face-rooted map M of genus g ≥ 0. Suppose that M is given with a biorientation such 
that every vertex has at least one outgoing half-edge. For an outgoing half-edge h of M , 
we define the rightmost walk from h as the (necessarily unique and eventually looping) 
sequence of half-edges starting from h, and at each step taking the opposite half-edge 
and then the rightmost outgoing half-edge at the current vertex.

A biorientation of M is called a right biorientation if the following conditions are 
satisfied:

• every vertex has at least one outgoing half-edge,
• for every outgoing half-edge h, the rightmost walk starting from h loops on the 

contour of the root-face f0 with f0 on its right side.

Thus with this definition, a face-rooted bioriented map belongs to Og
d if and only if it 

is a right biorientation, it has genus g and the degree of the root-face is d.
As illustrated in Fig. 12 (forgetting for now the second and third drawing of the top-

row), Φ+ ◦μ induces a bijection between bioriented maps in Og
d and mobiles in T g

d where 
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Fig. 13. The rules to obtain a mobile λ(T ) ∈ T g
d (where the new added vertices, of degree 2, are distinguished 

as square) from a bimobile T ∈ T g
d .

Fig. 14. The local rules applied to each edge by the bijection Φ+ in the bioriented setting.

some vertices of degree 2 are marked as square vertices (square black vertices correspond 
to the 2-way edges, square white vertices correspond to the 0-way edges).

We call bimobile of genus g a unicellular map of genus g with two kinds of vertices, 
white or black (this time, black-black edges and white-white edges are allowed), and such 
that each corner at a black vertex might carry additional dangling half-edges called buds. 
(Note that a mobile is a special case of bimobile, where all the edges are black-white.) 
The excess of a bimobile is the number of black-white edges plus twice the number of 
white-white edges, minus the number of buds. We now extend the definition of the family 
T g
d to bimobiles: a bimobile of genus g is said to belong to T g

d if its excess is d. For T
a bimobile, the induced mobile λ(T ) is obtained by inserting in each white-white edge a 
square black vertex of degree 2, and inserting in each black-black edge a square white 
vertex of degree 2 together with two buds at the incident edges, as shown in Fig. 13. 
Clearly λ(T ) has the same excess as T . As shown in Fig. 12 the mapping λ−1 ◦ Φ+ ◦ μ
thus yields a bijection from bioriented maps in Og

d to bimobiles in T g
d (it just amounts 

to marking some counterclockwise faces of degree 2 and some sinks of degree 2 in the 
bijection of Theorem 14). By a slight abuse of notation we refer to λ−1 ◦ Φ+ ◦ μ as Φ+

(adapted to the bioriented setting). It is easy to see that the effect of λ−1, of μ, and of 
the local rules of Fig. 9 can be shortcut as the local rules shown in Fig. 14 applied to 
the three types of edges (0-way, 1-way, or 2-way), so that, given a biorientation O in Og

d, 
Φ+(O) is obtained after applying these rules to every edge of O, and then deleting the 
isolated black vertex in the root-face.

We obtain:

Corollary 15 (Extension to the bioriented setting). For d ≥ 1 and g ≥ 0, the mapping 
Φ+, with the local rules of Fig. 14, is a bijection between the family Og

d of bioriented 
maps and the family T g

d of bimobiles.

Finally, similarly as in the planar case [7], the bijection is directly extended to the 
weighted setting. A Z-biorientation of a map is a biorientation where every half-edge is 
given a value in Z, which is in Z>0 (strictly positive) if the half-edge is outgoing and 
in Z≤0 (negative or zero) if the half-edge is ingoing. A Z-bimobile is a bimobile where 
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Fig. 15. The local rules applied to each edge by the bijection Φ+ in the weighted bioriented setting.

Fig. 16. Example of the bijection Φ+ from a Z-biorientation in O1
3 to a Z-bimobile in T 1

3 .

every non-bud half-edge is given a value in Z, which is in Z>0 if the half-edge is incident 
to a white vertex and in Z≤0 if the (non-bud) half-edge is incident to a black vertex.

A Z-bioriented face-rooted map is said to belong to Og
d if the underlying unweighted 

face-rooted bioriented map belongs to Og
d; and a Z-bimobile T is said to belong to T g

d if 
the underlying unweighted bimobile is in T g

d .
For a Z-bioriented map, the weight of a vertex v is the sum of the weights of the 

outgoing half-edges at v, and the weight of a face f is the sum of the weights of the 
ingoing half-edges that have f on their left (traversing the half-edge toward its incident 
vertex); and the weight of an edge e is the sum of the weights of its two half-edges. For a 
Z-bimobile, the weight of a vertex v is the sum of the weights of the incident half-edges, 
and the weight of an edge e is the sum of the weights of its two half-edges. We extend 
the bijection Φ+ to the weighted bioriented setting by the rules of Fig. 15.

Then we obtain the following:

Corollary 16 (Extension to the weighted bioriented setting). For d ≥ 1 and g ≥ 0, the 
mapping Φ+, with the local rules shown in Fig. 15, is a bijection between the family Og

d

of Z-bioriented maps and the family T g
d of Z-bimobiles.

An example is given in Fig. 16 (the weights are omitted in the middle drawing).
As in the planar case [7], for O a Z-bioriented map in Og

d and T = Φ+(O) the 
corresponding Z-bimobile, several parameters can be traced:

• each vertex v of O corresponds to a white vertex w of T : the outdegree of v corre-
sponds to the degree of w and the weight of v is the same as the weight of w,

• each non-root face f of O corresponds to a black vertex b of T of the same degree 
and same weight,

• each edge e of O corresponds to an edge of T of the same weight.
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When all the weights of a Z-biorientation are in Z≥0 then we have an N-biorientation, 
as defined in Section 2. Note that an N-biorientation is a Z-biorientation where all the 
ingoing half-edges have weight 0. The corresponding Z-bimobiles are called N-bimobiles
(these are the Z-bimobiles where the half-edges at black vertices have weight 0).

We will use specializations of the weighted formulation of Φ+ (Corollary 16) in order 
to obtain bijections for d-toroidal maps (relying on d

d−2 -orientations, so we are in the 
N-bioriented setting), and more generally for toroidal maps of essential girth d with a 
root-face of degree d (relying on a generalization of d

d−2 -orientations in the Z-bioriented 
setting).

4.4. Necessary condition for αβ -orientations to be right biorientations

We prove here that minimality is a necessary condition for an αβ -orientation to be a 
right biorientation:

Lemma 17. If a face-rooted αβ -oriented map belongs to Og
d, then it is minimal.

Proof. Suppose by contradiction that a face-rooted map M has an αβ -orientation X in 
Og

d that is non-minimal. Let f0 be the root face of M . By definition of non-minimality, 
there exists a non-empty set S of faces of M , not containing f0, such that every edge on 
the boundary of S is either simply directed with a face in S on its right or is bidirected. 
Hence, while walking clockwise on the contour of S, each half-edge that is encountered 
just after a vertex is outgoing. Consider such a half-edge h and let W be the rightmost 
walk starting from h. Then W necessarily stays in S union its contour (it can not escape), 
and moreover if it loops on the contour of S, then it does so with S on its right side. 
Since S does not contain f0, W can not eventually loop on the contour of f0 with f0 on 
the right side, a contradiction. �
4.5. Bijection for toroidal d-angulations of essential girth d

Let d ≥ 3. We define a toroidal d
d−2 -mobile as an N-bimobile of genus 1, where 

every white vertex has weight d, every edge has weight d − 2 and every black vertex 
has degree d. We denote by Ud the family of these N-bimobiles. (Note that there is no 
black-black edges in an element of Ud.) A simple counting argument gives:

Lemma 18. Every N-bimobile in Ud has excess d.

Proof. For T ∈ Ud, let n•◦ be the number of black-white edges, n◦◦ the number of white-
white edges, e = n•◦ + n◦◦ the total number of edges, n• the number of black vertices, 
n◦ the number of white vertices, and k the number of buds. By definition the excess of T
is n•◦ +2n◦◦ − k, so we want to prove that this quantity equals d. Since T is unicellular, 
Euler’s formula gives e = n• +n◦ +1. Since every white vertex has weight d, every black 
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Fig. 17. Left: a toroidal d-angulation in Fd endowed with its unique balanced d
d−2 -orientation in O1

d (d = 3
for the top example, d = 5 for the bottom example). Right: the associated N-bimobile.

vertex has weight 0, and every edge has weight d − 2 we have dn◦ = (d − 2)e. Since 
every black vertex has degree d we have dn• = n•◦ + k. Hence we have at the same time 
d(n◦ + n•) = (d − 2)e + n•◦ + k and d(n◦ + n•) = de − d, so that 2e = k + n•◦ + d, and 
thus n•◦ + 2n◦◦ − k = d. �

Clearly the bijection Φ+ specializes as a bijection between face-rooted toroidal d-
angulations endowed with a d

d−2 -orientation in O1
d, and the family Ud.

Consider a toroidal d
d−2 -mobile T and a cycle C of T with a traversal direction. Let 

wL(C) (resp. wR(C)) be the total weight of half-edges incident to a white vertex of C on 
the left (resp. right) side of C; and let sL(C) (resp. sR(C)) be the number of half-edges, 
including buds, incident to a black vertex of C on the left (resp. right) side of C. We 
define γL(C) = wL(C) + sL(C), γR(C) = wR(C) + sR(C), and define the γ-score of C as 
γ(C) = γR(C) − γL(C). Then T is called balanced if the γ-score of any non-contractible 
cycle of T is 0. We denote by UBal

d the subset of elements of Ud that are balanced. We 
will show (Lemma 29 in Section 6.2.1) that Φ+ specializes into a “balanced version” of 
the bijection, i.e., a bijection between face-rooted toroidal d-angulations endowed with 
a balanced d

d−2 -orientation in O1
d, and the family UBal

d .
We denote by Fd the family of face-rooted d-toroidal maps such that the only d-angle 

enclosing the root-face is its contour. We will show (Lemma 31 in Section 6.2.1) that a 
face-rooted toroidal d-angulation M has a balanced d

d−2 -orientation in O1
d if and only if 

M ∈ Fd, and in that case M has a unique balanced d
d−2 -orientation in O1

d, which is the 
minimal one (by Lemma 17). Thus we obtain the following bijection:
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Fig. 18. Left: a bipartite toroidal face-rooted 2b-angulation in F̂2b (b = 3 in the example), endowed with its 
unique balanced b

b−1 -orientation in O1
2b. Right: the associated N-bimobile.

Theorem 19 (Toroidal d-angulations of essential girth d). For d ≥ 3, there is a bijection 
between the map family Fd and the N-bimobile family UBal

d . Every non-root face of the 
map corresponds to a black vertex in the associated N-bimobile.

Two examples are given in Fig. 17 for d = 3 and d = 5.
We now give the statement for bipartite maps. Let b ≥ 2, and d = 2b. We denote 

by F̂2b the subfamily of maps in F2b that are bipartite. Proposition 13 ensures that a 
face-rooted d-toroidal map M is bipartite if and only if all the weights of the unique 
minimal balanced d

d−2 -orientation of M are even. Hence, in the bijection of Theorem 19, 
M ∈ F2b is bipartite if and only if all half-edge weights in the associated N-bimobile are 
even. We formalize this simplification as follows.

We define a b
b−1 -mobile as an N-bimobile of genus 1, where every white vertex has 

weight b, every edge has weight b − 1 and every black vertex has degree 2b. The family 
of b

b−1 -mobiles is denoted by Ûb. Note that for T ∈ Ûb, the N-bimobile T ′ obtained from 
T by doubling every half-edge weight is an element of U2b (in particular, T must have 
excess 2b). We say that T is balanced if T ′ is balanced and we denote by ÛBal

b the subset 
of elements of Ûb that are balanced. Thus we obtain the following bijection:

Corollary 20 (Bipartite toroidal 2b-angulations of essential girth 2b). For b ≥ 2, there is 
a bijection between the map family F̂2b and the N-bimobile family ÛBal

b . Every non-root 
face of the map corresponds to a black vertex in the associated N-bimobile.

An example is shown in Fig. 18 for b = 3.

4.6. Extension to toroidal maps of essential girth d with a root-face of degree d

We state here a generalization of Theorem 19 (resp. Corollary 20) to toroidal face-
rooted maps of girth d (resp. bipartite maps of girth 2b) with root-face degree d (resp. 
2b). Note that we allow here all faces, except the root face, to have degree larger than 
d. These results can be seen as toroidal counterparts of the bijections obtained in [8] for 
planar maps of girth d with a root-face of degree d.
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Fig. 19. Left: a Z-bimobile in VBal
3 ; apart from the root-face (which has degree 3), the corresponding toroidal 

map has 4 faces of degree 3, 2 faces of degree 4 and one face of degree 5. Right: a Z-bimobile in V̂Bal
3 ; apart 

from the root-face (which has degree 6), the corresponding toroidal bipartite map has 4 faces of degree 6
and 2 faces of degree 8.

Let d ≥ 1. We denote by Ld the family of face-rooted toroidal maps of essential girth d, 
such that the root-face contour is a maximal d-angle.

We now define the mobiles that will be set in bijection with maps in Ld. Recall that 
a Z-bimobile is a bimobile with integer weights at the non-bud half-edges, which are in 
Z>0 (resp. in Z≤0) when the incident vertex is white (resp. black). We define a toroidal 
d

d−2 -Z-mobile as a Z-bimobile of genus 1 with weights in {−2, . . . , d} such that every 
white vertex has weight d, every edge has weight d −2 and every black vertex of degree i
has weight −i +d (hence i ≥ d). We denote by Vd the family of these Z-bimobiles. (Note 
that for d ≤ 3, an element of Vd has no white-white edge, while for d ≥ 3, it has no 
black-black edge.) A counting argument similar to the one for proving Lemma 18 ensures 
that every T ∈ Vd has excess d. Consider T in Vd and a cycle C of T with a traversal 
direction. Let wL(C) (resp. wR(C)) be the total weight of half-edges incident to vertices 
(black or white) of C on the left (resp. right) side of C. Let sL(C) (resp. sR(C)) be the 
total number of half-edges, including buds, incident to black vertices of C on the left 
(resp. right) side of C. We define γL(C) = wL(C) + sL(C), γR(C) = wR(C) + sR(C), 
and the γ-score of C by γ(C) = γR(C) − γL(C). Then T is called balanced if the γ-score 
of any non-contractible cycle of T is 0. We denote by VBal

d the subset of elements of Vd

that are balanced (see the left-part of Fig. 19 for an example).

Theorem 21 (Toroidal maps). For d ≥ 1, there is a bijection between the map family Ld

and the Z-bimobile family VBal
d . Every non-root face in the map corresponds to a black 

vertex of the same degree in the associated Z-bimobile.

The proof of Theorem 21 is delayed to Section 6.3.
We now give the statement for bipartite maps. Let b ≥ 1. We denote by L̂2b the 

subfamily of maps in L2b that are bipartite. We define a toroidal b
b−1 -Z-mobile as a 

Z-bimobile of genus 1 with weights in {−1, . . . , b}, all black vertices of even degree, such 
that every white vertex has weight b, every edge has weight b − 1 and every black vertex 
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of degree 2i has weight −i + b (hence i ≥ b). The family of these Z-bimobiles is denoted 
by V̂b. (Note that for b ≤ 2, an element of V̂b has no white-white edge, while for b ≥ 2, 
it has no black-black edge.) Note also that the Z-bimobile T ′ obtained from an element 
T in V̂b by doubling every half-edge weights is an element of V2b (in particular, T must 
have excess 2b). We say that T is balanced if T ′ is balanced and denote by V̂Bal

b the 
subset of elements of V̂b that are balanced (see the right-part of Fig. 19 for an example).

Theorem 22 (Bipartite toroidal maps). For b ≥ 1, there is a bijection between the map 
family L̂2b and the Z-bimobile family V̂Bal

b . Every non-root face in the map corresponds 
to a black vertex of the same degree in the associated Z-bimobile.

The proof is again delayed to Section 6.3.
Similarly as for d-angulations, in the bijection of Theorem 21 the map M is bipartite 

if and only if the half-edge weights in the corresponding Z-bimobile T are even, and 
upon dividing the weights by 2 the Z-bimobile one obtains is the one associated to M
by the bijection of Theorem 22 (which can thus be seen as a parity specialization of the 
bijection of Theorem 21).

5. Counting results

For d ≥ 1, let M′
d (resp. Md) be the family of rooted (resp. face-rooted) toroidal maps 

of essential girth d with a root-face of degree d. In Section 5.1 we express the generating 
function of M′

d (with control on the face-degrees) in terms of generating functions of 
balanced toroidal d

d−2 -Z mobiles. To do this, we rely on the bijections obtained so far 
(Theorems 21 and 22) and on a decomposition of maps in M′

d into a toroidal part 
and a planar part by cutting along a certain d-angle (the ‘maximal’ one) enclosing the 
root-face. Then, in Sections 5.2 and 5.3 we show that the generating function of d

d−2 -Z
mobiles can be expressed in certain specific cases (we show the approach on essentially 
simple triangulations and bipartite quadrangulations).

5.1. A general expression in terms of balanced mobiles

For M ∈ Md, recall that a d-angle of M is a contractible closed walk of length d, and 
it is called maximal if its enclosed area is not contained in the enclosed area of another 
d-angle.

Lemma 23. Two distinct maximal d-angles of a map M ∈ Md always have disjoint 
interiors.

Proof. Let us first reformulate the definition of a d-angle. We define a region of M as 
given by R = V ′ ∪ E′ ∪ F ′ where V ′, E′, F ′ are subsets of the vertex-set, edge-set and 
face-set of M , such that if v ∈ V ′ then the edges incident to v are in E′, and if e ∈ E′ then 
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the faces incident to e are in F ′. Note that the union (resp. intersection) of two regions 
is also a region. A boundary-edge-side of R is an incidence face/edge of M such that the 
face is in F ′ and the edge is not in E′. The boundary-length of R, denoted by 	(R), is the 
number of boundary-edge-sides of R. A disk-region is a region R homeomorphic to an 
open disk. A d-angle thus corresponds to the (cyclic sequence of) boundary-edge-sides 
of a disk-region R such that 	(R) = d; and it is maximal if there is no other disk-region 
R̄ of boundary-length d such that R ⊂ R̄.

We thus have to show that for two distinct disk-regions R1, R2 both enclosed by 
maximal d-angles, we have R1 ∩R2 = ∅. It is easy to see that for any two regions S1, S2
we have 	(S1) + 	(S2) = 	(S1 ∪ S2) + 	(S1 ∩ S2) (any incidence face/edge of M has the 
same contribution to 	(S1) + 	(S2) as to 	(S1 ∪ S2) + 	(S1 ∩ S2)). Assume R1 ∩R2 �= ∅. 
Since R1 and R2 are disk-regions, R1 ∩R2 is a disjoint union of disk-regions D1, . . . , Dk, 
and we have

2d = 	(R1) + 	(R2) = 	(R1 ∪R2) +
k∑

i=1
	(Di).

Since M has essential girth d, we have 	(Di) ≥ d for each 1 ≤ i ≤ k. Hence we must 
have k = 1 (we use 	(R1 ∪ R2) ≥ 1 to exclude the case k = 2). Since R1 ∩ R2 is a 
disk-region, the union R1 ∪ R2 must also be a disk-region, hence 	(R1 ∪ R2) ≥ d. But 
	(R1 ∪ R2) = 2d − 	(D1) ≤ d, hence 	(R1 ∪ R2) = d. Thus R1 ∪ R2 is enclosed by a 
d-angle, contradicting the fact that R1 and R2 are enclosed by maximal d-angles. �

Every M ∈ Md is rooted in a face f0 of degree d, so f0 is included in a maximal 
d-angle, and Lemma 23 ensures that M has a unique maximal d-angle enclosing the 
root-face. This d-angle is called the root-d-angle. Consider the operation of cutting along 
the root-d-angle C of M . This operation yields two maps (one on each side of C): a 
toroidal map L with a marked face of degree d and a planar map A with two marked 
faces f0, f1 each of degree d.

Recall that Ld is the subfamily of Md where the root-face contour is a maximal d-
angle; we denote by L′

d the family of rooted toroidal maps such that the underlying 
face-rooted map is in Ld. Moreover we let A′

d be the family of planar maps of girth d
with two marked faces f0, f1 of degree d, and a marked corner in f0 (we consider f1 as 
the outer face). Then the previous decomposition at the root-d-angle yields (see Fig. 20)

M′
d 
 L′

d ×A′
d. (1)

Let Md ≡ Md(z; xd, xd+1, . . .) (resp. Ld ≡ Ld(z; xd, xd+1, . . .)) be the generating func-
tion of maps in M′

d (resp. in L′
d), with z dual to the number of vertices and xi dual 

to the number of non-root faces of degree i. And let Ad ≡ Ad(z; xd, xd+1, . . .) be the 
generating function of maps in A′

d, with z dual to the number of vertices not incident to 
f1, and xi dual to the number of non-marked faces of degree i. Then by (1) we have
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Fig. 20. Left: a map M ∈ M′
3. Cutting along the root-3-angle of M , one obtains a map L ∈ L′

3 and a map 
A ∈ A′

3. One of the 3 vertices on the root-3-angle can be canonically chosen (i.e., the first of the 3 vertices 
that is reached in a left-to-right depth-first-search starting from the root-corner), and this vertex is taken 
as the one incident to the root-corner of L. The correspondence thus obtained is bijective.

Md = Ld ·Ad. (2)

The generating function Ad has already been computed bijectively in [8], it reads:

Ad = (1 + W0)d,

where W0 is part of a finite set W−1, W0, . . . , Wd−1 of series (in the variables 
z, xd, xd+1, . . .) that are specified by the system8:

⎧⎪⎪⎨
⎪⎪⎩

Wj = z hj+2(W1, . . . ,Wd−1) for all j in [−1 .. d− 3],

Wj = [uj+2]
∑
i≥d

xiu
i(1 + W0 + u−1W−1 + u−2)i−1 for all j in {d− 2, d− 1}, (3)

where hj denotes the multivariate polynomial in the variables w1, w2, . . . defined by:

hj(w1, w2, . . .) = [tj ] 1
1 −

∑
i>0 t

iwi
=

∑
r≥0

∑
i1,...,ir>0

i1+···+ir=j

wi1 · · ·wir . (4)

Regarding Ld, let Td ≡ VBal
d be the family of balanced toroidal d

d−2 -Z-mobiles and let 
T ′
d be the family of objects in Td where one of the d exposed half-edges is marked (see 

Section 4.2 for the definition of exposed half-edges). Then the bijection of Theorem 21
directly yields a bijection between L′

d and T ′
d (indeed the bijection of Theorem 21 relies 

8 We use the usual bracket notation: if P =
∑

k aku
k, then [uk]P = ak.
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on the general bijection given in Corollary 16, for which there is a natural 1-to-1 corre-
spondence between the d corners in the root-face and the d exposed half-edges). Hence 
Ld is also the generating function of balanced toroidal d

d−2 -Z-mobiles with a marked ex-
posed half-edge, with z dual to the number of white vertices and xi dual to the number 
of black vertices of degree i.

For a unicellular map M of positive genus, the core C of M is obtained from M by 
successively deleting leaves, until there is no leaf (so C has all its vertices of degree at least 
2; the deleted edges form trees attached at vertices of C). In C we call maximal chain a 
path P whose extremities have degree larger than 2 and all non-extremal vertices of P
have degree 2. Then the kernel K of M is obtained from C by replacing every maximal 
chain by an edge. In genus 1 it is known that the kernel of a unicellular map is either 
made of one vertex with two loops (double loop) or is made of 2 vertices and 3 edges 
joining them (triple edge).

Hence there are two types of toroidal mobiles, those where the associated kernel is the 
triple edge, called of type I, and those where the associated kernel is the double loop, 
called of type II. Let Gd ≡ Gd(z; xd, xd+1, . . .) (resp. Hd ≡ Hd(z; xd, xd+1, . . .) be the gen-
erating function of elements of type I (resp. type II) in Td and with a marked half-edge in 
the associated kernel. And let G̃d ≡ G̃d(z; xd, xd+1, . . .) (resp. H̃d ≡ H̃d(z; xd, xd+1, . . .)
be the generating function of elements of type I (resp. type II) in Td and with a marked 
exposed half-edge. In all these generating functions, z is dual to the number of white ver-
tices and xi is dual to the number of black vertices of degree i. We have Ld = (G̃d + H̃d), 
so by what precedes Md = Ad · (G̃d + H̃d); and by a classical double-counting argument 
we have G̃d = d

6Gd and H̃d = d
4Hd. Hence we obtain the following expression of Md in 

terms of generating functions of balanced toroidal d
d−2 -Z-mobiles:

Proposition 24. For d ≥ 1, the generating function Md is given by

Md = d ·Ad · (1
6Gd + 1

4Hd).

Very similarly we can obtain a general expression in the bipartite case. For b ≥ 1, let 
M̂2b, L̂2b and Â2b be the generating functions gathering (respectively) the terms of M2b, 
L2b and A2b given by bipartite maps.

Then, specializing (1) to bipartite maps yields

M̂2b = L̂2b · Â2b.

In addition the generating function Â2b has been given an explicit expression in [8], it 
reads:

Â2b = (1 + V0)2b

where V0 is part of a finite set {V0, . . . , Vb−1} of generating functions specified by the 
system:
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⎧⎪⎪⎨
⎪⎪⎩

Vj = z hj+1(V1, . . . , Vb−1) for all j in [0 .. b− 2],

Vb−1 =
∑
i≥b

x2i

(
2i− 1
i− b

)
(1 + V0)b+i−1

(5)

Let Ĝ2b ≡ Ĝ2b(z; x2, x4, . . .) (resp. Ĥ2b ≡ Ĥ2b(z; x2, x4, . . .)) be the generating func-
tion of balanced toroidal b

b−1 -Z-mobiles of type I (resp. type II) with a marked half-edge 
in the associated kernel, with z dual to the number of white vertices and x2i dual to 
the number of black vertices of degree 2i. By the very same arguments as to prove 
Proposition 24, we can express M̂2b in terms of generating functions of balanced toroidal 
b

b−1 -Z-mobiles:

Proposition 25. For b ≥ 1, the generating function M̂2b is given by

M̂2b = 2b · Â2b · (1
6Ĝ2b + 1

4Ĥ2b).

Propositions 24 and 25 ensure that the enumeration of rooted toroidal maps (resp. 
bipartite toroidal maps) of essential girth d (resp. 2b) and root-face degree d (resp. 2b), 
with control on the face-degrees, amounts to counting balanced toroidal d

d−2 -Z-mobiles 
(resp. b

b−1 -Z-mobiles) with control on the degrees of the black vertices. We show in 
the next two sections that this can be carried out for essentially simple triangulations 
and for essentially simple bipartite quadrangulations, yielding the two simple generating 
function expressions stated next:

Proposition 26 (Essentially simple triangulations). Let tn be the number of essentially 
simple rooted toroidal triangulations with n vertices. Then

∑
n≥1

tnz
n = r

(1 − 3r)2 ,

where r ≡ r(z) is given by r = z(1 + r)4.

Proposition 27 (Essentially simple quadrangulations). Let qn be the number of rooted 
toroidal quadrangulations with n vertices (and also n faces) that are essentially simple 
and bipartite. Then

∑
n≥1

qnz
n = r2

(1 + 2r)(1 − 2r)2 ,

where r ≡ r(z) is given by r = z(1 + r)3.

Similar calculations could be carried out for bipartite quadrangulations and for essen-
tially loopless triangulations. The expression for the series of rooted toroidal bipartite 



36 É. Fusy, B. Lévêque / Journal of Combinatorial Theory, Series A 175 (2020) 105270
quadrangulations (counted by vertices) is F (z) = r2(1+3r)
(1+r)(1−3r)2 where r ≡ r(z) is given by 

r = z(1 + 3r)2. Bijective derivations of this formula have been given in [19,29]. And the 
expression for the series of rooted toroidal essentially loopless triangulations (counted by 
vertices) is G(z) = r(1+2r)

(1−4r)2 where r ≡ r(z) is given by r = z(1 +2r)3. By a classical substi-
tution approach [28, Sec. 2.9] the series F (z) can be related to the series of Proposition 27
(and similarly the series G(z) can be related to the series of Proposition 26), so that one 
expression can be deduced from the other one (however via some algebraic manipula-
tions, so a bijective derivation of one expression does not yield a bijective derivation of 
the other expression via this approach).

Calculations for toroidal d-angulations of essential girth d ≥ 5 seem much more tech-
nical. In principle the line of approach we follow in the next two subsections is doable 
(see [16] where it is carried out for constellations and hypermaps of arbitrarily large 
face-degrees) and should at least yield an algebraic expression, but likely a complicated 
one, whereas it is to be expected that the final expression should be simple.9 In this per-
spective it would be helpful to have a better combinatorial explanation of the simplicity 
of the generating function expressions obtained in Propositions 26 and 27.

5.2. Bijective derivation of Proposition 26

In this section we compute the generating function T (z) of rooted toroidal triangula-
tions that have essential girth 3 (or equivalently, that are essentially simple), with z dual 
to the number of vertices. Note that, for d = 3, a toroidal d

d−2 -mobile T has all its edges 
of weight 1, hence all edges are black-white with weight 1 on the half-edge incident to 
the white extremity. Since white vertices have weight 3, they have degree 3. Hence, for 
d = 3 the toroidal d

d−2 -mobiles identify to toroidal mobiles (edges are black-white, buds 
are at black vertices only) where every vertex (white or black) has degree 3, which we 
call 3-regular toroidal mobiles, see Fig. 21 (1st drawing) for an example. Note that such 
mobiles must be of type I, since in type II the unique vertex in the kernel must have 
degree at least 4. A 3-regular toroidal mobile T is called balanced if every cycle of T has 
the same number of incident half-edges on the left side as on the right side. Let N(z) be 
the generating function of balanced 3-regular toroidal mobiles with a marked half-edge 
in the associated kernel.

When setting xi = δi=3 in system (3), one obtains W0 = zW 2
1 and W1 = (1 + W0)2. 

Let R ≡ R(z) and S ≡ S(z) be given by R = 1 + W0 and S = W1. So R, S satisfy the 
system {R = 1 + zS2, S = R2}. Then by Proposition 24, we have:

9 Indeed, combining the substitution approach in [15] to deal with girth constraints, together with the 
expressions obtained from the topological recursion approach for toroidal maps with no girth constraint [22,
18], it should be possible to show that when the face-degrees are bounded (i.e., for some fixed N , the face-
degree variables x2i are taken to be 0 for i > N), the generating function M̂2b has a rational expression 
in terms of the series V0, . . . , Vb and the variables x2b, . . . , x2N , and a similar rationality property should 
hold for Md.
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Fig. 21. From left to right: a toroidal 3-regular mobile T counted by N••(z) (where the marked half-edge of 
the kernel is indicated); a rooted R-mobile; a rooted S-mobile; and a bi-rooted 3-regular mobile (the second 
branch of T , both roots are black).

T (z) = 1
2R(z)3N(z).

Note that the generating function N(z) splits as

N(z) = N••(z) + N◦•(z) + N•◦(z) + N◦◦(z) = N••(z) + 2N•◦(z) + N◦◦(z),

depending on the colors of the two vertices v1, v2 of the kernel (with v1 the one incident 
to the marked half-edge), where the second equality follows from N•◦(z) = N◦•(z), since 
v1 and v2 play symmetric roles.

We now define a rooted mobile as a planar mobile with a marked vertex that is a 
leaf, called the root (it is allowed for a rooted mobile to be just made of a black vertex 
with a single incident bud). And we define a bi-rooted mobile as a mobile with two 
marked vertices v1, v2 that are leaves, called primary root and secondary root. A rooted 
or bi-rooted mobile is called 3-regular if all its non-root vertices have degree 3.

An R-mobile (resp. S-mobile) is defined as a rooted 3-regular mobile where the root 
is black (resp. white), see 2nd and 3rd drawing in Fig. 21. By a decomposition at the 
root, one checks that R is the generating function of R-mobiles and S is the generating 
function of S-mobiles, with z dual to the number of non-root white vertices.

For a bi-rooted mobile, the path connecting the two roots is called the spine, the 
traversal direction being from the primary to the secondary root (see the fourth drawing 
of Fig. 21). For each non-extremal vertex v of the spine, the balance at v is defined as 
the number of half-edges (including buds) incident to v on the left side of the spine, 
minus the number of half-edges (including buds) incident to v on the right side of the 
spine. And the balance of the bi-rooted mobile is defined as the total balance over all 
non-extremal vertices of its spine. For a bi-rooted 3-regular mobile, the balance at each 
vertex of the spine is either +1 or −1, so that the sequence of balances along the spine 
is naturally encoded by a directed path with steps in {−1, +1}, and the final height of 
the path is the balance of the rooted bimobile, see Fig. 22.

Clearly a 3-regular toroidal mobile T (with a marked half-edge in the kernel) de-
composes into an ordered triple of bi-rooted 3-regular mobiles (one for each edge of the 
kernel), and T is balanced if and only if the 3 bi-rooted mobiles have the same balance. 



38 É. Fusy, B. Lévêque / Journal of Combinatorial Theory, Series A 175 (2020) 105270
Fig. 22. Left: a bi-rooted mobile of balance 1 (generic notation for mobiles hanging from the spine). Right: 
the associated path with steps +1 or −1 (up or down), ending at height 1.

Hence, if for i ∈ Z we let K(i)
•• (z), K(i)

•◦ (z), K(i)
◦◦ (z) be the generating functions of bi-

rooted 3-regular mobiles of balance i where v1, v2 are black/black (resp. black/white, 
white/white), and with z dual to the number of non-root white vertices, then we find

N••(z) =
∑
i∈Z

K
(i)
•• (z)3, N•◦(z) = z

∑
i∈Z

K
(i)
•◦ (z)3, N◦◦(z) = z2

∑
i∈Z

K
(i)
◦◦ (z)3.

For i ∈ Z, let pn,i be the number of walks of length n with steps in {−1, 1}, starting 
at 0 and ending at i (note that pn,i = 0 if i �= n mod 2). We also define the generating 
function of walks ending at i as

P (i)(t) =
∑
n≥0

pn,it
	n/2
.

We clearly have for i ∈ Z,

K
(i)
◦◦ (z) = 0 for i even, K

(i)
◦◦ (z) = R · P (i)(t)

∣∣∣
t=zRS

for i odd.

K
(i)
•• (z) = 0 for i even, K

(i)
•• (z) = zS · P (i)(t)

∣∣∣
t=zRS

for i odd.

K
(i)
•◦ (z) = 0 for i odd, K

(i)
•◦ (z) = P (i)(t)

∣∣∣
t=zRS

for i even.

Let B(t) = P (0)(t) be the generating function of bridges (walks ending at 0), and let 
U(t) be the generating function of non-empty Dyck walks (i.e., bridges of positive length 
never visiting negative values). Then U ≡ U(t) is classically given by

U = t · (1 + U)2,

and then (looking at the first return to 0 for non-empty bridges), B ≡ B(t) satisfies the 
equation B = 1 + 2t(1 + U)B, so that

B = 1
1 − 2t · (1 + U) .

Then we have P (i)(t) = P (−i)(t) for i < 0, and for i > 0 we have (by a classical 
decomposition at the last visits to 0, 1, . . . , i − 1, see [31])
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P (i)(t) = B · (1 + U)i · t	i/2
.

Hence we have

N◦◦(z) = z2R3
∑
i∈Z
i odd

P (i)(t)3
∣∣∣
t=zRS

= 2z2R3 B3 · (1 + U)3

1 − t3(1 + U)6
∣∣∣
t=zRS

= 2z2R3B
3 · (1 + U)3

1 − U3

∣∣∣
t=zRS

The last expression can be written in terms of U uniquely. Indeed, all involved quantities 
can be expressed in terms of U : we have

t = U

(1 + U)2 = 1
U + 2 + U−1 , B = 1

1 − 2t(1 + U) = 1 + U

1 − U
,

and t = zRS = zR3 = (R− 1)/R = 1 − 1/R, so that

R = 1
1 − t

= (1 + U)2

(U2 + U + 1) , z = R− 1
R4 = (U2 + U + 1)3U

(U + 1)8 .

Overall we find

N◦◦(z) = 2U2(U2 + U + 1)2

(U − 1)4(1 + U)4 = 2(U + 1 + U−1)2

(U − 2 + U−1)2(U + 2 + U−1)2 .

Similarly as in [19], we obtain an expression that is rational in U +U−1 and so it is also 
rational in t since U +U−1 = 1/t − 2, and then rational in R since t = 1 − 1/R. Finally, 
we obtain

N◦◦(z) = 2(R− 1)2

(3R− 4)2R2 .

Similarly we find

N••(z) = 2z3S3 B3 · (1 + U)3

1 − t3(1 + U)6
∣∣∣
t=zRS

= 2z3S3B
3 · (1 + U)3

1 − U3

∣∣∣
t=zRS

= 2(U + 1 + U−1)2

(U − 2 + U−1)2(U + 2 + U−1)3 = 2(R− 1)3

(3R− 4)2R3

and

N•◦(z) = zB3
( 2

1 − U3 − 1
)∣∣∣

t=zRS

= (U + 1 + U−1)2(U − 1 + U−1)
(U − 2 + U−1)2(U + 2 + U−1)2 = (1 −R)(2R− 3)

(3R− 4)2R2
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We can now conclude the proof of Proposition 26. The sum of the 3 contributions 
above (with the 3rd contribution multiplied by 2) gives N(z) = 2(R−1)

(4−3R)2R3 , so that we 
obtain

T (z) = 1
2N(z)R3 = (R− 1)

(4 − 3R)2 ,

which gives the stated expression upon writing r for R − 1 (so that r is given by r =
z(1 + r)4).

5.3. Bijective derivation of Proposition 27

We now compute the generating function Q(z) (with z dual to the number of vertices) 
of rooted toroidal quadrangulations that are bipartite and essentially simple (we will 
overrule here some notation from the previous section). For b = 2, a toroidal b

b−1 -mobile 
T has all its edges of weight 1, hence all edges are black-white with weight 1 on the 
half-edge incident to the white extremity. Since white vertices have weight 4, they have 
degree 4. Hence, for b = 2 the toroidal b

b−1 -mobiles identify to toroidal mobiles where 
black vertices have degree 4 and white vertices have degree 2, which we call (4, 2)-regular 
toroidal mobiles. Such a mobile is called balanced if, for every cycle, it has the same 
number of incident half-edges (including buds) on the left side as on the right side. Let 
NI(z) (resp. NII(z)) be the generating function of toroidal balanced (4, 2)-regular mobiles 
of type I (resp. type II), with z dual to the number of white vertices.

When setting xi = δi=4 in system (5), one obtains V0 = zV1 and V1 = (1 + V0)3. Let 
R ≡ R(z) be given by R = 1 + V0, so R satisfies R = 1 + zR3. Then by Proposition 25, 
we have:

Q(z) = R(z)4 ·
(2

3NI(z) + NII(z)
)
.

A rooted or bi-rooted (planar) mobile is called (4, 2)-regular if the root-vertex is 
black and all the non-root vertices have degree 4 if black and degree 2 if white. Rooted 
(4, 2)-regular mobile are shortly called R-mobiles; again it is easy to check that R(z)
is the generating function of R-mobiles, with z dual to the number of white vertices. 
For a bi-rooted (4, 2)-regular mobile the balance at each black vertex of the spine is 
in {−2, 0, +2}, so that the sequence of balances along the spine is now encoded by a 
path with increments in {−1, 0, +1}, the final value of the path giving half of the total 
balance (see Fig. 23). Let pn,i be the number of such paths of length n ending at i, 
and let P (i)(t) =

∑
n≥0 pn,it

n be the generating function for walks ending at i, and let 
B ≡ B(t) = P (0)(t) be the generating function of those ending at 0, called bridges.

A mobile counted by NII(z) (see Fig. 24 for an example) clearly decomposes into a 
pair of bi-rooted (4, 2)-regular mobiles both of balance 0 (one bi-rooted mobile for each 
of the two edges of the kernel), which gives
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Fig. 23. Left: a bi-rooted (4, 2)-regular mobile of balance −1 (generic notation for the mobiles hanging from 
the spine). Right: the associated path with steps in {−1, 0, 1}, ending at height −1.

Fig. 24. From left to right: a toroidal (4, 2)-regular mobile M counted by NII(z); an R-mobile; and a bi-rooted 
(4, 2)-regular mobile (the second branch of M).

NII(z) = z2B2
∣∣∣
t=zR2

.

Let C ≡ C(t) be the generating function of walks counted by B(t) that never visit 
values in Z<0 (called Motzkin excursions), and let U(t) := tC(t). Note that U ≡ U(t) is 
given by the equation

U = t · (1 + U + U2).

Again our aim will be to express all generating functions rationally in terms of U . We 
have

t = 1
U + 1 + U−1 ,

and moreover we have t = zR2 = (R− 1)/R = 1 − 1/R, which gives

R = 1
1 − t

= U2 + U + 1
U2 + 1 , z = R− 1

R3 = (U2 + 1)2U
(U2 + U + 1)3 .

Note that B satisfies the equation B = 1 + (t + 2tU)B (obtained by looking at the first 
return to 0), which gives

B = 1
1 − t− 2tU = U2 + U + 1

(1 − U)(1 + U) .

We thus obtain the following expression for NII(z) in terms of U :
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NII(z) = (U2 + 1)4U2

(U2 + U + 1)4(U − 1)2(U + 1)2

= (U + U−1)4

(U + 1 + U−1)4(U − 2 + U−1)(U + 2 + U−1) .

We obtain an expression that is rational in U + U−1 and so it is also rational in t since 
U + U−1 = 1/t − 1, and then rational in R since t = 1 − 1/R. Finally, we obtain

NII(z) = (R− 1)2

(2R− 1)(3 − 2R)R4 .

Regarding mobiles counted by NI(z), note that the two vertices v1, v2 of the kernel 
κ have to be black (since white vertices have degree 2), and moreover, for i ∈ {1, 2}, 
vi has exactly one corner (denoted νi) that carries an attached R-mobile. Note that 3 
situations can arise in a counterclockwise walk (of length 6 since κ has 3 edges) around 
the unique face of κ: ν2 is either (a) just after ν1, (b) or 3 steps after ν1, (c) or just 
before ν1. Let N (a)

I (z), N (b)
I (z), N (c)

I (z) be the respective contributions to NI(z). The 
first and last situations are clearly symmetric (up to exchanging the roles of v1 and v2), 
hence N (a)

I (z) = N
(c)
I (z).

In case (b), the mobile is made of 3 bi-rooted mobiles (one for each branch connecting 
v1 to v2) of the same excess i ∈ Z, plus two attached R-mobiles (those at {ν1, ν2}). 
Hence

N
(b)
I (z) = 3R(z)2

∑
i∈Z

z3P (i)(t)3
∣∣∣
t=zR2

where the factor 3 accounts for the choice of the marked half-edge of κ, the factor R(z)2
accounts for the attached R-mobiles at v1 and v2, and each of the 3 factors zP (i)(t)

∣∣
t=zR2

accounts for each of the 3 branches connecting v1 to v2.
Note that P (i)(t) = P−i(t) for i < 0, and for i > 0 a decomposition at the last visits 

to 0, to 1, . . . , i − 1, ensures that

P (i)(t) = B(t) · U(t)i.

Hence we have

N
(b)
I (z) = 3z3R(z)2B(t)3

∑
i∈Z

U(t)3|i|
∣∣∣
t=zR2

= 3z3R(z)2B(t)3
(
1 + 2U(t)3

1 − U(t)3
)∣∣∣

t=zR2
.

Again we can express everything rationally in terms of U , and find

N
(b)
I (z) = 3(U + U−1)4(U − 1 + U−1)

−1 2 −1 5 −1 = 3(R− 1)3(2 −R)
5 2 .
(U − 2 + U ) (U + 1 + U ) (U + 2 + U ) (2R− 1)R (3 − 2R)
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Fig. 25. Left: a toroidal (4, 2)-regular mobile counted by N(a)
I (z); Right: a toroidal (4, 2)-regular mobile 

counted by N(b)
I (z).

Finally, in case (a), it is easy to see that two of the bi-rooted mobiles from v1 to v2 have 
same balance i ∈ Z, while the bi-rooted mobile for the remaining branch has balance 
i − 1 (see 1st drawing of Fig. 25 for an example).

Hence

N
(a)
I (z) = 3R(z)2

∑
i∈Z

z3P (i)(t)2P (i−1)(t)
∣∣∣
t=zR2

= 3R(z)2
∑
i∈Z

z3B(t)3U2|i|+|i−1|(t)
∣∣∣
t=zR2

= 3R(z)2z3B(t)3U(t) + U(t)2

1 − U(t)3
∣∣∣
t=zR2

Again we rewrite the expression in terms of U and then R, finding

N
(a)
I (z) = 3(U + U−1)4

(U − 2 + U−1)2(U + 1 + U−1)5(U + 2 + U−1) = 3(R− 1)4

(2R− 1)R5(3 − 2R)2 .

We thus get

NI(z) = 2N (a)
I (z) + N

(b)
I (z) = 3(R− 1)3

R4(2R− 1)(3 − 2R)2 .

We thus obtain

Q(z) = R(z)4 ·
(2

3NI(z) + NII(z)
)

= (R− 1)2

(2R− 1)(3 − 2R)2 ,

which concludes the proof of Proposition 27, upon writing r = R− 1 (so that r is given 
by r = z(1 + r)3).
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6. Proofs of the bijections

6.1. Proof of Theorem 14

6.1.1. The Bernardi-Chapuy bijection
Similarly as in the planar case [7], the proof of Theorem 14 is by a reduction (in the 

dual setting) to the bijection of Bernardi and Chapuy [6]. In a rooted map (of genus 
g ≥ 0), the convention adopted here is to indicate the root-corner by an artificial ingoing 
half-edge ĥ, see the top-left drawing in Fig. 26. For M a rooted map, an orientation of 
M is called a co-left orientation if for any edge e of M there is a (necessarily unique) 
sequence of half-edges h1, h′

1, . . . , hk such that

• h1 is the ingoing part of e, and hk = ĥ,
• for every i ∈ [1..k− 1], hi and h′

i are opposite on the same edge, with hi the ingoing 
part and h′

i the outgoing part; in addition all the half-edges between h′
i and hi+1

(excluded) in clockwise order around their common incident vertex are outgoing.

For g ≥ 0, let Rg be the family of co-left orientations of rooted maps of genus g. 
Bernardi and Chapuy give in [6, Section 7] a bijection between T g

1 (mobiles of genus g
and excess 1) and Rg.

We first describe the mapping Ψ from T g
1 to Rg. For T ∈ T g

1 , the partial closure of T
is the figure obtained as follows (see the middle drawing in the top-row of Fig. 26):

• for each edge e = (u, v) ∈ T , with u the black extremity and v the white extremity, 
insert an ingoing bud in the corner just after e in counterclockwise order around u
(since T has excess 1, there are one more ingoing buds than outgoing buds);

• match the outgoing and ingoing buds according to a walk (with the face on our right) 
around the unique face in T , considering outgoing buds as opening parentheses and 
ingoing buds as closing parentheses; each matched pair yields a new directed edge, 
and the unique unmatched ingoing bud is called exposed (in [6, Section 7] they call 
balanced blossoming mobile the mobile T plus the unique exposed ingoing bud).

Then, M := Ψ(T ) is obtained from the partial closure of T by erasing all the white 
vertices of T , all the edges of T , and declaring the single exposed ingoing bud as the root 
of the obtained oriented map M , see the top-row of Fig. 26.

Conversely, for M an oriented map in Rg (whose vertices are considered as black), 
T = Φ(M) is obtained as follows (see the bottom-row of Fig. 26):

• Insert a white vertex in each face of M ,
• For each ingoing half-edge h of M (including the root half-edge), create a new edge 

connecting the vertex incident to h to the white vertex in the face on the left of h
(looking from h toward the vertex incident to h),
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Fig. 26. The Bernardi-Chapuy bijection between T g
1 and Rg (g = 1 in the example). The top-row shows the 

mapping Ψ from T g
1 to Rg. The bottom-row shows the mapping Φ from Rg to T g

1 .

Fig. 27. The partial closure of a mobile of excess 4.

• Delete all the ingoing half-edges, and declare the outgoing half-edges as buds.

6.1.2. Deducing the bijectivity of Φ+
We now explain how the bijectivity of Φ+ in Theorem 14 can be deduced from prop-

erties of the bijections Ψ/Φ and properties of the relevant oriented maps. A first remark 
is that, for d ≥ 1 and T ∈ T g

d , the partial closure of T can be performed exactly in the 
same way as for d = 1. One obtains a map (made of T , the new white vertices, and 
the new edges created by matching outgoing buds with ingoing buds) with d unmatched 
ingoing buds incident to a same face, see Fig. 27 for an example.

For d ≥ 1, let Rg
d be the subfamily of Rg where the root-vertex has d outgoing half-

edges and a single ingoing half-edge (the root). For M ∈ Rg
d let ι(M) be the underlying 

vertex-rooted oriented map (i.e., we delete the root ingoing half-edge but record that 
the incident vertex is distinguished), and let Sg

d be the family of vertex-rooted oriented 
maps of genus g that is the image of Rg

d by the mapping ι. For two oriented maps M, M ′

in Rg
d we write M ∼ M ′ if ι(M) = ι(M ′), so that Sg

d ≡ Rg
d/ ∼. Moreover let Ug

d be 
the subfamily of mobiles in T g

1 that are associated to maps in Rg
d. Let T ′ ∈ Ug

d and let 
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Fig. 28. Lifting a mobile in T g
d to a mobile in Ug

d .

M ′ = Ψ(T ′), with v the root-vertex of M ′. Since v has indegree 1 and outdegree d in 
M ′, the vertex v is a leaf in T ′ —it is incident to a single edge e— with d attached buds. 
If we delete v together with the attached edge and buds we clearly obtain a mobile in 
T g
d ; we denote by ι(T ′) this mobile.
For two mobiles T ′, U ′ in Ug

d we write T ′ ∼ U ′ if ι(T ′) = ι(U ′). Conversely, for T ∈ T g
d , 

let G be the partial closure of T ; and let f0 be the face of G containing the d unmatched 
ingoing buds. It is easy to see that f0 has exactly d corner that are at a white vertex; 
indeed there is one such corner before each unmatched ingoing bud in a clockwise walk 
around f0 (i.e., walking with the interior of f0 on the right). Then we obtain all the 
mobiles T ′ such that ι(T ′) = T as follows (see Fig. 28): choose a white corner c in f0, 
and then attach an edge at c (inside f0) connected to a new black vertex v, and attach 
d buds at v.

From the preceding discussion, it is clear that the bijection Ψ/Φ between Ug
d and Rg

d

respects the equivalence relations ∼, i.e. Φ(M ′) ∼ Φ(N ′) for M ′ ∼ N ′ and Ψ(T ′) ∼ Ψ(U ′)
for T ′ ∼ U ′. Since Sg

d ≡ Rg
d/ ∼ and T g

d ≡ Ug
d/ ∼, we conclude that Ψ/Φ induces a 

bijection between T g
d and Sg

d .
Moreover the duality property of Rg (see [6, Lemma 8.1]) implies that Og

d is the image 
of Sg

d by duality (for M ∈ Sg
d and M∗ the dual face-rooted map, every edge e∗ ∈ M∗ is 

directed from the left-side to the right-side of the dual edge e ∈ M). Hence Φ induces a 
bijection between Og

d and T g
d for every d ≥ 1, which one can check to be precisely the 

bijection Φ+ described in Section 4.2.

6.2. Proof of Theorem 19

In this section we prove Theorem 19, which will follow from two lemmas: the first one 
(Lemma 29) ensuring that the bijection Φ+ preserves the balancedness property, and the 
second one (Lemma 31) ensuring that the maps in Fd identify to the face-rooted toroidal 
maps endowed with a balanced d

d−2 -orientation in O1
d.

6.2.1. Balanced specialization of Φ+
For M a face-rooted map of genus g (whose vertices are considered as white), we 

define the star-completion of M as the map M� obtained from M by adding a black 
vertex vf inside each non-root face f , and connecting vf to every vertex around f (via 
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Fig. 29. Operations within each face for the mapping from M to M ′ used in the proof of Lemma 28. (a) 
shows the case of odd d; (b) shows the case of even d.

every corner around f), so that vf has degree deg(f) in M�. The edges of M� belonging 
to M are called M -edges and the edges incident to black vertices are called star-edges.

Let d ≥ 3. Let M be a face-rooted toroidal d-angulation endowed with a d
d−2 -

orientation X. We extend X to an N-biorientation X� of M� as follows: for each half-edge 
h of M�, if h is part of a M -edge, then it has the same weight (thus the same orientation) 
as in X, if h is part of a star-edge, then it has weight 0 if it is incident to a white vertex, 
and weight 1 if it is incident to a black vertex (thus star-edges are fully oriented from 
the black vertex toward the white vertex).

Lemma 28. Let M be a d-toroidal map endowed with a d
d−2 -orientation X. Then X is 

balanced if and only if X� is balanced. Moreover, if the γ-score of two non-contractible 
non-homotopic cycles of M� is 0, then X� is balanced.

Proof. We start with the case of d odd, which is a bit easier. Let M ′ be the d-angulation 
obtained from M where in each face f of M we insert a new vertex vf , called a star-vertex, 
connected to every corner around f via a path of length d−1

2 , called a connection-path, 
see Fig. 29(a). Any d

d−2 -orientation X of M can be extended to a d
d−2 -orientation X ′

of M ′: for each connection-path e1, . . . , e(d−1)/(2) (which is traversed starting from the 
star-vertex extremity), we give weight 2i − 1 (resp. d − 2i − 1) to the first (resp. second) 
traversed half-edge of ei.

Note that the connection-paths have weight 0 at the incident vertex of M , hence 
for any non-contractible cycle C of M , the γ-score of C is the same for X as for X ′. 
Hence, if X ′ is balanced, then so is X and the converse also holds by Lemma 7. Note 
also that any star-edge e of M� corresponds to a connection-path of M ′. Accordingly 
any non-contractible cycle C of M� naturally induces a non-contractible cycle C ′ in M ′. 
In addition, since the half-edges at the star-vertex extremity in connection-paths have 
weight 1, for any non-contractible cycle C of M�, we have γX�(C) = γX′(C ′). So again if 
X ′ is balanced, then so is X� and the converse also holds by Lemma 7. So X is balanced 
if and only if X� is balanced.

Moreover, if the γ-score of two non-contractible non-homotopic cycles C1, C2 of M�

is 0, then the γ-score of the two corresponding cycles in X ′ is 0, so by Lemma 7, X ′ is 
balanced and so is X�.
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Fig. 30. Each black vertex b on C corresponds (1-to-1) to a C-adjacent half-edge h in H◦
L(C) (of weight 

d − 2).

For d even, the augmentation from M to M ′ is done differently; we insert a d-gon Df

inside every face f , we set a one-to-one correspondence between the corners in clockwise 
order around f and the vertices in clockwise order around Df , and we connect any 
matched pair by a path of length d/2 − 1, called a connection path, see Fig. 29(b). 
Similarly as before, every d

d−2 -orientation X of M induces a d
d−2 -orientation X ′ of M ′: we 

give weight d/2 −1 to every half-edge of Df , and for each connection-path e1, . . . , ed/2−1
(which is traversed starting from the star-vertex extremity), we give weight 2i (resp. 
d − 2i − 2) to the first (resp. second) traversed half-edge of ei.

Similarly as in the odd case, the half-edges of connection-paths incident to vertices 
of M have weight 0, hence for any non-contractible cycle C of M , the γ-score of C is 
the same for X as for X ′. Hence X is balanced if and only if X ′ is balanced. For C a 
non-contractible cycle of M� together with a traversal direction, let C ′ be the induced 
cycle of M ′, with the convention that when C passes by a star-vertex vf , then C ′ takes 
the left side of the corresponding d-gon. Let f be a face of M such that C passes by 
the corresponding star-vertex vf , and let nL(f) (resp. nR(f)) be the number of star-
edges on the left (resp. right) of C at vf . Then the contribution to γX′

L (C ′) within f is 
2nL(f), while the contribution to γX′

R (C ′) within f is d − 2 (due to the two half-edges 
of Df incident to C ′ on its right side). Hence the contribution to γX′(C ′) within f is 
d − 2 − 2nL(f) = nR(f) −nL(f). Since γX�(C) and γX′(C ′) have the same contribution 
within f , we conclude that γX�(C) = γX′(C ′). From here, the lemma is proved in the 
same way as in the odd case. �
Lemma 29. The mapping Φ+ specializes into a bijection between face-rooted toroidal d-
angulations endowed with a balanced d

d−2 -orientation in O1
d, and the family UBal

d of 
N-bimobiles.

Proof. As already mentioned, the bijection Φ+ specializes into a bijection between face-
rooted toroidal d-angulations endowed with a d

d−2 -orientation in O1
d, and the N-bimobile 

family Ud. We show here the “balanced version” of this bijection.
Let M be a face-rooted toroidal d-angulation endowed with a d

d−2 -orientation X in O1
d. 

Let T be the corresponding N-bimobile in Ud given by Φ+. Let C be a (non-contractible) 
cycle of T together with a traversal direction. Note that C is also a non-contractible cycle 
of M�. Consider the extension X� of X to M�. Clearly, for any black vertex u on C, 
the contribution of u to the left (resp. right) γ-score of C is the same in M� as in T . 
We let H◦

L(C) be the set of half-edges of M that are on the left of C and incident to 
a white vertex on C. A half-edge h in H◦

L(C), with v its incident vertex, is called C-
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adjacent if the next half-edge in M� in ccw order around v is on C; it is called C-internal
otherwise. Then the local rules of Fig. 15 ensure that γT

L (C) gives the total contribution 
to γX�

L (C) by C-internal half-edges in H◦
L(C). We let AL(C) be the total contribution to 

γX�

L (C) by C-adjacent half-edges in H◦
L(C). As shown in Fig. 30, each black vertex on 

C yields a contribution d − 2 to AL(C), hence AL(C) = (d − 2)n•(C). We conclude that 
γX�

L (C) = γT
L (C) + (d − 2)n•(C). Similarly we have γX�

R (C) = γT
R(C) + (d − 2)n•(C), 

so that γX�(C) = γT (C) for any non-contractible cycle C of T . Hence, if X is balanced, 
then, by Lemma 28, so is X� and so is T . Conversely, if T is balanced, then it has 
two non-contractible non-homotopic cycles with γ-score equal to zero. Hence, by what 
precedes, X� has also γ-score equal to zero on these two cycles. Then Lemma 28 ensures 
that X� is balanced, and so is X. �
6.2.2. Properties of rightmost walks

Consider a face-rooted d-toroidal map M .
We have the following crucial lemma regarding rightmost walks in d

d−2 -orientations 
of M :

Lemma 30. In a balanced d
d−2 -orientation of M , any rightmost walk of M eventually 

loops on the contour of a d-angle W with the (contractible) interior of W on its right 
side.

Proof. Let W be the looping part of a rightmost path. Note that W is a non-repetitive 
closed walk, and it cannot cross itself, otherwise it is not a rightmost walk. However W
may have repeated vertices but in that case W intersects itself tangentially on the left 
side.

Let (e1, . . . , ep) be the cyclic list of edges in W . Suppose by contradiction that there 
is an oriented subwalk W ′ = ei, . . . , e(i+k′) mod p of W (possibly W ′ = W ) that forms 
a closed walk (i.e., the head of the last edge is the same as the tail of the first edge of 
W ′) enclosing on its left side a region R homeomorphic to an open disk. Let v be the 
starting and ending vertex of W ′. Let H be the planar map obtained from M by keeping 
R∪W ′, where W ′ (which may visit vertices repeated times, but only ‘from the outside’) 
is turned into a cycle of length k′, the outer cycle of H. Let n′, m′, f ′ be the numbers of 
vertices, edges and faces of G. By Euler’s formula, n′−m′ +f ′ = 2. All the inner faces of 
H have degree d and the outer face has degree k′, so 2m′ = d(f ′ − 1) + k′. Since W ′ is a 
subwalk of a rightmost walk, all the half-edges that are not in H and incident to a vertex 
v′ �= v on W ′ have weight zero. The first half-edge of W ′ has non-zero weight. Thus, 
as we are considering a d

d−2 -orientation, we have (d − 2)m′ ≥ d(n′ − 1) + 1. Combining 
these three (in)equalities gives k′ ≤ −1, a contradiction.

We have the following crucial property:

Claim. The right side of W encloses a region homeomorphic to an open disk.
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Proof of the claim. We consider two cases depending on the fact that W is a cycle (i.e., 
with no repetition of vertices) or not.

• W is a cycle
Suppose by contradiction that W is a non-contractible cycle C. Let k be its length. 
Since W is a rightmost walk, all the half-edges incident to the right side of C have 
weight 0. Since we are considering a d

d−2 -orientation of M , the sum of the weights of 
all edges of W is (d − 2)k and the sum of the weights of all the half-edges incident 
to vertices of W is dk. So finally the sum of the weights of all the half-edges incident 
to the left side of C is 2k and we have γ(C) = −2k < 0. So the orientation is not 
balanced, a contradiction.
Thus W is a contractible cycle. By previous arguments, the contractible cycle W does 
not enclose a region homeomorphic to an open disk on its left side. So W encloses a 
region homeomorphic to an open disk on its right side, as claimed.

• W is not a cycle
Since W cannot cross itself nor intersect itself tangentially on the right side, it has to 
intersect tangentially on the left side. Such an intersection can be on a single vertex 
or a path, as depicted on Fig. 31(i). The edges of W incident to this intersection 
are noted as on figure (i)–(iv), where W is going periodically through a, b, c, d in this 
order. By previous arguments, the (green) subwalk of W from a to b does not enclose 
regions homeomorphic to open disks on its left side. So we are not in the case depicted 
on Fig. 31(ii). Moreover if this (green) subwalk encloses a region homeomorphic to 
an open disk on its right side, then this region contains the (red) subwalk of W from 
c to d, see Fig. 31(iii). Since W cannot cross itself, this (red) subwalk necessarily 
encloses regions homeomorphic to open disks on its left side, a contradiction. So the 
(green) subwalk of W starting from a has to form a non-contractible curve before 
reaching b. Similarly for the (red) subwalk starting from c and reaching d. Since W
is a rightmost walk and cannot cross itself, we are, without loss of generality, in the 
situation of Fig. 31(iv) (with possibly more tangent intersections on the left side). In 
any case, W encloses a region homeomorphic to an open disk on its right side. �

The claim ensures that W encloses a region R homeomorphic to an open disk on 
its right side. Since W is a rightmost walk, there is no outgoing half-edge in R whose 
incident vertex is on W . Hence, by Claim 1, we conclude that W has length d. �

Recall that Fd is the family of face-rooted d-toroidal maps such that the root-face 
contour is a maximal d-angle.

Lemma 31. A face-rooted toroidal d-angulation M has a balanced d
d−2 -orientation in O1

d

if and only if M ∈ Fd. In that case, M has a unique balanced d
d−2 -orientation in O1

d, 
which is the minimal one.
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Fig. 31. Case analysis for the proof of the claim in Lemma 30.

Proof. (=⇒) Suppose that M has a balanced d
d−2 -orientation O in O1

d. Then, by 
Lemma 5, M has essential girth d.

Suppose by contradiction that the contour C0 of the root-face f0 is not a maximal 
d-angle. Consider a maximal d-angle Cmax whose interior strictly contains the interior of 
C0. Consider an outgoing half-edge h of Cmax and the rightmost walk W started from 
h. By Claim 1, all the half-edges that are in the interior of Cmax and incident to it have 
weight zero, i.e. they are ingoing at their incident vertex. So it is not possible that W
enters in the interior of Cmax. So W does not loop on C0, a contradiction. So M ∈ Fd.

(⇐=) Suppose that M ∈ Fd. By Proposition 8, M admits a balanced d
d−2 -orientation. 

Then by Corollary 4, M has a (unique) balanced d
d−2 -orientation Dmin that is minimal.

Let us prove that Dmin ∈ O1
d. Consider an outgoing half-edge h of Dmin and the 

rightmost walk W starting from h. By Lemma 30, W ends on a d-angle W ′ with its 
interior R on the right side. Consider the (d −2)-expansion M ′ of M and the orientation 
D′

min of M ′ corresponding to Dmin (see Section 2 for the definition of β-expansion). Let 
S be the set of faces corresponding to the region R in M ′. The set S is such that every 
edge on the boundary of S has a face in S on its right. Since D′

min is minimal, S contains 
the face of M ′ corresponding to the root face f0. Since M ∈ Fd, the contour of f0 is a 
maximal d-angle. So W ′ is indeed the contour of f0 with f0 on its right. So Dmin ∈ O1

d.
Moreover, suppose by contradiction, that M has a balanced d

d−2 -orientation D in O1
d

that is different from Dmin. By unicity of the balanced d
d−2 -orientation that is minimal 

(Corollary 4), we have that D is non-minimal, a contradiction to Lemma 17. �



52 É. Fusy, B. Lévêque / Journal of Combinatorial Theory, Series A 175 (2020) 105270
Fig. 32. The local rules of the 1-to-1 correspondence σ to turn a transferable b-regular orientation of M� into 
a b

b−1 -Z-orientations of M (the half-edge directions on the M-edges are not indicated, these are determined 
by the status of the weights, either in Z>0 or in Z≤0); after applying these rules the star-vertices and 
star-edges of M� are to be deleted.

6.3. Proof of Theorems 22 and 21

6.3.1. Proof of Theorem 22 for b ≥ 2
We start by giving some terminology and results for b ≥ 1, before continuing with 

b ≥ 2 in the rest of the section.
Let b ≥ 1. Let E2b be the family of face-rooted toroidal maps with root-face of degree 

exactly 2b and with all face-degrees even and at least 2b.
Recall from Section 4.3, that a Z-biorientation has the weights at outgoing half-edges 

that are in Z>0 while the weights at ingoing half-edges are in Z≤0. In an N-biorientation 
all the ingoing half-edges have weight 0.

For M ∈ E2b, we define a b
b−1 -Z-orientation of M as a Z-biorientation of M with 

weights in {−1, . . . , b}, such that each vertex has weight b, each edge has weight b − 1, 
and each face f has weight −1

2deg(f) +b. Recall that the weight of a face f is the sum of 
the weights of the ingoing half-edges that have f on their left (traversing the half-edge 
toward its incident vertex).

The bijection Φ+ specializes into a bijection between maps in E2b endowed with a 
b

b−1 -Z-orientation in O1
2b and the family V̂b of toroidal b

b−1 -Z-mobiles, as defined in 
Section 4.5. Showing Theorem 22 for b ≥ 2 thus amounts to proving the following 
statement:

Proposition 32. Let b ≥ 2 and M be a map in E2b. Then M admits a b
b−1 -Z-orientation 

in O1
2b whose associated mobile by Φ+ is in V̂Bal

b if and only if M is in L̂2b.
In that case M admits a unique such orientation.

The rest of this section is devoted to proving Proposition 32. Similarly as in the planar 
case [8] we work with closely related orientations called b-regular orientations.

Let b ≥ 2 and M ∈ E2b. Let M� be the star-completion of M , as defined in Sec-
tion 6.2.1. A b-regular orientation of M� is defined as an N-biorientation of M� such 
that every M -edge has weight b − 1, every star-edge has weight 1 (hence is a simply 
oriented edge), every M -vertex has weight b, and every star-vertex u has weight (i.e., 
outdegree) 1

2deg(u) + b (hence indegree 1
2deg(u) − b).

A b-regular orientation of M� is called transferable if for each star-edge e directed out 
of its incident M -vertex v, the M -edge ε just after e in clockwise order around v is of 
weight b − 1 at v (and thus weight 0 at the other half-edge).
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For a transferable b-regular orientation X of M�, the induced b
b−1 -Z-orientation Y =

σ(X) of M is obtained by applying the weight-transfer rules of Fig. 32 to each star-edge 
going toward its black extremity, and then deleting the star-edges and black vertices.

Lemma 33. The mapping σ is a bijection from the transferable b-regular orientations of 
M� to the b

b−1 -Z-orientations of M . In addition a transferable b-regular orientation X
is in O1

2b if and only if σ(X) is in O1
2b.

Proof. The bijectivity of the mapping is straightforward. And the second statement 
follows from the observation that if X is a transferable b-regular orientation, then the 
rightmost walk Pe starting at any edge e ∈ X will only pass by M -edges after reaching 
an M -vertex w for the first time (indeed, when entering an M -vertex v, the rightmost 
outgoing edge to leave v can not be a star-edge since the orientation is transferable). 
Once it has reached an M -edge e′, it will follow a rightmost walk Pe′ that consists only 
of M -edges, the rightmost walk Pe′ being exactly the same in X as in σ(X), hence Pe′

eventually loops around the root-face contour in X if and only if the same holds in 
σ(X). �

Let X be a b-regular orientation of M�. For C a non-contractible cycle of M� traversed 
in a given direction, let wL(C) (resp. wR(C)) be the total weight of half-edges incident to 
an M -vertex of C from the left side (resp. right side) of C, and let oL(C) (resp. oR(C)) 
be the total number of outgoing star-edges incident to a star-vertex on C on the left 
side (resp. right side) of C, and let ιL(C) (resp. ιR(C)) be the total number of ingoing 
star-edges incident to a star-vertex on C on the left side (resp. right side) of C. Let 
γ̂L(C) = 2wL(C) + oL(C) − ιL(C), γ̂R(C) = 2wR(C) + oR(C) − ιR(C). We define the 
γ̂-score of C as γ̂(C) = γ̂R(C) − γ̂L(C). Then X is called γ̂-balanced if the γ̂-score of 
any non-contractible cycle C of M� is 0.

Lemma 34. Consider two b-regular orientations X, X ′ of M� and C a non-contractible 
cycle of M� traversed in a given direction. The cycle C has the same γ-score in X and 
X ′ if and only if it has the same γ̂-score in X and X ′.

Proof. Let sL(C) (resp. sR(C)) be the total number of star-edges incident to a star-
vertex of C on the left (resp. right) side of C. Note that we have

γ̂X
L (C) = 2γX

L (C) − sL(C), γ̂X
R (C) = 2γX

R (C) − sR(C).

Hence γ̂X(C) = 2γX(C) + (sL(C) − sR(C)), where we note that the quantity sL(C) −
sR(C) only depends on M� and C (not on the orientation X). �

Let M̂2b be the subfamily of maps in E2b that are bipartite and of essential girth 2b.
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Lemma 35. Let M be a map in E2b. If M� admits a b-regular orientation, then M has 
essential girth 2b. Moreover M� admits a γ̂-balanced b-regular orientation if and only if 
M ∈ M̂2b (i.e., is bipartite of essential girth 2b).

Proof. Assume M� is endowed with a b-regular orientation X, and let us show that M
has essential girth 2b. Since the root-face has degree 2b, the essential girth is at most 2b, 
hence we just have to show that the essential girth is at least 2b. Consider a contractible 
closed walk C in M . Let MC be the planar map obtained by keeping C and its interior, 
where C is ‘unfolded’ into a simple cycle, taken as the outer face contour. Since all inner 
face-degrees in MC are even, the outer face degree is also even, so that the length of C is 
an even number, denoted 2k, and we have to prove that b ≤ k. Let v, f, e be respectively 
the numbers of vertices, edges, and faces that are strictly inside C. By Euler’s formula 
applied to MC we have v − e + f = 1. Let 2S be the sum of the degrees of the faces 
inside C. Note that 2S = 2e +2k, i.e., S = e +k. Consider the extension of the b-regular 
orientation X to the interior of C. The total weight over all M -vertices strictly inside C
is bv and the total weight (outdegree) over all star-vertices strictly inside C is S+bf . On 
the other hand the total weight over all edges that are strictly inside C is (b − 1)e + 2S. 
Note also that the total weight over all edges strictly inside C must be at least the total 
weight over all vertices strictly inside C. Hence we must have bv+S+bf ≤ (b −1)e +2S, 
so that b(v − e + f) ≤ S − e. But we have seen that v − e + f = 1 and S = e + k, hence 
we obtain b ≤ k.

Now we show that if M� can be endowed with a γ̂-balanced b-regular orientation X, 
then M is bipartite. Let C be a non-contractible cycle of M , and let k be the length of 
C. We also denote by C the corresponding cycle in M� (that is going through M -vertices 
only). We have γ̂(C) = wR(C) − wL(C). Since the orientation is γ̂-balanced, we have 
γ̂(C) = 0 and thus wR(C) = wL(C). Since every vertex on C has weight b and every edge 
on C has weight b − 1 we have wL(C) +wR(C) + k (b − 1) = k b. So finally k = 2 wR(C)
is even. Since all face-degrees of M are even and all non-contractible cycles have even 
length, we conclude that M is bipartite. So M ∈ M̂2b.

It now remains to show that if M ∈ M̂2b then M� admits a γ̂-balanced b-regular 
orientation. Our strategy is the toroidal counterpart of the one for planar maps given 
in [8, Prop. 47]. We define the 2b-angular lift of M as the bipartite toroidal 2b-angulation 
M ′ obtained by the following process. We first fix for each 	 ≥ b an arbitrary planar map 
M	 of girth 2b, where the outer face has degree 2	 and its contour is a cycle, and all inner 
faces have degree 2b. Then in each non-root face f of M , with 	 = deg(f)/2, we insert a 
copy Qf of M	 strictly inside f , we set a one-to-one correspondence between the corners 
in clockwise order around f and the outer vertices of Qf in clockwise order around Qf , 
and we connect any matched pair by a path of length b − 1, called a connection path, 
see Fig. 33 for an example. Since M is bipartite and all the faces inserted inside each 
face of M have even degree, then M ′ is bipartite as well. And similarly as in the planar 
case [8] it is easy to check that M ′ has essential girth 2b. Hence, by Proposition 13, M ′

can be endowed with a balanced b -orientation X ′. For P a connection-path within 
b−1
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Fig. 33. Insertion operations to obtain a 2b-angular lift (case b = 3 here): in each face f of degree 2p (p = 5
here) a map Qf having outer degree 2p, inner face degrees 2b, and girth 2b, is inserted inside f , and each 
outer vertex of Qf is connected to each corner around f by a path of length b − 1 called a connection-path.

a face f of M , let h the extremal half-edge of P touching a vertex of f and let h′ be 
the extremal half-edge of P touching a vertex of Qf . Then it is easy to see that the 
respective weights of {h, h′} are either {0, 1} or {1, 0}. The connection-path P is called 
outgoing (resp. ingoing) in the first (resp. second) case. By a simple counting argument 
using Euler’s formula, one can check that for each non-root face f of M of degree 2k, 
the number of connection-paths inside f that are outgoing (resp. ingoing) is k+ b (resp. 
k − b). Hence, if for each non-root face f of M we contract Qf into a black vertex uf

and turn every outgoing (resp. ingoing) connection-path within f into an edge of weight 
1 directed out of uf (resp. toward uf ), we obtain a b-regular orientation X of M�. It 
now remains to show that X is γ̂-balanced.

Let e1, e2 be a pair of star-edges incident to a same star-vertex u, and let f be the 
face of M corresponding to u, and v1, v2 the respective white extremities of e1, e2. We 
let P (e1, e2) denote an arbitrarily selected path of M ′, with v1, v2 as extremities and 
staying strictly in (the area corresponding to) f in between. For each non-contractible 
cycle C of M�, we call the canonical lift of C to M ′, the cycle C ′ of M ′ obtained as 
follows: C ′ has the same M -edges as in C, and for each star-vertex u on C, with e1, e2

the edges before and after u along C, we replace the pair e1, e2 by the path P (e1, e2). 
Since X ′ is balanced we have γX′(C ′) = 0. We want to deduce from it that γ̂X(C) = 0.

Let S be the set of star-vertices on C. For every u ∈ S, let f be the corresponding 
face of M , let v1 (resp. e1) be the vertex (resp. edge) before u along C, and let v2 (resp. 
e2) be the vertex (resp. edge) after u along C. Let oL(u) (resp. ιL(u)) be the number of 
outgoing (resp. ingoing) edges incident to u on the left side of C, and let oR(u) (resp. 
ιR(u)) be the number of outgoing (resp. ingoing) edges incident to u on the right side 
of C. And let wL(u) (resp. wR(u)) be the total weight in X ′ of half-edges incident to 
vertices of the path P (e1, e2)\{v1, v2} on its left (resp. right) side. Note that we have:

γ̂X
L (C) − 2γX′

L (C ′) =
∑
u∈S

oL(u) − ιL(u) − 2wL(u)

γ̂X
R (C) − 2γX′

R (C ′) =
∑

oR(u) − ιR(u) − 2wR(u).

u∈S
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For u ∈ S and f the corresponding face of M , the cycle C splits the contour of f
into a left portion denoted PL(u) and a right portion denoted PR(u). Let CL(u) (resp. 
CR(u)) be the closed walk formed by the concatenation of PL(u) and P (e1, e2) (resp. 
of PR(u) and P (e1, e2)). Let 	L(u) be the length of PL(u), let 	(u) be the length of 
P (e1, e2), and let 	R(u) be the length of PR(u); note that 	L(u) = oL(u) + ιL(u) +1 and 
	R(u) = oR(u) + ιR(u) +1. Note also that ιL(u) +wL(u) is the total weight of half-edges 
inside CL(u) and incident to a vertex on CL(u). By a simple counting argument based 
on the Euler relation, this number is equal to 12(	L(u) +	(u)) −b. This gives the equation

oL(u) − ιL(u) − 2wL(u) = 2b− 1 − 	(u).

Similarly we obtain

oR(u) − ιR(u) − 2wR(u) = 2b− 1 − 	(u).

Summing over u ∈ S we find

γ̂X
L (C) − 2γX′

L (C ′) = γ̂X
R (C) − 2γX′

R (C ′),

hence γ̂X(C) = 2γX′(C ′) = 0. Hence X is γ̂-balanced. �
Lemma 36. Consider M ∈ E2b such that M� admits a b-regular orientation X. If the 
γ̂-score of two non-contractible non-homotopic cycles of M� is 0, then X is γ̂-balanced.

Proof. Let C1, C2 be two non-homotopic non-contractible cycles of M�, each given with 
a traversal direction, such that γ̂(C1) = γ̂(C2) = 0.

By Lemma 35, M has essential girth 2b. We now show that M has to be bipartite. For 
C ∈ {C1, C2}, let n◦◦(C) be the number of M -edges on C, and let V•(C) (resp. V◦(C)) 
be the set of black (resp. white) vertices on C and n•(C) = |V•(C)|, n◦(C) = |V◦(C)|. 
For each u ∈ V•(C), let cL(u) (resp. cR(u)) be the number of corners of M� incident 
to u on the left (resp. right) of C, and let κL(C) =

∑
u∈V•(C) cL(u), and κR(C) =∑

u∈V•(C) cR(u), and κ(C) = κL(C) + κR(C); note that κ(C) is the total degree of faces 
corresponding to the black vertices on C, hence κ(C) is an even integer. The left length
of C is defined as

	L(C) = n◦◦(C) + κL(C).

It corresponds to the length of the closed walk of edges of M that coincides with C at 
M -edges, and takes the left boundary of the corresponding face of M each time C passes 
by a black vertex. Since all face-degrees of M are even and C1, C2 are non-contractible 
non-homotopic cycles, it is enough to show that 	L(C) is even for C ∈ {C1, C2} to prove 
that M is bipartite. Recall that wL(C) (resp. wR(C)) denotes the total weight of half-
edges incident to white vertices of C on the left (resp. right) side of C, and ιL(C) (resp. 
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ιR(C)) denotes the total number of ingoing edges at black vertices on C on the left (resp. 
right) side of C. It is easy to see that the property γ̂(C) = 0 rewrites as ηL(C) = ηR(T ), 
where

ηL(C) = 2wL(C) − 2ιL(C) + κL(C), ηR(C) = 2wR(C) − 2ιR(C) + κR(C).

Let e(C) be the number of edges on C (which is also the length of C). Let Σ(C) be the 
total weight of half-edges incident to vertices in V◦(C) minus the total ingoing degree of 
vertices in V•(C). Then it is easy to see that

Σ(C) = wL(C) − ιL(C) + wR(C) − ιR(C) + (b− 1) · n◦◦(C).

Moreover, since X is b-regular we have

Σ(C) = b · n◦(C) + b · n•(C) − 1
2κ(C) = b · e(C) − 1

2κ(C)

= b(n◦◦(C) + 2n•(C)) − 1
2κ(C).

The equality between the two expressions of Σ(C) yields ηL(C) + ηR(C) = 2n◦◦(C) +
4bn•(C), which gives ηL(C) = n◦◦(C) + 2bn•(C). Since ηL(C) = 2wL(C) − 2ιL(C) +
κL(C), we conclude that

	L(C) = n◦◦(C) + κL(C) = (ηL(C) − 2bn•(C)) + (ηL(C) − 2wL(C) + 2ιL(C)),

so that 	L(C) is even. This concludes the proof that M is bipartite.
We now prove that X is γ̂-balanced. By Lemma 35, M� has a γ̂-balanced b-regular 

orientation X ′. Then, C1 and C2 have the same γ̂-score (which is zero) in X as in X ′, 
hence, by Lemma 34, they have the same γ-score in X as in X ′. By Corollary 4, X and 
X ′ are γ-equivalent. Thus, again by Lemma 34, X is γ̂-balanced. �
Lemma 37. Let M ∈ M̂2b. Then M� has a unique minimal γ̂-balanced b-regular orienta-
tion. This orientation is transferable. Moreover, it is in O1

2b if and only if M ∈ L̂2b (the 
root-face contour is a maximal 2b-angle).

Proof. By Lemma 35, M� admits a γ̂-balanced b-regular orientation X. By Lemma 34, 
a b-regular orientation is γ̂-balanced if and only if it is γ-equivalent to X. Hence, 
by Corollary 4, M admits a unique b-regular orientation X0 that is minimal and γ̂-
balanced.

The argument to ensure that X0 is transferable is the same as given in the planar 
case [8, Lemma 50]. Suppose by contradiction that there is a star-edge ε = {b, w} go-
ing toward its black extremity b, and such that the M -edge e = {w, w′} just after ε
in clockwise order around w has weight different from b − 1. Thus e has strictly pos-
itive weight at w′. Then let ε′ be the star-edge just after ε in counterclockwise order 
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around b. Note that ε′ has to be directed toward b, otherwise (ε′, ε, e) would form a 
face S distinct from the root-face, such that every edge on the boundary of S has 
a face in S on its right, contradicting the minimality of X0. Let e′ = (w′, w′′) be 
the M-edge just after ε′ in clockwise order around w′. Since the edges e and ε′ con-
tribute by at least 2 to the weight of w′, the edge e′ can not have weight b − 1 at 
w′, hence it has positive weight at w′′. Continuing iteratively in counterclockwise order 
around b we obtain that b has only ingoing edges, a contradiction. So X0 is transfer-
able.

Let us now characterize when X0 is in O1
2b.

Suppose that the root-face contour is not a maximal 2b-angle, let C be a maximal 
2b-angle whose interior contains the root-face. By a counting argument similar to the 
proof of Claim 1, all half-edges incident to a vertex on C and in the interior of C have 
weight 0, hence a rightmost walk starting from an edge on C can never loop on the 
root-face contour. Hence X0 is not in O1

2b.
Conversely assume that M is in L̂2b. Let e be an outgoing half-edge of X0 and let 

Pe be the rightmost path starting at e. Since X0 is transferable, it is easy to see that 
once Pe has reached an M -vertex (which occurs after traversing at most two edges), 
it will only take M -edges. Hence the cycle C formed when Pe eventually loops is a 
right cycle of M -edges. By the same line of arguments as in Section 6.2.2, this cy-
cle has to be of length 2b, with a contractible region on its right. This region has 
to contain the root-face since X0 is minimal. Since the root-face contour is a max-
imal 2b-angle, we conclude that C is actually the root-face contour. Hence X0 is in 
O1

2b. �
Lemma 38. Let M be a map in E2b. Let Y be a b

b−1 -Z-orientation of M in O1
2b, let 

X = σ−1(Y ) be the associated b-regular orientation of M�, and let T be the associated 
mobile in V̂b. Then X is γ̂-balanced if and only if T is balanced.

Proof. Recall that the rules to obtain the mobile associated to Y are the ones of Fig. 15.
Let C be a non-contractible cycle of T given with a traversal direction; note that 

C is also a non-contractible cycle of M� (it is convenient here to see T and M� as 
superimposed). Let n•(C) be the number of black vertices on C, and let n•◦(C) (resp. 
n◦•(C)) be the number of black-white edges e on C where the black extremity is traversed 
before (resp. after) the white extremity when traversing e (along the traversal direction 
of C). Note that all the black-white edges on C have weights (0, b − 1) (the weights 
can not be (−1, b) since the white extremity is a leaf in that case). Note also that 
n•◦(C) = n•(C) = n◦•(C), since every black vertex is preceded and followed by white 
vertices along C. Let wT

L(C) (resp. wT
R(C)) be the total weight of half-edges in T that 

are incident to a vertex (white or black) of C on the left side (resp. right side) of C. 
Let sL(C) (resp. sr(C)) be the total number of half-edges, including the buds, that 
are incident to a black vertex of C on the left (resp. right) side of C (note that this 
quantity is the same for T as for X). Let wX

L (C) (resp. wX
R (C)) be the total weight 
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in X of half-edges at M -vertices of C, on the left (resp. right) side of C. Let ιXL (C)
(resp. ιXR (C)) be the total number of ingoing edges at black vertices on the left (resp. 
right) side of C. We have γT

L (C) = 2wT
L(C) + sL(C), γT

R(C) = 2wT
R(C) + sR(C), and 

γT (C) = γT
R(C) − γT

L (C). Moreover, we have γ̂X
L (C) = 2wX

L (C) + sL(C) − 2ιXL (C), 
γ̂X
R (C) = 2wX

R (C) + sR(C) − 2ιXR (C), and γ̂X(C) = γ̂X
R (C) − γ̂X

L (C).
The quantity wT

L(C) decomposes as w◦,T
L (C) +w•,T

L (C), where the first (resp. second) 
term gathers the contribution from the half-edges at white (resp. black) vertices. Clearly 
w•,T

L (C) = −ιXL (C). We let H◦
L(C) be the set of half-edges of M� that are on the left of C

and incident to a white vertex on C. A half-edge h in H◦
L(C), with v its incident vertex, 

is called C-adjacent if the next half-edge in M� in ccw order around v is on C; it is 
called C-internal otherwise. Then the combined effect of the transfer rule of Fig. 32 and 
of the local rules of Fig. 15 ensure that w◦,T

L (C) gives the total contribution to wX
L (C)

by C-internal half-edges in H◦
L(C). Let AL(C) be the total contribution to wX

L (C) by 
C-adjacent half-edges in H◦

L(C). Then, very similarly as in the proof of Lemma 29
(see Fig. 30), each black vertex on C yields a contribution b − 1 to AL(C), so that 
AL(C) = (b − 1)n•(C). We conclude that wX

L (C) − ιXL (C) = wT
L(C) + (b − 1)n•◦(C). 

Very similarly we have wX
R (C) = wT

R(C) +ιR(C) +(b −1)n◦•(C). Hence γT (C) = γ̂X(C).
This implies that if X is γ̂-balanced then T is balanced. Now, suppose that T is 

balanced. Then γT (C) = 0 for any non-contractible cycle C of T . Let {C1, C2} be two 
such distinct cycles. They are not homotopic since T is unicellular. By what precedes we 
have γ̂X(C1) = 0 and γ̂X(C2) = 0. Hence X is γ̂-balanced by Lemma 36. �

We are now able to prove Proposition 32.

Proof of Proposition 32. Suppose that M ∈ E2b admits a b
b−1 -Z-orientation Y ∈ O1

2b
whose associated mobile by Φ+ is in V̂Bal

b , and let X = σ−1(Y ). Then X is γ̂-balanced 
(according to Lemma 38), is transferable and in O1

2b (according to Lemma 33), and is 
minimal (according to Lemma 17). Lemma 35 implies that M ∈ M̂2b. Hence, according 
to Lemma 37, M is in L̂2b and moreover Y is unique (it has to be the image by σ of the 
unique minimal γ̂-balanced b-regular orientation of M�).

Conversely let us prove the existence part, for M ∈ L̂2b. By Lemma 37, let X be 
the minimal γ̂-balanced b-regular orientation of M� that is moreover transferable and 
in O1

2b. Let Y = σ(X) so that Y ∈ O1
2b by Lemma 33. And Lemma 38 ensures that the 

mobile associated to Y by Φ+ is in V̂Bal
b . �

6.3.2. Proof of Theorem 21 for d ≥ 2
We start by giving some terminology and results for d ≥ 1, before continuing with 

d ≥ 2 in the rest of the section.
Let d ≥ 1. Let Hd be the family of face-rooted toroidal maps with root-face degree d

and with all faces of degree at least d. For M ∈ Hd, we define a d
d−2 -Z-orientation of M

as a Z-biorientation with weights in {−2, . . . , d} such that all vertices have weight d, all 
edges have weight d − 2, and every face f has weight −deg(f) + d.
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Fig. 34. The local rule in the 1-to-1 correspondence ι between the d
d−2 -Z-orientations of M and the d

d−1 -Z-
orientation of M2 (the half-edge direction is not indicated, it is determined by the status of the weight it 
carries, either in Z>0 or in Z≤0).

The bijection Φ+ specializes into a bijection between maps in Hd endowed with a 
d

d−2 -Z-orientation in O1
d and the family Vd of toroidal d

d−2 -Z-mobiles. Showing Theo-
rem 22 for d ≥ 2 thus amounts to proving the following statement:

Proposition 39. Let d ≥ 2 and let M be a map in Hd. Then M admits a d
d−2 -Z-

orientation in O1
d whose associated mobile by Φ+ is in VBal

d if and only if M is in 
Ld. In that case M admits a unique such orientation.

Let d ≥ 1 and let M ∈ Hd. We denote by M2 the (bipartite) map obtained from M
by inserting a new vertex on each edge. Note that M ∈ Ld if and only if M2 ∈ L̂2d. 
Applying (as done in the planar case in [8, Lem. 55]) the rules of Fig. 34 to each edge 
of a d

d−2 -Z-orientation Z of M , we obtain a d
d−1 -Z-orientation Y = ι(Z) of M2. The 

mapping ι is clearly bijective. Moreover, Z is in O1
d if and only if ι(Z) is in O1

2d.
From now on we assume that d ≥ 2. We first prove the analogue of Lemma 38:

Lemma 40. Let d ≥ 2 and M be a map in Hd. Let Z be a d
d−2 -Z-orientation of M in 

O1
d, let X = σ−1(ι(Z)) be the associated d-regular orientation of M�

2 , and let T be the 
associated mobile (by Φ+) in Vd. Then X is γ̂-balanced if and only if T is balanced.

Proof. Let C be a non-contractible cycle of T . Let n•(C) be the number of black vertices 
on C. Let n•◦(C) (resp. n◦•(C)) be the number of black-white edges e on C where the 
black extremity is traversed before (resp. after) the white extremity when traversing e
(along the traversal direction of C), and let n••(C) be the number of black-black edges 
along C (note that n••(C) = 0 for d > 2). As in the last section it is easy to see that 
n•◦(C) = n◦•(C). Note that black-white edges on C can have weights (0, d − 2) or 
(−1, d − 1) (but not (−2, d) since the white extremity would be a leaf).

Let wT
L(C) (resp. wT

R(C)) be the total weight of half-edges in T incident to a vertex, 
white or black, of C on the left side (resp. right side) of C. Let sTL(C) (resp. sTR(C)) be 
the total number of half-edges, including the buds, that are incident to a black vertex 
of C on the left (resp. right) side of C. Note that C identifies to a cycle of M�

2 , which 
we also call C by a slight abuse of notation (the only difference to keep in mind is that, 
for each black-black or white-white edge e on C seen as a cycle of T , in M�

2 there is a 
white square vertex in the middle of e). Let wX

L (C) (resp. wX
R (C)) be the total weight 

(in X) of half-edges at white vertices (round or square) of C on the left (resp. right) 
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Fig. 35. The situation at an edge e counted by n•◦(C) (the weights and orientations of the two C-adjacent 
edges, shown in gray, are determined by the combined effect of the transfer rule of Fig. 32, the rules of 
Fig. 34, and the local rules in Fig. 15). If e has weights (−1, d − 1) it has contribution d − 1 to wX

L (C) and 
contribution 1 to ιXL (C). If e has weights (0, d − 2) it has contribution d − 2 to wX

L (C) and contribution 0
to ιXL (C). Hence it always has a contribution d − 2 to wX

L (C) − ιL(X).

side of C. Let ιXL (C) (resp. ιXR (C)) be the total number of ingoing edges (in X) at 
black vertices on the left (resp. right) side of C. Let sXL (C) (resp. sXR (C)) be the total 
number of edges incident to a black vertex on the left (resp. right) side of C. We have 
γT
L (C) = wT

L(C) + sTL(C), γT
R(C) = wT

R(C) + sTR(C), and γT (C) = γT
R(C) − γT

L (C). And 
we have γ̂X

L (C) = 2wX
L (C) + sXL (C) −2ιXL (C), γ̂X

R (C) = 2wX
R (C) + sXR (C) −2ιXR (C), and 

γ̂X(C) = γ̂X
R (C) − γ̂X

L (C).
The quantity wT

L(C) decomposes as w◦,T
L (C) +w•,T

L (C) where the first (resp. second) 
term gathers the contributions from the white (resp. black) vertices. We let HL(C) be the 
set of half-edges of M�

2 that are on the left of C and incident to a vertex on C (including 
white square vertices on C, i.e., seeing C as a cycle in M�

2 ). The set HL(C) partitions 
as HL(C) = H◦

L(C) ∪H�
L(C) ∪H•

L(C) whether the incident vertex is white round, white 
square, or black. A half-edge h of H◦

L(C) (resp. H•
L(C)) is called C-adjacent if the next 

half-edge of M�
2 after h in ccw order (resp. cw order) around the vertex incident to h

is on C; it is called C-internal otherwise. By the combined effect of the transfer rule of 
Fig. 32, the rules of Fig. 34, and the local rules in Fig. 15, the quantity w◦,T

L (C) represents 
the total contribution to wX

L (C) of the C-internal half-edges in H◦
L(C), while w•,T

L (C)
represents the total contribution to −ιXL (C) of the C-internal half-edges in H•

L(C).
We let AL(C) be the total contribution to wX

L (C) − ιXL (C) of C-adjacent half-edges 
from H◦(C) ∪ H•(C). An important observation (see Fig. 35) is that an edge of T
counted by n•◦(C) always gives a contribution d − 2 to AL(C) (whether it has weights 
(−1, d − 1) or (0, d − 2)), hence AL(C) = (d − 2)n•◦(C). Finally, the total contribution 
to wX

L (C) − ιXL (C) by half-edges in H�(C) is n••(C). Indeed the only contribution is a 
contribution by one to wX

L (C) for each black-black edge e on C (there is a white square 
vertex in the middle of e, with an outgoing edge on each side, recalling that black-black 
edges in T occur only for d = 2). We thus have

wX
L (C) − ιXL (C) = wT

L(C) + (d− 2)n•◦(C) + n••(C),

and similarly we have

wX
R (C) − ιXR (C) = wT

R(C) + (d− 2)n◦•(C) + n••(C).

Moreover we have

sXL (C) = 2sTL(C) + n•(C) − 2n••(C), sXR (C) = 2sTR(C) + n•(C) − 2n••(C).
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With these equalities, and using the fact that n•◦(C) = n◦•(C), we easily deduce 
2γT (C) = γ̂X(C), and in particular γT (C) = 0 if and only if γ̂X(C) = 0.

From there, very similarly as in the end of the proof of Lemma 38, we conclude that 
X is balanced if and only if T is balanced, which concludes the proof. �

We are now able to prove Proposition 39:

Proof of Proposition 39. Suppose that M ∈ Hd admits a d
d−2 -Z-orientation Z ∈ O1

2b
whose associated mobile by Φ+ is in VBal

d , and let X = σ−1(ι(Z)). Then X is γ̂-balanced 
(according to Lemma 40), is transferable and in O1

2d (by Lemma 33 and since ι preserve 
the property of being in O1

2d), and minimal (according to Lemma 17). Lemma 35 implies 
that M2 ∈ M̂2d. Hence, according to Lemma 37, M2 is in L̂2d, so that M is in Ld, and 
moreover Z is unique (it has to be the image by ι−1◦σ of the unique minimal γ̂-balanced 
d-regular orientation of M�

2 ).
Conversely let us prove the existence part, for M ∈ Ld. By Lemma 37, let X be 

the minimal γ̂-balanced d-regular orientation of M�
2 , that is moreover transferable and 

in O1
2d. Let Z = ι−1(σ(X)) so that Z ∈ O1

2d by Lemma 33 and since ι preserve the 
property of being in O1

2d. And Lemma 40 ensures that the mobile associated to Z by Φ+
is in VBal

d . �
6.3.3. Proof of Theorem 22 for b = 1

Before proving Theorem 22 for b = 1 let us make a simple observation. We have proved 
Theorem 22 for b ≥ 2 and Theorem 21 for d ≥ 2. For b ≥ 1 a Z-bimobile in VBal

2b is 
called even if all its half-edge weights are even. The mapping consisting in doubling the 
half-edge weights gives a bijection between V̂Bal

b and even Z-bimobiles in VBal
2b . Moreover 

the toroidal map (obtained by performing Ψ+) associated to a bimobile in V̂Bal
b is the 

same as the toroidal map associated to the weight-doubled bimobile. Hence, if we call 
φd, for d ≥ 2, the bijection in Theorem 21 and φ̂b, for b ≥ 2, the bijection in Theorem 22
then we have already obtained:

‘For b ≥ 2 and M ∈ L2b, we have that φ2b(M) is even if and only if M is bipartite, 
and in that case φ2b(M) is equal to φ̂b(M) upon doubling the half-edge weights’.

Note that if we can establish (as stated next) the similar bipartiteness condition 
for b = 1 then we will have Theorem 22 for b = 1 (as the bipartite specialization of 
Theorem 21 for d = 2).

Lemma 41. Let M ∈ L2 and let T = φ2(M). Then T is even if and only if M is bipartite.

Proof. Assume T is even, and let T ′ be obtained from T after dividing by 2 the half-edge 
weights. Note that T ′ ∈ V̂Bal

1 and in particular the degrees of all black vertices of T ′

are even, so that all face-degrees of M are even. Since the weight of a white vertex of 
T ′ is 1, in T ′ all white vertices are leaves. Consider two distinct cycles C1, C2 of T ′ and 



É. Fusy, B. Lévêque / Journal of Combinatorial Theory, Series A 175 (2020) 105270 63
Fig. 36. The two types of toroidal unicellular maps.

C ∈ {C1, C2}. Since white vertices are leaves, the cycle C is made only of black vertices 
and black-black edges, with zero weights on both half-edges. Let k be the length of C. Let 
wL(C) (resp. wR(C)) be the total weight of half-edges of T incident to (black) vertices of 
C on the left (resp. right) side of C. Let sL(C) (resp. sR(C)) be the total number of half-
edges (including buds) incident to black vertices of C on the left (resp. right) side of C. 
Since T ′ is balanced we have 2 wL(C) +sL(C) = 2 wR(C) +sR(C). Let κ(C) be the total 
degree of faces corresponding to vertices of C, so κ(C) = sL(C) + sR(C) + 2k. Since all 
the half-edges on C have weight 0, the total weight of vertices of C is wL(C) +wR(C) =∑

u∈C(−1
2deg(u) + 1) = −1

2κ(C) + k. By combining the three equalities, we obtain that 
sL(C) = −2wL(C). So sL(C) is even. So sL(Ci) is even for i ∈ {1, 2}. For i ∈ {1, 2}, let 
Wi be the walk of M that is “just on the left” of Ci (seeing M and T as superimposed), 
i.e. obtained by following the left boundary of the corresponding face of M each time 
Ci passes by a black vertex. By the local rules of Φ+ shown in Fig. 15, the length of Wi

is precisely equal to sL(Ci) and thus is even. All the faces of M are even, and the two 
walks Wi are non-homotopic to a contractible cycle and non-homotopic to each other. 
Thus M is bipartite.

Conversely, assume that M is bipartite. Note that there are 3 types of edges in T ∈
VBal

2 : those of weights (−2, 2) that connect a black vertex to a white leaf, those of weights 
(−1, 1) that connect a black vertex to a white vertex of degree 2 (incident to two such 
edges), and those of weights (0, 0) that connect two black vertices. We call odd the edges 
of weights (−1, 1). To prove that T is even we thus have to show that T has no odd 
edges. Let Γ be the subgraph of T induced by the odd edges. Since M is bipartite, all 
its faces have even degree and thus all black vertices of T have even weight (since for 
d = 2 the weight of a black vertex of T is 2 minus the degree of the associated face). 
Moreover every white vertex is incident to either no odd edge or to two odd edges. Hence 
Γ is an Eulerian subgraph of T . There are two types of toroidal unicellular maps since 
two cycles of a toroidal unicellular map may intersect either on a single vertex (square 
case) or on a path (hexagonal case), as depicted on Fig. 36. If T is hexagonal, then Γ is 
exactly one of the cycles of T . If T is square, then Γ can be either one of the cycles of 
T or the union of the two cycles of T . One easily checks that in all cases, there exists a 
cycle C of T that has exactly one incident edge in Γ on each side. We endow C with a 
traversal direction.
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Recall from Section 4.6, that γL(C) = wL(C) + sL(C), γR(C) = wR(C) + sR(C). 
Moreover since T ∈ VBal

2 , we have γL(C) = γR(C). Note that white vertices of C have 
all their weight on C. Let n•(C) be the number of black vertices on C. Let κ(C) be 
the total degree of faces corresponding to the black vertices on C. So black vertices 
of C have total weight −κ(C) + 2n•(C). Let n•◦(C) (resp. n◦•(C)) be the number of 
black-white (resp. white-black) edges on C while following the traversal direction of C. 
Clearly n•◦(C) = n◦•(C). The total weight of half-edges on C incident to a black vertex 
is precisely −n•◦(C) − n◦•(C) = −2n•◦(C). So wL(C) + wR(C) = −κ(C) + 2n•(C) +
2n•◦(C). Note that we have κ(C) = sL(C) + sR(C) + 2n•(C). Combining the equalities 
gives wL(C) = −sL(C) + n•◦(C).

Let W be the walk of M that is “just on the left” of C (seeing M and T as super-
imposed), i.e. obtained by following the left boundary of the corresponding face of M
each time C passes by a black vertex. Since M is bipartite, the length of W is even, 
and according to the local rules of Φ+ shown in Fig. 15, it is equal to sL(C) + n•◦(C). 
So wL(C) = (sL(C) + n•◦(C)) − 2sL(C) is even. So C is incident to an even number of 
edges of Γ on its left side, a contradiction. �
6.3.4. Proof of Theorem 21 for d = 1

Recall from Section 6.3.2 that H1 denotes the family of face-rooted toroidal maps 
with root-face degree 1 (i.e. a loop). Moreover, for M ∈ H1, a 1

−1 -Z-orientation of M is 
a Z-biorientation with weights in {−2, −1, 0, 1} such that all vertices have weight 1, all 
edges have weight −1, and every face f has weight −deg(f) +1. Note that there are just 
two types of edges in such an orientation, with weights (−1, 0) or (−2, 1) (see the first 
row of Fig. 37).

The bijection Φ+ specializes into a bijection between maps in H1 endowed with a 
1
−1 -Z-orientation in O1

1 and the family V1 of toroidal 1
−1 -Z-mobiles. Showing Theorem 22

for d = 1 thus amounts to proving the following statement:

Proposition 42. Let M be a map in H1. Then M admits a 1
−1 -Z-orientation in O1

1 whose 
associated mobile by Φ+ is in VBal

1 if and only if M is in L1. In that case M admits a 
unique such orientation.

For a map M ∈ H1, let M2 (resp. M4) be the map obtained from M by subdividing 
every edge into a path of length 2 (resp. 4). If M is endowed with a 1

−1 -Z-orientation 
Z let τ(Z) be the (transferable) 2-regular orientation of M�

4 obtained from M using the 
rules of Fig. 37, i.e., applying the rule of Fig. 34 to obtain a 1

0 -Z-orientation of M2, then 
doubling the weights to get to an even 2

0 -Z-orientation of M2, then applying the rule of 
Fig. 34 to get to a 2

1 -Z-orientation of M4, and finally applying the mapping σ−1 to get 
to a transferable 2-regular orientation of M�

4 . Note that Z is in O1
1 if and only if τ(Z)

is in O1
4. Note that τ is injective but not a bijection since when doubling the weights to 

obtain a 2
0 -orientation of M2 we have only even weights.

We first prove the analogue of Lemma 40:
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Fig. 37. The mapping τ from 1
−1 -orientations in O1

1 to (certain) transferable 2-regular orientations in O1
4. 

In the top row, we show the corresponding mobile-edge; in the bottom-row we show (in bolder form) on 
which star-edges we lift the mobile-edge.

Lemma 43. Let M be a map in H1, let Z be a 1
−1 -Z-orientation of M in O1

1, let X = τ(Z)
be the associated 2-regular orientation of M�

4 , and let T be the associated mobile (by Φ+) 
in V1. Then X is γ̂-balanced if and only if T is balanced.

Proof. Let C be a non-contractible cycle of T given with a traversal direction. We call 
canonical lift of C the (non-contractible) cycle C ′ of M�

4 obtained by keeping the bolder 
edges as shown in the bottom-row of Fig. 37.

Let e be a black-black edge on C, where the half-edge of weight −1 is traversed 
before the half-edge of weight 0. Looking at the left part of Fig. 37 it is clear that 
e has contribution 5 to sXL (C ′), contribution 1 to sXR (C ′), contribution 1 to wX

L (C ′), 
contribution 1 to wX

R (C ′), contribution 2 to ιXL (C ′), and contribution 0 to ιXR (C ′). Hence 
e has contribution 3 to γX

L (C ′) = 2(wX
L (C ′) − ιXL (C ′)) + sXL (C ′), and contribution 3 to 

γX
R (C ′) = 2(wX

R (C ′) −ιXR (C ′)) +sXR (C ′), hence has zero contribution to γX(C ′). Similarly 
a black-black edge where the half-edge of weight −1 is traversed after the half-edge of 
weight 0 has zero contribution to γX(C ′).

Now let e be a black-white edge on C where the black extremity is traversed before the 
white extremity. Then it is easy to see (again looking at Fig. 37) that e has contribution 3
to sXL (C ′), contribution 0 to sXR (C ′), contribution 1 to wX

L (C ′), contribution 0 to wX
R (C ′), 

contribution 3 to ιXL (C ′), and contribution 0 to ιXR (C ′). Hence it has contribution −1 to 
γX
L (C ′) and contribution 0 to γX

R (C ′), hence contribution −1 to γX(C ′). Symmetrically 
a black-white edge whose black extremity is traversed after the white extremity has 
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contribution 1 to γX(C ′). Now the numbers of black-white edges of both types on C
are clearly equal, so that the total contribution of black-white edges on C to γX(C ′) is 
zero.

On the other hand, let h be a half-edge of T not on C but incident to a vertex 
on C, and let δ be the weight of h (by convention δ = 0 if h is a bud). Then it is 
easy to see (still looking at Fig. 37) that if h is on the left (resp. right) side of C and 
incident to a black vertex, then it has contribution 4 to sXL (C ′) (resp. to sXR (C ′)) and 
contribution 2δ to −ιXL (C ′). And if h is on the left (resp. right) side of C and incident 
to a white vertex, then it has contribution 2δ to wX

L (C ′) (resp. to wX
R (C ′)). From what 

precedes we conclude that γX(C ′) = 4γT (C), and in particular γX(C ′) = 0 if and only 
if γT (C) = 0.

From there, very similarly to the end of the proof of Lemma 38, we conclude that X
is balanced if and only if T is balanced, which concludes the proof. �

We are now able to prove Proposition 42:

Proof of Proposition 42. Suppose that M admits a 1
−1 -Z-orientation Z in O1

1 whose 
associated mobile by Φ+ is in VBal

1 . By Lemma 43, we have X = τ(Z) is a γ̂-balanced 
2-regular orientation of M�

4 . Since X is in O1
4, by Lemma 17, we have that X is minimal. 

By Lemma 35, we have M4 ∈ M̂4. Then, by Lemma 37, we have M4 ∈ L̂4, hence M ∈ L1. 
In addition we have uniqueness of the orientation Z, since Z has to be preimage under 
the injective mapping τ of the unique minimal γ̂-balanced 2-regular orientation of M�

4 .
Conversely we prove the existence part, for M ∈ L1. Then M4 ∈ L̂4 and by Lemma 37, 

M�
4 admits a transferable γ̂-balanced 2-regular orientation X in O1

4. Consider Y4 the 
2
1 -Z-orientation of M4 in O1

4 such that Y = σ(X).
Consider Z ′ the 2

0 -Z-orientation of M2 in O1
2 such that Z ′ = ι−1(Y ) = ι−1(σ(X)). By 

Lemma 40, the mobile T ′ associated to Z ′ is in VBal
2 . Since M ∈ L1, we have M2 ∈ L̂2, 

hence all the weights of T ′ are even according to Lemma 41. So all the weights of Z ′ are 
even. Let Y ′ be the 1

0 -Z-orientation of M2 in O1
2 obtained by dividing all the weights of 

Z ′ by two. Consider Z the 1
−1 -Z-orientation of M in O1

1 such that Z = ι−1(Y ′). Note 
that X = τ(Z). Let T ∈ V1 be the mobile associated to Z. Lemma 43 then ensures that 
T is in VBal
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