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Univ. Grenoble Alpes, CNRS, G-SCOP, 38000 Grenoble, France

benjamin.leveque@cnrs.fr

Submitted: May 30, 2018; Accepted: Dec 28, 2018; Published: Jan 25, 2019

c©The authors.

Abstract

Transversal structures (also known as regular edge labelings) are combinatorial
structures defined over 4-connected plane triangulations with quadrangular outer-
face. They have been intensively studied and used for many applications (drawing
algorithm, random generation, enumeration. . . ). In this paper we introduce and
study a generalization of these objects for the toroidal case. Contrary to what
happens in the plane, the set of toroidal transversal structures of a given toroidal
triangulation is partitioned into several distributive lattices. We exhibit a subset
of toroidal transversal structures, called balanced, and show that it forms a single
distributive lattice. Then, using the minimal element of the lattice, we are able to
enumerate bijectively essentially 4-connected toroidal triangulations.

Mathematics Subject Classifications: 05C30, 05C10

1 Introduction

A graph embedded on a surface is called a map on this surface if all its faces are homeomor-
phic to open disks. Maps are considered up to homeomorphism. A map is a triangulation
if all its faces have size three. Given a graph embedded on a surface, a contractible loop
is an edge enclosing a region homeomorphic to an open disk. Two edges of an embedded
graph are called homotopic multiple edges if they have the same extremities and their

∗This work was supported by the grant EGOS ANR-12-JS02-002-01 and GATO ANR-16-CE40-0009-
01.
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union encloses a region homeomorphic to an open disk. In this paper, we restrict our-
selves to graphs embedded on surfaces that do not have contractible loops nor homotopic
multiple edges. Note that this is a weaker assumption, than the graph being simple, i.e.,
not having loops nor multiple edges. In this paper we distinguish cycles from closed walk
as cycles have no repeated vertices. A contractible cycle is a cycle enclosing a region
homeomorphic to an open disk. A triangle (resp. quadrangle) of a map is a closed walk
of length three (resp. four) that delimits on one side a region homeomorphic to an open
disk. This region is called the interior of the triangle (resp. quadrangle). Note that a
triangle is not necessarily a face of the map as its interior may be not empty. Note also
that a triangle is not necessarily a cycle since non-contractible loops are allowed. A uni-
cellular map is a map with only one face, which corresponds to the natural generalization
of planar trees when going to higher genus, see [CMS09, Cha11].

In this paper we consider finite maps. We denote by n be the number of vertices and
m the number of edges of a graph. Given a graph embedded on a surface, we use f for
the number of faces. Euler’s formula says that any map on an orientable surface of genus
g satisfies n−m+ f = 2− 2g. In particular, the plane is the surface of genus 0, the torus
the surface of genus 1, the double torus the surface of genus 2, etc. By Euler’s formula,
a toroidal triangulation with n vertices has exactly 3n edges and 2n faces.

The universal cover of the torus is a surjective mapping p from the plane to the
torus that is locally a homeomorphism. If the torus is represented by a hexagon (or
parallelogram) in the plane whose opposite sides are pairwise identified, then the universal
cover of the torus is obtained by replicating the hexagon (or parallelogram) to tile the
plane.

A graph is k-connected if it has at least k + 1 vertices and if it stays connected after
removing any k − 1 vertices. Extending the notion of essentially 2-connectedness defined
in [MR98], we say that a toroidal map G is essentially k-connected if its universal cover
G∞ is k-connected (note that this is different from G being k-connected). This paper
is focused on the study of essentially 4-connected toroidal triangulations via generalizing
transversal structures to the toroidal case.

Transversal structures are originally defined on 4-connected planar triangulations with
four vertices on the outer face. They have been introduced by Kant et He [KH97]
(under the name regular edge labelings) for graph drawing applications of planar
maps [KH97, Fus09]. Deep combinatorial properties of these objects have been stud-
ied later by Fusy [Fus09] with numerous other applications like encoding, enumeration,
random generation, etc. Indeed, in the planar case, transversal structures are strongly
related to a more general object called α-orientations by Felsner [Fel04]. Consider a graph
G, with vertex set V , and a function α : V → N. An orientation of G is an α-orientation
if, for every vertex v ∈ V , its outdegree d+(v) equals α(v). For a fix planar map G and
function α, the set of α-orientations of G carries a structure of distributive lattice (see
[Fel04] and older related results [Pro93, dM94]) In the planar case, there is a bijection
between transversal structure of a planar map and 4-orientations of the corresponding
angle map. Thus the set of transversal structures of a given planar map also carries a
structure of distributive lattice whose minimal element plays a crucial role for bijective
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purpose.
In the toroidal case, things are more complicated since the bijection between

transversal structures and 4-orientations is not valid anymore. Moreover the set of
α-orientations of a given toroidal map is now partitioned into several distributive lat-
tices (see [Pro93, GKL16]) contrarily to the planar case where there is only one lattice
and thus only one minimal element. Similar issues appear in the study of Schnyder
woods and corresponding 3-orientations of toroidal triangulations. In a series of pa-
pers [GL14, GKL16, DGBL17] (see also the HDR manuscript of the second author [Lév17]
which presents these three papers in a unified way), these problems are solved by high-
lighting a particular global property, called “balanced” in [Lév17], that a 3-orientation
may have.

By following the same guidelines here, we are able to identify, in Section 2, a sim-
ilar “balanced” property for 4-orientations of the angle map. These so-called balanced
4-orientations form the core object of study of this paper. Whereas not all 4-orientations
correspond to transversal structures, we show in Section 3 that all balanced ones cor-
respond to transversal structures. The existence of balanced transversal structures for
essentially 4-connected toroidal triangulations is proved in Section 4 by edge contraction.
The following theorem is obtained:

Theorem 1. A toroidal triangulation admits a balanced transversal structure if and only
if it is essentially 4-connected.

The set of 4-orientations of the angle map of a given essentially 4-connected toroidal
triangulation is partitioned into distributive lattices but all the balanced 4-orientations
are contained in the same lattice, as shown in Section 5. The minimal element of this
“balanced lattice” has some important properties that are used in Section 6 to obtain a
bijection between essentially 4-connected toroidal triangulations and some toroidal unicel-
lular maps. Then this bijection is used in Section 7 to enumerate essentially 4-connected
toroidal triangulations:

Theorem 2. The generating function associated with the number Th(n) of essentially
4-connected toroidal triangulations on n vertices, rooted on any half-edge, is:

Th(z) =
∑
n>0

|Th(n)|zn =
zA(z)

7zA(z)2 − 21zA(z) + 9z + 1

where A(z) is the generating function of (leaf-rooted) ternary trees satisfying A(z) =
1 + zA(z)3.

2 Angle map, transversal structure, balanced property and uni-
versal cover

2.1 Angle map and balanced 4-orientations

Consider a toroidal triangulation G. The angle map A(G) of G is the bipartite map
obtained from a simultaneous embedding of vertices of G and G∗ such that vertices of G∗
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are embedded inside faces of G and vice-versa, and for each angle of a vertex v incident
to a face v∗ there is an edge between v and v∗. Hence, A(G) is a bipartite map with
one part consisting of primal-vertices and the other part consisting of dual-vertices. Each
dual-vertex has degree three and each face of A(G) is a quadrangle that consists of two
primal-vertices and two dual-vertices.

Figure 1 gives an example of a toroidal triangulation and its angle map, primal-vertices
are black and dual-vertices are white (this serves as a convention for the entire paper).

Figure 1: A toroidal triangulation and its angle map.

An orientation of the edges of A(G) is called a 4-orientation if every primal-vertex has
outdegree exactly 4 and every dual-vertex has outdegree exactly 1. Euler’s formula says
that for a toroidal triangulation we have 2n = f , so the number of edges of the angle map
is 3f = 4n + f . Thus Euler’s formula is “compatible” with existence of 4-orientations
for angle maps of toroidal triangulations (4n outgoing edges for primal-vertices and f
outgoing edges for dual-vertices.

Consider an orientation of the edges of A(G) and a cycle C of G together with a
direction of traversal. We define γ(C) by:

γ(C) = # edges of A(G) leaving C on its right−# edges of A(G) leaving C on its left.

Then we can define balanced orientations:

Definition 3 (Balanced 4-orientation).
A 4-orientation of A(G) is balanced if every non-contractible cycle C of G satisfies γ(C) =
0.

Figure 2 gives two examples of 4-orientations of the same angle map of a toroidal
triangulation. On the left example, the vertical loop of the triangulation, with upward
direction of traversal, has γ = 2, thus the orientation is not balanced. On the right
example, one can check that γ = 0 for any non-contractible cycle (note that we prove
latter that it suffices to check that γ equals 0 for a vertical cycle and a horizontal cycle
to be balanced, see Lemma 24).
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Non-balanced Balanced

Figure 2: Two different 4-orientations of the angle map of a toroidal triangulation, exactly
one of which is balanced. One is obtained from the other by flipping the magenta cycle.

Balanced 4-orientations are the main ingredient of this paper. Among all, we show
that an essentially 4-connected toroidal triangulation admits a balanced 4-orientation of
its angle map, and we exhibit the structure of distributive lattice of the set of all these
balanced orientations.

In the next section we show how 4-orientations are related to transversal structures.

2.2 Balanced transversal structures

Transversal structures have been defined originally in the planar case (see [KH97, Fus09])
and we propose the following generalization to the toroidal case.

First we define the following local rule:

Definition 4 (Transversal structure local property).
Given a map G, a vertex v and an orientation and coloring of the edges incident to v with
the colors blue and red, we say that v satisfies the transversal structure local property
(or local property for short) if the edges around v form in counterclockwise order a non-
empty interval of outgoing edges of color blue, a non-empty interval of outgoing edges of
color red, a non-empty interval of incoming edges of color blue, a non-empty interval of
incoming edges of color red (see Figure 3).

Then the definition of toroidal transversal structure is the following:

Definition 5 (Toroidal transversal structure).
Given a toroidal map G, a toroidal transversal structure of G is an orientation and coloring
of the edges of G with the colors blue and red where every vertex satisfies the transversal
structure local property.

See Figure 4 for an example of a toroidal transversal structure of the triangulation of
Figure 1.
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Figure 3: The (transversal structure) local property.

Figure 4: Example of a toroidal transversal structure.

From a toroidal transversal structure of a toroidal triangulation G, one can deduce a 4-
orientation of its angle map A(G) by the following rule applied around each primal-vertex
(see Figure 5): an edge e of A(G) is oriented toward its primal-vertex if the two primal
edges around e share the same color otherwise e is oriented toward its dual-vertex. The
fact that primal-vertices of A(G) gets outdegree 4 is clear by the definition of transversal
structure. The fact that dual-vertices gets outdegree 1 is due to the property that, by the
local rule, all (triangular) faces of G looks like one of Figure 6 where the four cases are
symmetric by rotation of the order (outgoing blue, outgoing red, incoming blue, incoming
red).

The 4-orientation on the right of Figure 2 is the one obtained from Figure 4 by the
rule of Figure 5.

In the plane, there is a bijection between transversal structures of a map and 4-
orientations of its angle map (see [Fus09]). This is not true in the toroidal case. For
example, there is no transversal structure associated with the (non-balanced) 4-orientation
of the left of Figure 2.

Like it has been done in [GKL16, Theorems 3.7] (see also [Lév17, Section 4.2]) for
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Figure 5: Orientation of the angle map corresponding to a transversal structure.

Figure 6: The four possible faces in a transversal structure and the corresponding orien-
tation of the angle map.

toroidal Schnyder woods, it is possible to characterize which 4-orientations of the angle
map of a toroidal triangulation corresponds a transversal structure. This is done in
Section 3. A consequence of such a characterization (see Corollary 20) is that if a 4-
orientation is balanced, then it corresponds to a transversal structure.

So the balanced property is a sufficient condition to corresponds to a transversal
structure. Note that it is not a necessary condition. Figure 7 gives an example of a
transversal structure of a toroidal triangulation whose corresponding 4-orientation of its
angle map is not balanced. The horizontal cycle (with direction of traversal from right to
left) has γ = 8.

Figure 7: Example of a toroidal transversal structure whose corresponding 4-orientation
of angle map is not balanced.

Note also that in the plane, transversal structures can be defined by omitting the
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orientation of the edges in the local property since there is a bijection with 4-orientations
of the angle map. Again, this is not the case in the torus. Figure 8 gives an example
of a blue/red coloring of the edges of a toroidal triangulation satisfying the local rule of
transversal structure, without the orientation of the edges. It is not possible to orient
the edges so this coloring becomes a toroidal transversal structure. The corresponding
orientation of the angle map is still a 4-orientation. Note that by gluing two copies of this
example, one obtains Figure 7 that becomes orientable.

Figure 8: Example of a blue/red coloring of the edges of a toroidal triangulation satisfying
the local rule of transversal structure, without the orientation of the edges, and that is
not a transversal structure.

We give the following definition of balanced for toroidal transversal structure:

Definition 6 (Balanced toroidal transversal structure).
A toroidal transversal structure is balanced if its corresponding 4-orientation of angle map
is balanced.

Figure 4 gives an example of a balanced toroidal transversal structure. The corre-
sponding 4-orientation of the angle map is the balanced 4-orientation of the right of
Figure 2.

In section 4 we prove the existence of balanced toroidal transversal structure for es-
sentially 4-connected toroidal triangulations. This implies the existence of balanced 4-
orientations for their angle maps.

2.3 Transversal structures in the universal cover

Consider a toroidal map G and its universal cover G∞. Note that G does not have
contractible loops nor homotopic multiple edges if and only if G∞ is simple.

We need the following lemma from [GKL16]:

Lemma 7 ([GKL16, Lemma 2.8]). Suppose that for a finite set of vertices X of G∞, the
graph G∞ \X is not connected. Then G∞ \X has a finite connected component.

Suppose now that G is a toroidal triangulation given with a transversal structure.
Consider the natural extension of the transversal structure of G to G∞, where an edge of
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G∞ receive the orientation and color of the corresponding edge in G. Let G∞B , G∞R be the
directed subgraphs of G∞ induced by the edges of color blue and red, respectively. The
graphs G∞−B and G∞−R are the graphs obtained from G∞B and G∞R by reversing all their
edges. Similarly to what happens for Schnyder woods (see [Lév17, Lemma 6]) we have
the following property:

Lemma 8. The graphs G∞B ∪G∞R and G∞B ∪G∞−R contain no directed cycle.

Proof. Let us prove the property for G∞B ∪G∞R , the proof is similar for G∞B ∪G∞−R. Suppose
by contradiction that there is a directed cycle inG∞B ∪G∞R . Let C be such a cycle containing
the minimum number of faces in the finite map D with border C. Suppose without loss of
generality that C turns around D counterclockwisely. By the transversal structure local
property, every vertex of D has at least one outgoing edge of color red in D. So there is a
cycle of color red in D and this cycle is C by minimality of C. Every vertex of D has at
least one incoming edge of color blue in D. So, again by minimality of C, the cycle C is
a cycle of color blue. This contradicts the fact that edges of G∞ have a unique color.

For a vertex v of G∞, and i ∈ {B,R,−B,−R} we define Pi(v) the subgraph of G∞

obtained by keeping all the edges that are on an oriented path of G∞i starting at v. Then
we have the following lemma:

Lemma 9. For every vertex v and i, j ∈ {B,R,−B,−R}, i 6= j, the two subgraphs Pi(v)
and Pj(v) of G∞ have v as only common vertex.

Proof. If Pi(v) and Pj(v) intersect on two vertices, then G∞B ∪G∞R or G∞B ∪G∞−R contains
a directed cycle, contradicting Lemma 8.

Now we can prove that the existence of a transversal structure for a toroidal triangu-
lation implies the 4-connectedness of its universal cover:

Lemma 10. If a toroidal triangulation admits a toroidal transversal structure, then it is
essentially 4-connected.

Proof. Suppose by contradiction that there exists three vertices x, y, z of G∞ such that
G′ = G∞ \ {x, y, z} is not connected. Then, by Lemma 7, the graph G′ has a finite
connected component R. Let v be a vertex of R. By Lemma 8, for i ∈ {B,R,−B,−R},
i 6= j, the infinite and acyclic graph Pi(v) does not entirely lie in R so it intersects one
of x, y, z. So for two distinct i, j, the two graphs Pi(v) and Pj(v) intersect at a vertex
distinct from v, a contradiction to Lemma 9.

In Section 4, we prove the converse of Lemma 10 (see Theorem 1).
A separating triangle of a map is a triangle whose interior is not empty. We have the

following equivalence:

Lemma 11. A toroidal triangulation is essentially 4-connected if and only if its universal
cover has no separating triangle.
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Proof. (=⇒) Consider an essentially 4-connected toroidal triangulation G. So G∞ is 4-
connected. If G∞ has a separating triangle, then, the three vertices of the triangle form
a contradiction to the 4-connectedness of G∞. So G∞ has no separating triangle.

(⇐=) Consider a toroidal triangulation G such that G∞ has no separating triangle.
Suppose by contradiction that G∞ is not 4-connected. Then there exists a set of 3 vertices
X = {x, y, z} such that G∞ \X is not connected. By Lemma 7, the graph G∞ \X has
a finite connected component R. Let F be the face of G∞ \ R that “cuts” the region R
from the rest of G∞ \X. If F has length 1 or 2 then G∞ is not simple, a contradiction.
If F has size 3, then F is a separating triangle of G∞, a contradiction. So F has size at
least 4. Then there exists a vertex v in F \X. There is no edges between v and R and
thus in G∞ the face incident to v and R has length strictly more than 3, a contradiction
of G being a triangulation.

We say that a quadrangle is maximal (by inclusion) if its interior is not strictly con-
tained in the interior of another quadrangle.

Lemma 12. Consider an essentially 4-connected toroidal triangulation G and an edge e
of G. Then there is a unique maximal quadrangle of G whose interior contains e.

Proof. Since G is a toroidal triangulation, e is clearly contained in the interior of the
quadrangle bordering its two incident faces. So e is contained in a maximal quadrangle.

Suppose by contradiction that there exist two distinct maximal quadrangles Q,Q′ such
that their interiors contain e. Let R,R′ denote the interior of Q,Q′ respectively. The two
region R,R′ are distinct, both contain the two faces incident to e plus some other faces.
If there is an edge in R (resp. R′) connecting two opposite vertices of Q (resp. Q′), then
G∞ contains a separating triangle, a contradiction of G being essentially 4-connected and
Lemma 11. Then since there is no homotopic multiple edges in G, there is at least one or
two vertices of Q (resp Q′) in the interior of Q′ (resp. Q). Thus the border of the union
of R and R′ has size less or equal to four, a contradiction to the maximality of Q,Q′ or
of G being an essentially 4-connected triangulation.

3 Characterization of orientations corresponding to transversal
structures

3.1 Transversal structure labeling

We need the following equivalent definition of toroidal transversal structures:

Definition 13 (Toroidal transversal structure labeling).
Given a toroidal map G, a toroidal transversal structure labeling (or TTS-labeling for
short) of G is a labeling of the half-edges of G with integers 0, 1, 2, 3 (considered modulo
4) such that each edge is labeled with two integers that differ exactly by (2 mod 4) and
around each vertex the labeling form four non-empty intervals of 0, 1, 2, 3 in counter-
clockwise order.
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Consider a toroidal map G. The mapping of Figure 9, where an outgoing half-edge blue
is labeled 0, an outgoing half-edge red is labeled 1, an incoming half-edge blue is labeled
2, and an incoming half-edge red is labeled 3, shows how to see a toroidal transversal
structure of G as a TTS-labeling of G and vice-versa. The two objects are indeed the
same.

1 320

Figure 9: Mapping between TTS-labelings and transversal structures.

Figure 10 shows the TTS-labeling corresponding to the transversal structure of Fig-
ure 4. This labeling is also represented on the corresponding orientation of its angle
map.
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Figure 10: Labeling of the half-edges of a transversal structure and in the angle map.

We say that a 4-orientation of A(G) admits a TTS-labeling if there is a labeling of the
angles of the primal-vertices of A(G) such that this labeling corresponds to a transversal
structure of G (as on Figure 10).

The goal of this section is to characterize which 4-orientations admit TTS-labelings.
For that purpose we have to introduce some more formalism, similarly to what is done
for Schnyder woods (see [GKL16, Lév17]).

3.2 A bit of homology

We need a bit of surface homology of general maps which we discuss now.
Consider a mapG = (V,E), on an orientable surface of genus g, given with an arbitrary

orientation of its edges. This fixed arbitrary orientation is implicit in all the paper and is
used to handle flows. A flow φ on G is a vector in ZE. For any e ∈ E, we denote by φe
the coordinate e of φ.

A walk W of G is a sequence of edges with a direction of traversal such that the ending
point of an edge is the starting point of the next edge. A walk is closed if the start and
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end vertices coincide. A walk has a characteristic flow φ(W ) defined by:

φ(W )e = #times W traverses e forward−#times W traverses e backward.

This definition naturally extends to sets of walks. From now on we consider that a set
of walks and its characteristic flow are the same object and by abuse of notation we can
write W instead of φ(W ). We do the same for oriented subgraphs, i.e., subgraphs that
can be seen as a set of walks of unit length.

A facial walk is a closed walk bounding a face. Let F be the set of counterclockwise
facial walks and let F = 〈φ(F)〉 be the subgroup of ZE generated by F . Two flows φ, φ′

are homologous if φ − φ′ ∈ F. They are weakly homologous if φ − φ′ ∈ F or φ + φ′ ∈ F.
We say that a flow φ is 0-homologous if it is homologous to the zero flow, i.e., φ ∈ F.

LetW be the set of closed walks and let W = 〈φ(W)〉 be the subgroup of ZE generated
by W . The group H(G) = W/F is the first homology group of G. It is well known that
H(G) only depends on the genus of the map, and is actually isomorphic to Z2g.

A set {B1, . . . , B2g} of (closed) walks of G is said to be a basis for the homology if the
equivalence classes of their characteristic vectors ([φ(B1)], . . . , [φ(B2g)]) generate H(G).
Then for any closed walk W of G, we have W =

∑
F∈F λFF +

∑
16i62g µiBi for some

λ ∈ ZF , µ ∈ Z2g. Moreover one of the λF can be set to zero (and then all the other
coefficients are unique).

For any map, there exists a set of cycles that forms a basis for the homology and it
is computationally easy to build. A possible way to do this is by considering a spanning
tree T of G, and a spanning tree T ∗ of G∗ that contains no edges dual to T . By Euler’s
formula, there are exactly 2g edges in G that are not in T nor dual to edges of T ∗. Each
of these 2g edges forms a unique cycle with T . It is not hard to see that this set of cycles,
given with any direction of traversal, forms a basis for the homology. Moreover, note that
the intersection of any pair of these cycles is either a single vertex or a common path.

The edges of the dual map G∗ of G are oriented such that the dual e∗ of an edge e of
G goes from the face on the right of e to the face on the left of e. Let F∗ be the set of
counterclockwise facial walks of G∗. Consider {B∗1 , . . . , B∗2g} a set of closed walks of G∗

that form a basis for the homology. Let p and d be flows of G and G∗, respectively. We
define the following:

β(p, d) =
∑
e∈G

pede∗ .

Note that β is a bilinear function. We need the following lemma from [GKL16]:

Lemma 14 ([GKL16, Lemma 3.1]). Given two flows φ, φ′ of G, the following properties
are equivalent to each other:

1. The two flows φ, φ′ are homologous.

2. For any closed walk W of G∗ we have β(φ,W ) = β(φ′,W ).

3. For any F ∈ F∗, we have β(φ, F ) = β(φ′, F ), and, for any 1 6 i 6 2g, we have
β(φ,B∗i ) = β(φ′, B∗i ).
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3.3 The angle-dual-completion

Consider a toroidal triangulation G. The angle-dual-completion Â(G) of G is the map
obtained from simultaneously embedding A(G) and G∗ and subdividing each edge of
G∗ by adding a vertex at its intersection with the corresponding primal-edge of G (see

Figure 11). In Â(G) there are three types of vertices called primal-, dual- and edge-vertices,
represented, respectively, in black, white, and gray on the figures. There are two types
of edges called angle- and dual-edges. Each angle-edge is between a primal- and dual-
vertex. Each dual-edge is between a dual- and an edge-vertex. Since G is a triangulation,
each dual-vertex is incident to three angle-edges and three dual-edges. Each edge-vertex

is incident to two dual-edges. Each face of Â(G) represents a half-edge of G and is a
quadrangle incident to one primal-vertex, two dual-vertices and one edge-vertex.

Given an orientation of the angle map A(G), this orientation naturally extends to an

orientation of the angle-dual-completion Â(G) where angle-edges get the orientation they
have in A(G) and dual-edges are oriented from the edge-vertex to the dual-vertex. A

4-orientation of Â(G) is an orientation of its edges that corresponds to a 4-orientation of
A(G), i.e., primal-vertices have outdegree exactly 4, dual-vertices have out-degree exactly
1 and edge-vertices have outdegree exactly 2.

A TTS-labeling of G can be represented on Â(G) by putting labels into faces of Â(G)
(see Figure 11). When crossing an angle-edge that is incoming for a primal-vertex, the
label does not change. When crossing an angle-edge that is outgoing for a primal-vertex,
the label changes by ±1 depending on the orientation of this angle-edge: from left to right
(+1 mod 4) or right to left (−1 mod 4). When crossing a dual-edge the label changes by
±2, and the orientation is not relevant since −2 mod 4 = +2 mod 4.

0

2

3

3

12
2

2
1

1

3

0

0
2

0

3
0

1

Figure 11: Orientation and labeling of the angle-dual-completion corresponding to Fig-
ure 10.

Let Out be the set of edges of Â(G) which are going from a primal-vertex to a dual-

vertex. We call these edges out-edges of Â(G). Let Dual be the set of dual-edges of

Â(G). For φ a flow of the dual of the angle-dual-completion Â(G)
∗
, we define δ(φ) =
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β(Out, φ) + 2β(Dual, φ). More intuitively, if W is a walk of Â(G)
∗
, then:

δ(W ) = #out-edges crossing W from left to right
−#out-edges crossing W from right to left
+ 2×#dual-edges crossing W from left to right
− 2×#dual-edges crossing W from right to left

The bilinearity of β implies the linearity of δ.
The following lemma gives a necessary and sufficient condition for a 4-orientation of

the angle map to admit a TTS-labeling.

Lemma 15. A 4-orientation of A(G) admits a TTS-labeling if and only if any closed

walk W of Â(G)
∗

satisfies δ(W ) = 0 mod 4.

Proof. (=⇒) Consider a TTS-labeling ` of A(G). The definition of δ is such that δ modulo

4 counts the variation of the labels when going from one face of Â(G) to another face of

Â(G). Thus for any walk W of Â(G)
∗

from a face F to a face F ′, the value of δ(W ) mod 4
is equal to `(F ′)− `(F ) mod 4. Thus if W is a closed walk then δ(W ) = 0 mod 4.

(⇐=) Consider a 4-orientation of Â(G) such that any closed walk W of Â(G)
∗

satisfies

δ(W ) = 0 mod 4. Pick any face F0 of Â(G) and label it 0. Consider any face F of Â(G)

and a path P of Â(G)
∗

from F0 to F . Label F with the value δ(P ) mod 4. Note that
the label of F is independent from the choice of P as for any two paths P1, P2 going from
F0 to F , we have δ(P1) = δ(P2) mod 4 since δ(P1 − P2) = 0 mod 4 as P1 − P2 is a closed
walk.

Consider a primal-vertex v of Â(G). By assumption d+(v) = 4 so the labels around v
form in counterclockwise order four non-empty intervals of 0, 1, 2, 3. Moreover, the labels
of the two faces incident to an edge-vertex differ by (2 mod 4). So the obtained labeling
corresponds to a TTS-labeling of G.

In the next section we study properties of δ with respect to homology in order to

simplify the condition of Lemma 15 that concerns any closed walk of Â(G)
∗
. We also

replace the condition on δ to a condition on γ that is simpler to handle.

3.4 Characterization theorem

Consider a toroidal triangulation G. Let F̂∗ be the set of counterclockwise facial walks of

the angle-dual-completion Â(G)
∗
.

We have the following lemmas:

Lemma 16. In a 4-orientation of Â(G), any F ∈ F̂∗ satisfies δ(F ) = 0 mod 4.

Proof. If F corresponds to a primal-vertex v of Â(G), then v has outdegree exactly 4. So
δ(F ) = 4 = 0 mod 4.
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If F corresponds to a dual-vertex v of Â(G), then v is incident to three angle-edges,
exactly two of which are incoming (and thus in Out), and incident to three incoming
dual-edges. So δ(F ) = −2× 1− 3× 2 = −8 = 0 mod 4.

If F corresponds to an edge-vertex v of Â(G), then v is incident to two outgoing
dual-edges. So δ(F ) = 2× 2 = 4 = 0 mod 4.

Lemma 17. In a 4-orientation of Â(G), if {B1, B2} is a pair of cycles of Â(G)
∗
, given

with a direction of traversal, that forms a basis for the homology, then for any closed

walk W of Â(G)
∗

homologous to µ1B1 + µ2B2, µ ∈ Z2 we have δ(W ) = µ1δ(B1) +
µ2δ(B2) mod 4.

Proof. We have W =
∑

F∈F̂∗ λFF + µ1B1 + µ2B2 for some λ ∈ Zf , µ ∈ Z2. Then by
linearity of δ and Lemma 16, the lemma follows.

Lemma 17 can be used to simplify the condition of Lemma 15 and show that if {B1, B2}
is a pair of cycles of Â(G)

∗
that forms a basis for the homology, then a 4-orientation of

Â(G) admits a TTS-labeling if and only if δ(Bi) = 0 mod 4, for i ∈ {1, 2}. We prefer to
formulate such a result with function γ that is simpler to handle (see Theorem 19).

Let C be a cycle of G with a direction of traversal. Let WL(C) be the closed walk of

Â(G)
∗

just on the left of C and going in the same direction as C. Note that since the

faces of Â(G)
∗

have exactly one incident vertex that is a primal-vertex, the walk WL(C)

is in fact a cycle of Â(G)
∗
. Similarly, let WR(C) be the cycle of Â(G)

∗
just on the right

of C and going in the same direction as C.

Lemma 18. Consider a 4-orientation of A(G) and a cycle C of G, then we have:

γ(C) = δ(WL(C)) + δ(WR(C))

δ(WL(C)) = 0 mod 4 ⇐⇒ γ(C) = 0 mod 8.

Proof. Let xR (resp. xL) be the number of edges of A(G) leaving C on its right (resp.
left). So γ(C) = xR− xL. Let k be the number of vertices of C. Since we are considering
a 4-orientation of A(G), we have xR + xL = 4k. Moreover, an edge of A(G) leaving
C on its right (resp. left) is counting +1 (resp. −1) for δ(WR(C)) (resp. δ(WL(C))).

For each edge of C there is a corresponding edge-vertex in Â(G), that is incident to two

dual-edges of Â(G), one that is crossing δ(WL(C)) from right to left, counting −2, and
one crossing δ(WR(C)) from left to right, counting +2. So δ(WL(C)) = −2k − xL and
δ(WR(C)) = 2k + xR.

Combining these equalities, one obtain: γ(C) = δ(WL(C)) + δ(WR(C)), γ(C) =
2δ(WL(C)) + 8k, δ(WL(C)) = γ(C)/2 − 4k. Then clearly, δ(WL(C)) = 0 mod 4 implies
γ(C) = 0 mod 8, and γ(C) = 0 mod 8 implies δ(WL(C)) = 0 mod 4.

Finally, we have the following theorem, which characterizes the 4-orientations that
admit TTS-labelings:

the electronic journal of combinatorics 26(1) (2019), #P1.13 15



Theorem 19. Consider a toroidal triangulation G. Let {B1, B2} be a pair of cycles of G,
given with a direction of traversal, that forms a basis for the homology. A 4-orientation
of A(G) admits a toroidal transversal structure labeling if and only if γ(B1) = 0 mod 8
and γ(B2) = 0 mod 8.

Proof. (=⇒) By Lemma 15, we have δ(W ) = 0 mod 4 for any closed walk W of Â(G)
∗
.

So we have δ(WL(B1)), δ(WL(B2)), are both equal to 0 mod 4. Thus, by Lemma 18, we
have γ(Bi) = 0 mod 8, for i ∈ {1, 2}.

(⇐=) Suppose that γ(Bi) = 0 mod 4, for i ∈ {1, 2}. By Lemma 18, we have
δ(WL(Bi)) = 0 mod 4, for i ∈ {1, 2}. Moreover {WL(B1),WL(B2)} forms a basis for

the homology. So by Lemma 17, δ(W ) = 0 mod 4 for any closed walk W of Â(G)
∗
. So

the orientation admits a TTS-labeling by Lemma 15.

The 4-orientation of the toroidal triangulation on the left of Figure 2 is an example
where some non-contractible cycles have value γ not equal to 0 mod 8. The vertical loop
of the triangulation, with upward direction of traversal, has γ = 2. Thus by Theorem 19,
this orientation does not correspond to a transversal structure. Whereas, on the right
example, one can check that γ = 0 for a vertical cycle and a horizontal one, thus this
orientation corresponds to a transversal structure (represented on Figure 4).

A consequence of Theorem 19 is that any balanced 4-orientation of the angle graph
A(G) of a toroidal triangulation G admits a TTS-labeling and thus is the 4-orientation
corresponding to a transversal structure of G.

Corollary 20. Any balanced 4-orientation of A(G) is the 4-orientation corresponding to
a (balanced) transversal structure of G.

Note again that there are transversal structures whose corresponding 4-orientations
are not balanced, thus for which γ = 0 mod 8 for every non-contractible cycles, but not
exactly 0 for some of them. Such an example is given on Figure 7.

4 Existence of balanced transversal structures

In this section we prove existence of balanced transversal structures for essentially 4-
connected triangulations by contracting edges until we obtain a triangulation with just
one vertex. This is done by preserving the property that the triangulation is essentially
4-connected. The toroidal triangulation on one vertex is represented on Figure 12 with
a balanced transversal structure and the corresponding angle map. Then the graph can
be decontracted step by step to obtain a balanced transversal structures of the original
triangulation.

4.1 Contraction preserving “essentially 4-connectedness”

Given a toroidal triangulation G, the contraction of a non-loop-edge e of G is the operation
consisting of continuously contracting e until merging its two ends. We note G/e the
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Figure 12: Example of a balanced transversal structure of the toroidal triangulation on
one vertex.

obtained map. On Figure 13 the contraction of an edge e is represented. Note that only
one edge of each multiple edges that is created is preserved (edge ewx and ewy on the
figure).

e
e uy

e vy

v

u

e ux

vxe

x y

w
wy

x ye wx e

G G/e

Figure 13: The contraction operation for triangulations

Note that the contraction operation is also defined when some vertices are identified:
x = u and y = v (the case represented on Figure 14), or x = v and y = u (corresponding
to the symmetric case with a diagonal in the other direction).

u
uu

vue

e vv

v

e

e
w

wwe

G G/e

Figure 14: The contraction operation when some vertices are identified.
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In [Moh96] it is proved that in a toroidal triangulation (with no contractible loop
nor homotopic multiple edges) with at least two vertices, one can find an edge whose
contraction preserves the fact that the map is a toroidal triangulation (with no contractible
loop nor homotopic multiple edges). Here we also need to show that we can preserve the
fact of being essentially 4-connected during contraction. We say that a non-loop edge e of
an essentially 4-connected toroidal triangulation G is contractible if G/e is an essentially
4-connected toroidal triangulation. We have the following lemma:

Lemma 21. An essentially 4-connected toroidal triangulation with at least two vertices
has a contractible edge.

Proof. For k > 3, a separating k-walk is a closed walk of size k that delimits on one side a
region homeomorphic to an open disk containing at least one vertex. This region is called
the interior of the separating k-walk. A separating 3-walk is a separating triangle and we
call a separating 4-walk a separating quadrangle.

Let G be an essentially 4-connected toroidal triangulation with at least two vertices.
By Lemma 11, the map G has no contractible loop, no homotopic multiple edges and no
separating triangle. Consider a non-loop edge e of G. The contracted graph G/e is an
essentially 4-connected toroidal triangulation if and only if G/e has no contractible loop,
no homotopic multiple edges and no separating triangle.

Since G has no homotopic multiple edges, the contraction of e cannot create a con-
tractible loop. Since G has no separating triangle, the only way to create a pair of
homotopic multiple edges in G/e is if e appears twice on a separating quadrangle such
that each extremity of e is incident to a non-contractible loop as depicted on Figure 15.a
(where the dashed region represents the interior of the separating quadrangle). There are
two ways to create a separating triangle in G/e: either e appears once on a separating
quadrangle as depicted on Figure 15.b, where some vertices may be identified but not
edges, or e appears twice on a separating 5-walk such that one extremity of e is incident
to a non-contractible loop and the other extremity is incident to edges distinct from e
forming a non-contractible cycle of size two as depicted on Figure 15.c.

We consider two cases whether there are separating quadrangles in G or not.

• G has some separating quadrangles:

An inner chord of a separating quadrangle Q is an edge between its vertices that lie
in the interior of the separating quadrangle. We claim that a separating quadrangle
Q of G has no inner chord. Suppose by contradiction that such a chord exists.
Since there is no pair of homotopic multiple edges, this chord is between “opposite”
vertices of Q. Thus it partitions the interior of Q into two triangles. These two
triangles are not separating by assumption on G and thus the quadrangle Q is not
separating either, a contradiction.

Let Q be a maximal separating quadrangle. Suppose by contradiction that there
exists a separating quadrangle Q′ of G distinct from Q whose interior R′ intersects R
and is not included in R. By maximality of Q, we also have R is not included in R′.
As observed previously, Q and Q′ have no inner chord. So there is at least one or two
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Case a

e

Case b

e

Case c

e

G G/e

Figure 15: Contraction of an edge e creating a pair of homotopic multiple edges or a
separating triangle.

vertices of Q (resp Q′) in the interior of Q′ (resp. Q). Thus the border of the union
of R and R′ has size less or equal to four, a contradiction to the maximality of Q
or of G being an essentially 4-connected triangulation. So a separating quadrangle
of G whose interior intersects R has its interior included in R.

Let G′ be the map obtained from G by keeping all the vertices and edges in R,
including Q. The vertices and edges appearing several times on Q are duplicated so
G′ is a planar map. Then G′ is a 4-connected planar map in which every inner face is
a triangle and the outer face is a quadrangle. Let a, b, c, d denote the outer vertices
of G′ in counterclockwise order. We denote also a, b, c, d the corresponding vertices
of G. Note that in G some of these vertices might be identified. We consider two
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cases, whether, in G′, there exists an inner vertex incident to at least three outer
vertices or not.

– In G′, there exists an inner vertex v that is incident to at least three outer
vertices:

Without loss of generality, we may assume that v is incident to a, b, c in G′

with edges ea, eb, ec respectively. We prove that eb is contractible in G.

Suppose by contradiction that eb belongs to a separating quadrangle Q′ of G.
Then Q′ is distinct from Q and its interior R′ of Q′ intersects R. Thus by the
above remark, R′ is included in R. Then Q′ has an inner chord ea or ec, a
contradiction.

Suppose that eb appears twice on a separating 5-walk W as depicted on Fig-
ure 15.c. Then, one of the extremity of eb is incident to a non-contractible loop
` of W and this extremity cannot lie inside R so it is b. So v is incident to two
edges e1, e2, distinct from eb, so that the 5-walk W is the sequence of edges
`, eb, e1, e2, eb. Then, in G′, the edges e1, e2 are incident to two distinct vertices
of {a, c, d} that are identified in G so that e1, e2 form a non-contractible cycle
of size two of G.

Suppose, by contradiction, that e1, e2 are incident to “consecutive” vertices of
Q, then without loss of generality, we can assume that e1, e2 are incident to a
and d that are identified in G. If b, c are also identified in G, then we are in the
situation of Figure 16.a, with W represented in magenta. Then, the interior of
the separating 5-walk W is partitioned into triangles whose interiors are empty
since G is essentially 4-connected. So the interior of the separating 5-walk W
contains no vertices, a contradiction. If b, c are not identified, then we are in
the situation of Figure 16.b. Then the two loops of the figure plus e form a
quadrangle whose interior strictly contains the interior of Q, a contradiction
to the maximality of Q.

v

b=c

a=d 

b

a=d 

v

c

b

a=cv

d 

Case a Case b Case c

Figure 16: Cases of Lemma 21.
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So, e1, e2 are incident to “opposite” vertices of Q. These two vertices are a
and c and they are identified in G. Then we are in the situation of Figure 16.c
. Then, the interior of the separating 5-walk W is partitioned into triangles
whose interior are empty since G is essentially 4-connected. So the interior of
the separating 5-walk W contains no vertices, a contradiction.

To conclude, eb does not belong to a separating quadrangle, nor appears twice
on a separating 5-walk, so eb is contractible in G.

– In G′, all inner vertices are incident to at most two outer vertices:

Kant and He proved [KH97, Lemma 3.1] that G′ contains an internal edge e
such that G′/e is 4-connected. Let us show e is contractible in G.

Suppose by contradiction that e belongs to a separating quadrangle Q′ of G.
Then the interior R′ of Q′ intersects R and thus is included in R by above
remark. But then G′/e is not 4-connected, a contradiction.

Suppose by contradiction that e′ appears twice on a separating 5-walk as de-
picted on Figure 15.c. Then, in G, one extremity u of e′ is incident to a
non-contractible loop and the other extremity v of e′ is incident to two edges
e1, e2, distinct from e′, forming a non-contractible cycle of size two. Thus u is
not an inner vertex of G′ and the two extremities of e1, e2 also. So v is incident
to three outer vertices of G′, a contradiction.

To conclude, e does not belong to a separating quadrangle, nor appears twice
on a separating 5-walk, so e is contractible in G.

• G has no separating quadrangle:

Consider a non-loop edge e of G. If e is contractible we are done, so we can assume
that e is not contractible. Then, since there is no separating quadrangle, we have
e that appears twice on a separating 5-walk W as depicted on Figure 15.c. More
precisely, one extremity u of e is incident to a non-contractible loop ` and the other
extremity v of e is incident to two edges e1, e2, distinct from e, forming a non-
contractible cycle of size two of G. Let R be the interior of the separating 5-walk
W . We consider two cases whether v has some neighbors in the strict interior of R
or not.

Suppose by contradiction that v has no neighbors in the strict interior of R. Then
either v has some incident edges inside R or not. Suppose first that v has some
incident edges inside R. Then, since v has no neighbors in the strict interior of R,
we have that v is incident to u with an edge in the strict interior of R, as depicted on
Figure 17.a. Then since there is no separating triangle, nor separating quadrangle,
the region R contains no vertices, a contradiction. Suppose now that v has no
incident edge inside R. Then, Since G is a triangulation, vertex u must be incident
twice to the third vertex w of the 5-walk w, as depicted on Figure 17.b. Again since
there is no separating triangle, the region R contains no vertices, a contradiction.

So v has a neighbor x in the strict interior of R. Let e′ be the edge between v, x. If
e′ appears twice on a separating 5-walk W , then x is incident twice to u to form a
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Figure 17: Cases of Lemma 21.

non-contractible cycle of size two and v is incident to a non-contractible loop `′, as
depicted on Figure 17.c. Then e, `, `′ forms a separating quadrangle, a contradiction.
So e′ is contractible.

4.2 Balanced properties and homology

In Section 3, we have proved some properties of γ (or δ) with respect to homology. The
obtained equalities where conditioned by a “modulo”. In the next lemma we prove some
properties of γ with respect to a basis for the homology with exact equality to obtain a
simple condition to prove that a 4-orientation is balanced (see Lemma 24).

Consider an essentially 4-connected toroidal triangulation G and its angle map A(G).

Lemma 22. Consider a 4-orientation of A(G), a non-contractible cycle C of G, given
with a direction of traversal, and a basis for the homology {B1, B2} of G, such that B1, B2

are non-contractible cycles whose intersection is a single vertex or a common path. If C
is homologous to k1B1 + k2B2, then γ(C) = k1 γ(B1) + k2 γ(B2).

Proof. Let v be a vertex in the intersection of B1, B2 such that, if this intersection is a
common path, then v is one of the extremities of this path and let u be the other extremity.
Consider a drawing of G∞ obtained by replicating a flat representation of G to tile the
plane. Let v0 be a copy of v in G∞. Consider the walk W starting from v0 and following
k1 times the edges corresponding to B1 and then k2 times the edges corresponding to B2

(we are going backward if ki is negative). This walk ends at a copy v1 of v. Since C is
non-contractible we have k1 or k2 not equal to 0 and thus v1 is distinct from v0. Let W∞

be the infinite walk obtained by replicating W (forward and backward) from v0. Note
that there might be some repetition of vertices in W∞ if the intersection of B1, B2 is a
path. But in that case, by the choice of B1, B2 (i.e., whose intersection is a single vertex or
a common path), we have that W∞ is almost a path, except maybe at all the transitions
from “k1B1” to “k2B2”, or at all the transitions from “k2B2” to “k1B1”, where it can go
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back and forth a path corresponding to the intersection of B1 and B2. The existence or
not of such “back and forth” parts depends on the signs of k1, k2 and the way B1, B2 are
going through their common path. Figure 19 gives an example of this construction with
(k1, k2) = (1, 1) and (k1, k2) = (1,−1) when B1, B2 intersects on a path and are oriented
the same way along this path as on Figure 18.

v

B2

u
B1

Figure 18: Intersection of the basis.

v0

v1 v1

v0

(k1, k2) = (1, 1) (k1, k2) = (1,−1)

Figure 19: Replicating “k1B1” and “k2B2” in the universal cover.

We “simplify” W∞ by removing all the parts that consists of going back and forth
along a path (if any) and call B∞ the obtained walk that is now without repetition of
vertices. By the choice of v, we have that B∞ goes through copies of v. If v0, v1 are
no more a vertex along B∞, because of a simplification at the transition from “k2B2” to
“k1B1”, then we replace v0 and v1 by the next copies of v along W∞, i.e., at the transition
from “k1B1” to “k2B2”.

Since C is homologous to k1B1 + k2B2, we can find an infinite path C∞, that corre-
sponds to copies of C replicated, that does not intersect B∞ and situated on the right
side of B∞. Now we can find a copy B′∞ of B∞, such that C∞ lies between B∞ and B′∞

without intersecting them. Choose two copies v′0, v
′
1 of v0, v1 on B′∞ such that the vectors

v0v1 and v′0v
′
1 are equal.
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Let R0 be the region bounded by B∞, B′∞. Let R1 (resp. R2) be the subregion of R0

delimited by B∞ and C∞ (resp. by C∞ and B′∞). We consider R0, R1, R2 as cylinders,
where part of the lines (v0, v

′
0), (v1, v

′
1) are identified. Let B,B′, C ′ be the cycles of R0

corresponding to B∞, B′∞, C∞ respectively.
Let x (resp. y) be the number of edges of A(G)∞ leaving B (resp. B′) in R0. Let x′

(resp. y′) be the number of edges of A(G)∞ leaving C ′ on its right (resp. left) side in R0.
We have C ′ corresponds to exactly one copy of C, so γ(C) = x′ − y′. Similarly, we have
B and B′ that almost corresponds to k1 copies of B1 followed by k2 copies of B2, except
the fact that we may have removed a back and forth part (if any). In any case we have
the following:

Claim 23. k1 γ(B1) + k2 γ(B2) = x− y

Proof. We prove the case where the common intersection of B1, B2 is a path (if the
intersection is a single vertex, the proof is even simpler). We assume, without loss of
generality, by eventually reversing one of B1 or B2, that B1, B2 are oriented the same way
along their intersection, so we are in the situation of Figure 18.

Figure 20 shows how to compute k1 γ(B1) + k2 γ(B2) + y − x when (k1, k2) = (1, 1).
Then, one can check that each outgoing edge of the angle graph is counted exactly the
same number of time positively and negatively. So everything compensates and we obtain
k1 γ(B1) + k2 γ(B2) + y − x = 0.

+
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−

B1

+
v

u

−

B2 B’

+
u

v

u

v

v

u

v

u

B
−

γ(B1) + γ(B2) + (y − x) = 0

Figure 20: Case (k1, k2) = (1, 1).

Figure 21 shows how to compute k1 γ(B1) + k2 γ(B2) + y − x when (k1, k2) = (1,−1).
As above, most of the things compensate but, in the end, we obtain k1 γ(B1) +k2 γ(B2) +
y − x = d+A(G)(u) − d+A(G)(v), as depicted on the figure. Since the number of outgoing

edges of A(G) around each vertex is equal to 4, we have again the conclusion k1 γ(B1) +
k2 γ(B2) + y − x = 0.

One can easily be convinced that when |k1| > 1 and |k2| > 1 then the same arguments
apply. The only difference is that the red or green part of the figures in the universal
cover would be longer (with repetitions of B1 and B2). This parts being very “clean”,
they do not affect the way we compute the equality. Finally, if one of k1 or k2 is equal to
zero, the analysis is simpler and the conclusion still holds. ♦

For i ∈ {1, 2}, let Hi be the cylinder map made of all the vertices and edges of G∞

that are in the cylinder region Ri. Let k (resp. k′) be the length of B (resp. C ′). Let
n1,m1, f1 be respectively the number of vertices, edges and faces of H1.
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Figure 21: Case (k1, k2) = (1,−1).

The number of edges of A(G)∞ in H1 is equal to 3f1. Since we are considering a
4-orientation of A(G), these edges are decomposed into: the outgoing edges from inner
vertices of H1 (primal-vertices have outdegree 4 in A(G)∞, so there are 4(n1 − k − k′)
such edges), the outgoing edges from outer vertices of H1 (there are x + y′ such edges),
and the outgoing edges from faces of H1 (faces have outdegree 1 in A(G)∞, so there
are f1 such edges). Finally, we have 3f1 = 4(n1 − k − k′) + x + y′ + f1. Combining
this with Euler’s formula, n1 − m1 + f1 = 0, and the fact that all the faces of H1 are
triangles, i.e., 2m1 = 3f1 + k + k′, one obtains that x + y′ = 2(k + k′). Similarly, by
considering H2, one obtain that x′ + y = 2(k + k′). Thus finally x+ y′ = x′ + y and thus
γ(C) = k1 γ(B1) + k2 γ(B2) by Claim 23.

Lemma 22 implies the following:

Lemma 24. In a 4-orientation of A(G), if for two non-contractible not weakly homologous
cycles C,C ′ of G, we have γ(C) = γ(C ′) = 0, then the 4-orientation of A(G) is balanced.

Proof. Consider two non-contractible not weakly homologous cycles C,C ′ of G such that
γ(C) = γ(C ′) = 0. Consider an homology-basis {B1, B2} of G, such that B1, B2 are
non-contractible cycles whose intersection is a single vertex or a path (see Section 3.2
for discussion on existence of such a basis). Let k1, k2, k

′
1, k
′
2 ∈ Z, such that C (resp.

C ′) is homologous to k1B1 + k2B2 (resp. k′1B1 + k′2B2). Since C is non-contractible we
have (k1, k2) 6= (0, 0). By eventually exchanging B1, B2, we can assume, without loss of
generality, that k1 6= 0. By Lemma 22, we have k1γ(B1) +k2γ(B2) = γ(C) = 0 = γ(C ′) =
k′1γ(B1) + k′2γ(B2). So γ(B1) = (−k2/k1)γ(B2) and thus (−k2k′1/k1 + k′2)γ(B2) = 0. So
k′2 = k2k

′
1/k1 or γ(B2) = 0. Suppose by contradiction, that γ(B2) 6= 0. Then (k′1, k

′
2) =

k′1
k1

(k1, k2), and C ′ is homologous to
k′1
k1
C. Since C and C ′ are both non-contractible cycles,

it is not possible that one is homologous to a multiple of the other, with a multiple
different from −1, 1. So C,C ′ are weakly homologous, a contradiction. So γ(B2) = 0 and
thus γ(B1) = 0. Then by Lemma 22, any non-contractible cycle of G, have γ equal to 0.
Thus the 4-orientation is balanced.
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4.3 Decontraction preserving “balance”

The goal of this section is to prove the following lemma:

Lemma 25. If G is a toroidal triangulation given with a non-loop edge e whose extremities
are of degree at least four and such that G/e admits a balanced transversal structure, then
G admits a balanced transversal structure.

Proof. Let G′ = G/e and consider a balanced transversal structure G′. We show how
to extend the balanced transversal structure of G′ to a balanced transversal structure of
G. Let u, v be the two extremities of e and x, y the two vertices of G such that the two
faces incident to e are A = u, v, x and B = v, u, y in clockwise order (see Figure 13).
Note that u and v are distinct by definition of edge contraction but that x and y are not
necessarily distinct, nor distinct from u and v. Let w be the vertex of G′ resulting from
the contraction of e. Let ewx, ewy be the two edges of G′ represented on Figure 13 (these
edges are identified and form a loop on Figure 14).

There are different cases to consider, corresponding to the different possible orienta-
tions and colorings of the edges ewx and ewy in G′. By symmetry, there are just three
cases to consider for Figure 13: edges ewx and ewy may be in consecutive, same or opposite
intervals, with respect to the four intervals of the local property around w. When ewx, ewy
are identified as in Figure 14, these “two” edges are necessarily in opposite intervals, and
there is just one case to consider. So only the four cases represented on the left side of
Figure 22 by case x.0 for x ∈ {a, b, c, d} have to be considered.

In each case x.0, we prove that one can color and orient the edges of G to obtain a
balanced transversal structure of G. For that purpose, just the edges of G that are labeled
on Figures 13 and 14 have to be specified, all the other edges of G keep the orientation
and coloring that they have in the balanced transversal structure of G′. For each case x.0,
with x ∈ {a, b, c, d}, the orientation and coloring of the labeled edges of G are represented
on the right side of Figure 22 by case x.i, i > 1. For the first two cases x ∈ {a, b}, we
might have to choose between cases x.1 and x.2, to orient and color G, depending on a
case analysis explained below. For the other cases, x ∈ {c, d}, there is just one coloring
and orientation of G to consider: case x.1.

The sector ]e1, e2[ of a vertex w, for e1 and e2 two edges incident to w, is the counter-
clockwise sector of w between e1 and e2, excluding the edges e1 and e2.

Let us consider the different possible orientations and colorings of edges ewx and ewy.

• ewx and ewy are not identified and in consecutive intervals:

Without loss of generality, we might assume that we are in case a.0 of Figure 22,
i.e., ewx (resp. ewy) is a blue (resp. red) edge entering w.

Since all vertices of G have degree at least 4, we have that v is incident to at least
one edge in the sector ]evx, evy[ of v. So w is incident to at least one edge in the
sector ]ewx, ewy[ of w. Such an edge can be blue or red in the transversal structure
of G′. Depending on if there is such a blue or red edge we apply coloring a.1 or a.2
to G, as explain below.
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a.0 a.1 a.2

b.0 b.1 b.2

c.0 c.1

d.0 d.1

Figure 22: Decontraction rules of the transversal structure.

Without loss of generality, we can assume that there is a blue edge incident to w in
the sector ]ewx, ewy[. By the local rule, this edge is entering w. Moreover the edge
incident to x and just after ewx in clockwise order around x is entering x in color
red. So we are in the situation depicted on the left of Figure 23. Apply the coloring
a.1 to G as depicted on the right of Figure 23. One can easily check that the local
property is satisfied around every vertex of G (for that purpose one just as to check
the local property around u, v, x, y). Thus we obtain a transversal structure of G.

It remains to prove that the obtained transversal structure is balanced. For that
purpose consider two non-contractible not weakly homologous cycles (B′1, B

′
2) of
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w

x y y

u

v

x

Figure 23: Decontraction of case a.0 when there is a blue edge entering w by below.

G′. Since the transversal structure of G′ is balanced, we have γ(B′1) = γ(B′2) =
0 by definition of balanced property. If B′i does not intersect w, then it is not
affected by the decontraction, let Bi = B′i, so that Bi is a cycle of G with same
homology and same value γ as B′i. If B′i intersects w, then one can consider where
B′i is entering and leaving the contracted region and replace B′i by a cycle Bi of
G with the same homology and same value γ as B′i. This property illustrated on
Figure 24, on the left part we consider an example of a cycle B′i and on the right
part we give a corresponding cycle Bi having the same homology and γ as B′i. To
be completely convinced that this transformation works, one may consider all the
different possibility to enter and leave the contracted region and check that one can
find a corresponding cycle of G with same γ. Finally, by this method, we obtain two
non-contractible not weakly homologous cycles B1, B2 of G with γ(B1) = γ(B2) = 0,
so by Lemma 24, the obtained transversal structure is balanced.

Figure 24: Decontraction of case a.0 preserving γ.

• ewx and ewy are not identified and in the same interval:

Without loss of generality, we might assume that we are in case b.0 of Figure 22, i.e.,
ewx and ewy are blue edges entering w. Depending on if the outgoing blue interval
of w is above or below w we apply coloring b.1 or b.2 to G, as explain below.

Without loss of generality, we can assume that the outgoing blue edges incident to
w are above w. Since all vertices of G have degree at least 4, we have that v is
incident to at least one edge in the sector ]evx, evy[ of v. So w is incident to at least
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one edge in the sector ]ewx, ewy[ of w. By the local rule, we are in the situation
depicted on the left of Figure 25. Apply the coloring b.1 to G as depicted on the
right of Figure 25. One can easily check that the local property is satisfied around
every vertex of G (for that purpose one just as to check the local property around
u, v, x, y). Thus we obtain a transversal structure of G.

w

x y

v

u

x y

Figure 25: Decontraction of case b.0 when there is a blue edge leaving w by above.

Similarly as the previous case the balanced property is preserved (see Figure 26 for
an example). So we obtain a balanced transversal structure of G.

Figure 26: Decontraction of case b.0 preserving γ.

• ewx and ewy are not identified and in opposite intervals:

Without loss of generality, we might assume that we are in case c.0 of Figure 22,
i.e., ewx (resp. ewy) is entering (resp. leaving) w in color blue. We apply coloring c.1
to G. One can easily check that the local property is satisfied around every vertex
of G thus we obtain a transversal structure of G. Similarly as before the balanced
property is preserved and we obtain a balanced transversal structure of G.

• ewx and ewy are identified:

Without loss of generality, we might assume that we are in case d.0 of Figure 22.
We apply coloring d.1 to G. One can easily check that the local property is satisfied
around every vertex of G thus we obtain a transversal structure of G. Similarly
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as before the balanced property is preserved and we obtain a balanced transversal
structure of G.

For each different possible orientations and colorings of edges ewx and ewy we are able
to extend the balanced transversal structure of G′ to G and thus obtain the result.

4.4 Existence theorem

We are now able to prove the existence of balanced transversal structure, i.e. Theorem 1.

Proof of Theorem 1.
(=⇒) Clear by Lemma 10.
(⇐=) Let G be an essentially 4-connected toroidal triangulation. By Lemma 21, it

can be contracted to a map on one vertex by keeping the map an essentially 4-connected
toroidal triangulation. Since during the contraction process, the universal cover is
4-connected, all the vertices have degree at least 4. The toroidal triangulation on one
vertex admits a transversal structure. One such example is given on Figure 12 where
one can check that all non-contractible cycles (the three loops) have value γ = 0, and so
the transversal structure is balanced. Then, by Lemma 25 applied successively, one can
decontract this balanced transversal structure to obtain a balanced transversal structure
of G. �

5 Distributive lattice of balanced 4-orientations

5.1 Transformations between balanced 4-orientations

Consider an essentially 4-connected toroidal triangulation G and its angle map A(G).
In [GKL16, Theorem 4.7], it is proved that the set of homologous orientations of a given
map on an orientable surface carries a structure of distributive lattice. We want to use
such a result for the set of balanced 4-orientations of A(G). For that purpose we prove
in this section that balanced 4-orientations are homologous to each other, i.e., the set of
edges that have to be reversed to transform one balanced 4-orientation into another is a
0-homologous oriented subgraph.

If D,D′ are two orientations of A(G), let D \ D′ denote the subgraph of D induced
by the edges that are not oriented as in D′. We have the following:

Lemma 26. Let D be a balanced 4-orientation of A(G). An orientation D′ of A(G) is a
balanced 4-orientation if and only if D,D′ are homologous (i.e., D \D′ is 0-homologous).

Proof. Let T = D \D′. Let Out (resp. Out′) be the set of edges of D (resp. D′) which
are going from a primal-vertex to a dual-vertex. Note that an edge of T is either in Out
or in Out′, so φ(T ) = φ(Out) − φ(Out′). Consider two cycles B1, B2 of G, given with
a direction of traversal, that form a basis for the homology. We also denote by D,D′
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the orientation of Â(G) corresponding to D,D′. Then we denote γD, δD, γD′ , δD′ , the
function γ and δ computed in D and D′ respectively (see terminology of Section 3).

(=⇒) Suppose D′ is a balanced 4-orientation of A(G). Since D,D′ are both 4-
orientations of A(G), they have the same outdegree for every vertex of A(G). So we

have that T is Eulerian. Let F̂∗ be the set of counterclockwise facial walks of Â(G)
∗
,

so for any F ∈ F̂∗, we have β(T, F ) = 0. Moreover, for i ∈ {1, 2}, consider the re-
gion Ri between WL(Bi) and WR(Bi) containing Bi. Since T is Eulerian, it is going
in and out of Ri the same number of times. So β(T,WL(Bi) − WR(Bi)) = 0 and by
linearity of function β we obtain β(T,WL(Bi)) = β(T,WR(Bi)). Since D,D′ are bal-
anced, we have γD(Bi) = γD′(Bi) = 0. So by Lemma 18, δD(WL(Bi)) + δD(WR(Bi)) =
δD′(WL(Bi)) + δD′(WR(Bi)). Thus β(T,WL(Bi) + WR(Bi)) = β(Out − Out′,WL(Bi) +
WR(Bi)) = δD(WL(Bi)) + δD(WR(Bi)) − δD′(WL(Bi)) − δD′(WR(Bi)) = 0. By linear-
ity of function β we obtain β(T,WL(Bi) = −β(T,WR(Bi)). By combining this with
the above equality, we obtain β(T,WL(Bi)) = β(T,WR(Bi)) = 0 for i ∈ {1, 2}. Since

{WL(B1),WL(B2)} form a basis for the homology of Â(G)
∗
, we obtain, by Lemma 14,

that T is 0-homologous and so D,D′ are homologous to each other.
(⇐=) Suppose that D,D′ are homologous, i.e., T is 0-homologous. Then T

is in particular Eulerian, so D′ as the same outdegrees as D. So D′ is a 4-
orientation of A(G). By Lemma 14, for i ∈ {1, 2}, we have β(T,WL(Bi)) =
β(T,WR(Bi)) = 0. Thus δD(WL(Bi)) = β(Out,WL(Bi)) + 2β(Dual,WL(Bi)) =
β(Out′,WL(Bi))+2β(Dual,WL(Bi)) = δD′(WL(Bi)) and δD(WR(Bi)) = β(Out,WR(Bi))+
2β(Dual,WR(Bi)) = β(Out′,WR(Bi)) + 2β(Dual,WR(Bi)) = δD′(WR(Bi)). So by
Lemma 18, γD(Bi) = δD(WL(Bi))+δD(WR(Bi)) = δD′(WL(Bi))+δD′(WR(Bi)) = γD′(Bi).
Since D is balanced, we have γD(Bi) = 0 and so γD′(Bi) = 0. Then, by Lemma 24, we
have D′ is a balanced 4-orientation of A(G).

5.2 Distributive lattice of homologous orientations

Consider a partial order 6 on a set S. Given two elements x, y of S, let m(x, y) (resp.
M(x, y)) be the set of elements z of S such that z 6 x and z 6 y (resp. z > x and z > y).
If m(x, y) (resp. M(x, y)) is not empty and admits a unique maximal (resp. minimal)
element, we say that x and y admit a meet (resp. a join), noted x∨ y (resp. x∧ y). Then
(S,6) is a lattice if any pair of elements of S admits a meet and a join. Thus in particular
a lattice has a unique maximal (resp. minimal) element. A lattice is distributive if the
two operators ∨ and ∧ are distributive on each other.

Consider an essentially 4-connected toroidal triangulation G and its angle map A(G).
By Theorem 1, G admits a balanced transversal structure, thus A(G) admits a balanced
4-orientation. Let D0 be a particular balanced 4-orientation of A(G). Let B(A(G), D0)
be the set of all the orientations of A(G) homologous to D0. A general result of [GKL16,
Theorem 4.7] concerning the lattice structure of homologous orientations implies that
B(A(G), D0) carries a structure of a distributive lattice.

Note that by Lemma 26, the set B(A(G), D0) is exactly the set of all balanced 4-
orientations of A(G). Thus we can simplify the notations and denote B(A(G)) the set
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B(A(G), D0) as it does not depend on the choice of D0.
We give below some terminology and results from [GKL16] adapted to our settings

in order to describe the lattice properly. We need to define an order on B(A(G)) for
that purpose. Fix an arbitrary face f0 of A(G) and let F0 be its counterclockwise facial
walk. Note that fixing a face f0 of A(G) corresponds to fixing an edge e0 of G. Let F be
the set of counterclockwise facial walks of A(G) and F ′ = F \ {F0}. Note that φ(F0) =
−
∑

F∈F ′ φ(F ). Since the characteristic flows of F ′ are linearly independent, any oriented
subgraph of A(G) has at most one representation as a combination of characteristic flows
of F ′. Moreover the 0-homologous oriented subgraphs of A(G) are precisely the oriented
subgraph that have such a representation. We say that a 0-homologous oriented subgraph
T of A(G) is counterclockwise (resp. clockwise) with respect to f0 if its characteristic flow
can be written as a combination with positive (resp. negative) coefficients of characteristic
flows of F ′, i.e., φ(T ) =

∑
F∈F ′ λFφ(F ), with λ ∈ N|F ′| (resp. −λ ∈ N|F ′|). Given two

orientations D,D′, of A(G) we set D 6f0 D
′ if and only if D \ D′ is counterclockwise.

Then we have the following theorem:

Theorem 27 ([GKL16]). (B(A(G)),6f0) is a distributive lattice.

To define the elementary flips that generates the lattice. We start by reducing the
graph A(G). We call an edge of A(G) rigid with respect to B(A(G)) if it has the same
orientation in all elements of B(A(G)). Rigid edges do not play a role for the structure of
B(A(G)). We delete them from A(G) and call the obtained embedded graph the reduced

angle graph, noted Ã(G). Note that, this graph is embedded but it is not necessarily a
map, as some faces may not be homeomorphic to open disks. Note that if all the edges

are rigid, then |B(A(G))| = 1 and Ã(G) has no edges. We have the following lemma
concerning rigid edges:

Lemma 28 ([GKL16, Lemma 4.8]). Given an edge e of A(G), the following are equivalent:

1. e is non-rigid

2. e is contained in a 0-homologous oriented subgraph of D0

3. e is contained in a 0-homologous oriented subgraph of any element of B(A(G))

By Lemma 28, one can build Ã(G) by keeping only the edges that are contained in a

0-homologous oriented subgraph of D0. Note that this implies that all the edges of Ã(G)

are incident to two distinct faces of Ã(G). Denote by F̃ the set of oriented subgraphs

of Ã(G) corresponding to the boundaries of faces of Ã(G) considered counterclockwise.

Note that any F̃ ∈ F̃ is 0-homologous and so its characteristic flow has a unique way to
be written as a combination of characteristic flows of F ′. Moreover this combination can
be written φ(F̃ ) =

∑
F∈X

F̃
φ(F ), for XF̃ ⊆ F ′. Let f̃0 be the face of Ã(G) containing f0

and F̃0 be the element of F̃ corresponding to the boundary of f̃0. Let F̃ ′ = F̃ \ {F̃0}.
The elements of F̃ ′ are precisely the elementary flips which suffice to generate the entire
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distributive lattice (B(A(G)),6f0), i.e., the Hasse diagram H of the lattice has vertex set
B(A(G)) and there is an oriented edge from D1 to D2 in H (with D1 6f0 D2) if and only

if D1 \D2 ∈ F̃ ′.
Moreover, we have:

Lemma 29 ([GKL16, Proposition 4.13]). For every element F̃ ∈ F̃ , there exists D in

B(A(G)) such that F̃ is an oriented subgraph of D.

By Lemma 29, for every element F̃ ∈ F̃ ′ there exists D in B(A(G)) such that F̃ is an

oriented subgraph of D. Thus there exists D′ such that F̃ = D \D′ and D,D′ are linked

in H. Thus F̃ ′ is a minimal set that generates the lattice.
Let Dmax (resp. Dmin) be the maximal (resp. minimal) element of the lattice

(B(A(G)),6f0). Then we have the following lemmas:

Lemma 30 ([GKL16, Proposition 4.14]). F̃0 (resp. −F̃0) is an oriented subgraph of Dmax

(resp. Dmin).

Lemma 31 ([GKL16, Proposition 4.15]). Dmax (resp. Dmin) contains no counterclockwise
(resp. clockwise) non-empty 0-homologous oriented subgraph with respect to f0.

Note that in the definition of counterclockwise (resp. clockwise) non-empty 0-
homologous oriented subgraph, used in Lemma 31, the sum is taken over elements of
F ′ and thus does not use F0. In particular, Dmax (resp. Dmin) may contain regions whose
boundary is oriented counterclockwise (resp. clockwise) according to the interior of the
region but then such a region contains f0 in its interior.

Note that, assuming that an element of B(A(G)) is given, there is a generic
method to compute in linear time the minimal balanced element Dmin of (B(A(G)),6f0)
(see [DGBL17, last paragraph of Section 8]. This minimal element plays the role of a
canonical orientation and is particularly interesting for bijection purpose as shown in
Section 6.

5.3 Faces of the reduced angle graph

Previous section is about the general situation of the lattice structure of homologous
orientations and is more or less a copy/paste from [GKL16] of the terminology and results
that we need here. Now we study in more detail this lattice with respect to the balanced
property as done in [DGBL17, Section 10] for Schnyder woods and 3-orientations (see
also [Lév17, Section 8.4]).

Consider an essentially 4-connected toroidal triangulation G and its angle map A(G).
We consider the terminology of the previous section and assume that there exists a bal-
anced 4-orientation D0 of A(G).

We say that a walk W of A(G) is a 4-disk if it is a face of A(G) (see the left of
Figure 27). We say that a walk W of A(G) is a 8-disk if it has size 8, encloses a region
R homeomorphic to an open disk and the dual-vertices of W have their edge not on W
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Face of
A(G)

4-disk 8-disk

Figure 27: The {4, 8}-disks of A(G).

that is inside R (see the right of Figure 27). Finally, we say that a walk W of A(G) is a
{4, 8}-disk if it is either a 4-disk or a 8-disk.

Suppose that A(G) is given with a 4-orientation. For an edge e0 of A(G) we define the
left walk (resp. right walk) from e0 as the sequence of edges W = (ei)i>0 of A(G) obtained
by the following: if ei is entering a primal-vertex v, then ei+1 is the first outgoing edge
while going clockwise (resp. counterclockwise ) around v from ei, and if ei is entering
a dual-vertex v∗, then ei+1 is the only outgoing edge of v∗. A closed left/right walk is
a left/right walk that is repeating periodically on itself, i.e., a finite sequence of edges
W = (ei)06i62k−1, with k > 0, such that its repetition is a left/right walk. We have the
following lemma concerning closed left/right walks in balanced 4-orientations:

Lemma 32. In a balanced 4-orientation of A(G), a closed left (resp. right) walk W
of A(G) encloses a region homeomorphic to an open disk on its left (resp. right) side.
Moreover, the border of this region is a {4, 8}-disk.

Proof. Consider a closed left walk W = (ei)06i62k−1 of A(G), with k > 0. Without loss
of generality, we may assume that all the ei are distinct, i.e., there is no strict subwalk
of W that is also a closed left walk. Note that W cannot cross itself otherwise it is not
a left walk. However W may have repeated vertices but in that case it intersects itself
tangentially on the right side.

Suppose by contradiction that there is an oriented subwalk W ′ of W , that forms a
cycle C enclosing a region R on its right side that is homeomorphic to an open disk. Let
v be the starting and ending vertex of W ′. Note that we do not consider that W ′ is a
strict subwalk of W , so we might have W ′ = W . Consider the graph H obtained from
A(G) by keeping all the vertices and edges that lie in the region R, including W ′. Since
W can intersect itself only tangentially on the right side, we have that H is a bipartite
planar map whose outer face boundary is W ′. The inner faces of H are quadrangles.
Let 2k′ be the length of W ′. Let n′,m′, f ′ be the number of vertices, edges and faces
of H. By Euler’s formula, n′ − m′ + f ′ = 2. All the inner faces have size 4 and the
outer face has size 2k′, so 2m′ = 4(f ′ − 1) + 2k′. Combining the two equalities gives
m′ = 2n′ − k′ − 2. Let n′p (resp. n′d) be the number of inner primal-vertices (resp. inner
dual-vertices) of H. So n′ = 2k′ + n′p + n′d and thus m′ = 2n′p + 2n′d + 3k′ − 2. Since W ′

is a subwalk of a left walk, all primal-vertices of H, except v (if it is a primal-vertex),
have their incident outer edges in H. Since W ′ is following oriented edges, if v is a primal
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vertex, it has at least one outgoing edge in H. Since we are considering a 4-orientation
of A(G), we have m′ > 4(k′ − 1) + 1 + 4n′p + n′d. By counting the edges of H incident
to dual-vertices, we have m′ > 2k′ + 3n′d. Combining the three (in)equalities of m′, gives
2(2n′p + 2n′d + 3k′− 2) > (4(k′− 1) + 1 + 4n′p +n′d) + (2k′+ 3n′d), a contradiction. So there
is no oriented subwalk of W , that forms a cycle enclosing an open disk on its right side.

We now claim the following:

Claim 33. The left side of W encloses a region homeomorphic to an open disk

Proof. We consider two cases depending on the fact that W is a cycle (i.e., with no
repetition of vertices) or not.

• W is a cycle

Suppose by contradiction that W is a non-contractible cycle. For each dual-vertex
of W , there is an edge of G between its neighbors in W . This edge might be either
on the left or right side of W . Consider the cycle C of G made of all these edges.
Since we are considering a balanced 4-orientation of A(G), we have γ(C) = 0 and
thus there is exactly 2k outgoing edges of A(G) that are incident to the left side
of C. There is no incident outgoing edge of A(G) on the left side of W . So the
outgoing edges that are on the left side of C are exactly the 2k edges of W . So
C is completely on the right side of W and all the edges of W are outgoing for
primal-vertices. Thus all dual-vertices have an outgoing edge on the left side of W ,
a contradiction. Thus W is a contractible cycle.

As explained above, the contractible cycle W does not enclose a region homeomor-
phic to an open disk on its right side. So W encloses a region homeomorphic to an
open disk on its left side, as claimed.

• W is not a cycle

Since W cannot cross itself nor intersect itself tangentially on the left side, it has to
intersect tangentially on the right side. Such an intersection on a vertex v is depicted
on Figure 28.(a). The edges of W incident to v are noted as on the figure, a, b, c, d,
where W is going periodically through a, b, c, d in this order. The (green) subwalk of
W from a to b does not enclose a region homeomorphic to an open disk on its right
side. So we are not in the case depicted on Figure 28.(b). Moreover if this (green)
subwalk encloses a region homeomorphic to an open disk on its left side, then this
region contains the (red) subwalk of W from c to d, see Figure 28.(c). Since W
cannot cross itself, this (red) subwalk necessarily encloses a region homeomorphic
to an open disk on its right side, a contradiction. So the (green) subwalk of W
starting from a has to form a non-contractible curve before reaching b. Similarly for
the (red) subwalk starting from c and reaching d. Since W is a left-walk and cannot
cross itself, we are, without loss of generality, in the situation of Figure 28.(d) (with
possibly more tangent intersections on the right side). In any case, the left side of
W encloses a region homeomorphic to an open disk.
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Figure 28: Case analysis for the proof of Claim 33. ♦

By Claim 33, the left side of W encloses a region R homeomorphic to an open disk.
Consider the graph H obtained from A(G) by keeping only the vertices and edges that
lie in R, including W . The vertices of W appearing several times on the border of R
are duplicated, so H is a bipartite planar map. The inner faces of H are quadrangles.
As above, let n′,m′, f ′ be the number of vertices, edges and faces of H and n′p (resp.
n′d) its number of inner primal-vertices (resp. inner dual-vertices). So as above, one
obtain the first equality m′ = 2n′p + 2n′d + 3k − 2. There is no incident outgoing edge
of A(G) on the left side of W . So all inner edges of H are outgoing for inner vertices
of H. Since we are considering a 4-orientation of A(G), we have m′ = 2k + 4n′p + n′d.
Outer dual-vertices of H might be of degree 2 or 3 in H. Let x be the number of
outer dual-vertices of H of degree 3 in H, so by counting the edges of H incident to
dual-vertices we have m′ = 2k + x + 3n′d. Combining the three equalities of m′, gives
2(2n′p + 2n′d + 3k− 2) = (2k+ 4n′p +n′d) + (2k+ x+ 3n′d), so x = 2k− 4. Since k > x > 0,
the only possible values are (k, x) ∈ {(2, 0), (3, 2), (4, 4)}.

If (k, x) = (2, 0), then W has size four, its two dual-vertices are of degree 2 in H
so they have their edge not on W that is outside R. If W is not a face of A(G), then
there are two distinct edges between the primal-vertices of W inside R, forming a pair of
homotopic multiple edges, a contradiction. So W is a face of A(G) and thus a 4-disk. If
(k, x) = (3, 2), then W has size six, with two dual-vertices of degree 3 in H and G∞ has
a separating triangle, a contradiction to Lemma 11. If (k, x) = (4, 4), then W has size
eight, with its four dual-vertices of degree 3 in H. So W is a 8-disk.

The proof is similar for closed right walks.
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The boundary of a face of Ã(G) may be composed of several closed walks. Let us call

quasi-contractible the faces of Ã(G) that are homeomorphic to an open disk or to an open
disk with punctures. Note that such a face may have several boundaries (if there is some
punctures), but exactly one of these boundaries encloses the face. Let us call outer facial
walk this special boundary. Then we have the following:

Lemma 34. All the faces of Ã(G) are quasi-contractible and their outer facial walk is a
{4, 8}-disk.

Proof. Consider a face f̃ of Ã(G). Let F̃ be the element of F̃ corresponding to the

boundary of f̃ . By Lemma 29, there exists D ∈ B(A(G)) such that F̃ is an oriented
subgraph of D.

All the faces of A(G) form a 4-disk. Thus either f̃ is a face of A(G) and we are

done or f̃ contains in its interior at least one edge of A(G). Start from such edge e0
and consider the left-walk W = (ei)i>0 of D from e0. Suppose that for i > 0, edge ei
is entering a vertex v that is on the border of f̃ . Recall that by definition F̃ is oriented
counterclockwise according to its interior, so either ei+1 is in the interior of f̃ or ei+1 is
on the border of f̃ . Thus W cannot leave f̃ and its border.

Since A(G) has a finite number of edges, some edges are used several times in W .
Consider a minimal subsequence W ′ = ek, . . . , e` such that no edge appears twice and
ek = e`+1. Thus W ends periodically on W ′ that is a closed left walk. By Lemma 32, W ′

encloses a region R homeomorphic to an open disk on its left side. Moreover, the border
of this region is a {4, 8}-disk. Thus W ′ is a 0-homologous oriented subgraph of D. So all

its edges are non-rigid by Lemma 28. So all the edges of W ′ are part of the border of f̃ .
Since F̃ is oriented counterclockwise according to its interior, the region R contains f̃ . So
f̃ is quasi-contractible and W ′ is its outer facial walk and a {4, 8}-disk.

A simple counting argument gives the following lemma (see Figure 29):

Figure 29: Orientation of inner edges incident to a 8-disk.

Lemma 35. In a 4-orientation of A(G), the edges that are in the interior of a 8-disk and
incident to it are entering it.

Proof. Consider a 8-disk W of A(G). Consider the graph H obtained from A(G) by
keeping only the vertices and edges that lie in W and its interior. The vertices of W
appearing several times on W are duplicated, so H is a bipartite planar map. Let x be
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the number of inner-edges of H that are incident to its outer-face and directed toward
the interior. We want to prove that x = 0.

Let n′,m′, f ′ be the number of vertices, edges and faces of H. By Euler’s formula,
n′ − m′ + f ′ = 2. All the inner faces have size 4 and the outer face has size 8, so
2m′ = 4(f ′−1)+8. Combining the two equalities gives m′ = 2n′−6. Let n′p (resp. n′d) be
the number of inner primal-vertices (resp. inner dual-vertices) of H. So n′ = n′p + n′d + 8
and thus m′ = 2n′p + 2n′d + 10. Since we are considering a 4-orientation of A(G), we
have m′ = 4n′p + n′d + x + 8. By counting the edges of H incident to dual-vertices we
have m′ = 3n′d + 12. Combining the three equalities of m′, gives 2(2n′p + 2n′d + 10) =
(4n′p + n′d + x+ 8) + (3n′d + 12), so x = 0.

We say that a {4, 8}-disk of A(G) is maximal (by inclusion) if its interior is not strictly
contained in the interior of another {4, 8}-disk of A(G).

Lemma 36. There is a unique maximal {4, 8}-disk of A(G) containing f0 and it is ori-
ented counterclockwise (resp. clockwise) in Dmax (resp. Dmin).

Proof. By Lemma 34, f̃0 is quasi-contractible and its outer facial walk is a {4, 8}-disk. So
there is a {4, 8}-disk containing f0. Let W be a maximal {4, 8}-disk containing f0. By
Lemma 35, if W is a 8-disk, then, for any 4-orientation of A(G), the edges of A(G) that
are in the interior of W and incident to it are entering it. If W is a 4-disk, then there is no
edge of A(G) in the interior of W . So all the edges in the interior of W and incident to it

are rigid edges, i.e., these edges are not in Ã(G). So there is a face f̃ of Ã(G) containing
all the faces FW of A(G) that are in the interior of W and incident to it. Note that there

might be some punctures in f̃ , so f̃ does not necessarily contain all the faces of A(G) that

are in the interior of W . By Lemma 34, f̃ is quasi-contractible and its outer facial walk
is a {4, 8}-disk. By maximality of W , the {4, 8}-disk W is the only {4, 8}-disk of A(G)

containing the faces FW . So the outer facial walk of f̃ is W and all the edges of W are

non-rigid, i.e., these edges are in Ã(G).
Suppose by contradiction that there exists another maximal {4, 8}-disk W ′ containing

f0 that is distinct from W . As for W , all the edges of W ′ are in Ã(G). The interiors of
W and W ′ have to be distinct, not included one into each other, but intersecting. Then
at least one edge of W ′ has to be in the interior of W and incident to it, a contradiction

to the fact that these edges are not in Ã(G). So W is the unique maximal {4, 8}-disk
containing f0.

We now prove the second part of the lemma for Dmax (the proof is similar for Dmin).

Let F̃ be the element of F̃ corresponding to the boundary of f̃ . We consider two cases
depending on the fact that f̃ is equal to f̃0 or not, i.e., f̃ = f̃0 or f̃ has some punctures,
one of which contains f̃0.

• f̃ = f̃0: By Lemma 30, we have F̃ = F̃0 is an oriented subgraph of Dmax and thus
W is oriented counterclockwise with respect to its interior.
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• f̃ 6= f̃0: By Lemma 29, there exists an element of B(A(G)) for which F̃ is an oriented

subgraph. Let D be such an element, chosen such that F̃ is not an oriented subgraph
of any orientation, distinct from D, that is on oriented paths from D to Dmax in the
Hasse diagram of (B(A(G)),6f0). The {4, 8}-disk W is oriented counterclockwise

in D. Recall that f̃ has at least one puncture containing f̃0.

Let D′ be the orientation obtained from D by reversing all the edges of f̃ that are not
on its outer facial walk, i.e., obtained by reversing the border of all the punctures.
So the {4, 8}-disk W is still oriented counterclockwise in D′. We claim that D,D′

are such that D 6f0 D
′. Indeed, let T = D \ D′ and X denote the set of all the

elements of F ′ that corresponds to faces of A(G) that are not in the punctures of f̃ .
Then we have φ(T ) =

∑
F∈X φ(F ) and X is a subset of F ′. So D 6f0 D

′. Consider
D′ = D0, . . . , Dk = Dmax, with k > 0, the elements of B(A(G)) on an oriented path
from D′ to Dmax in the Hasse diagram of (B(A(G)),6f0).

Suppose by contradiction that the {4, 8}-disk W is not oriented counterclockwise
in Dmax. Let 1 6 i 6 k be the minimal integer such that the {4, 8}-disk W is not
oriented counterclockwise inDi. Thus the {4, 8}-diskW is oriented counterclockwise
in Di−1 but not in Di. Since Di−1 and Di are linked in the Hasse diagram, we have
Di−1 \Di ∈ F̃ ′. Let F̃ ′ ∈ F̃ ′ be such that F̃ ′ = Di−1 \Di. By assumption on D we

have F̃ ′ is distinct from F̃ . Moreover, since W is oriented counterclockwise in Di−1,
we have that F̃ ′ is distinct from all the elements of F̃ ′ corresponding to faces that
are incident to W and not in its interior. So F̃ ′ is disjoint from W and W has the
same orientation in Di−1 and Di, a contradiction. So W is oriented counterclockwise
in Dmax.

5.4 Example of a balanced lattice

Consider the essentially 4-connected toroidal triangulation G of Figure 1 and its angle
map A(G). One example of a balanced 4-orientation of A(G) is given on the right of
Figure 2, we call it D0 in this section. By Lemma 28, an edge of A(G) is non-rigid if
and only if if is contained in a 0-homologous oriented subgraph of D0. So with this rule,

one can build the reduced angle graph Ã(G) depicted on Figure 30. One can check that
Lemma 34 is satisfied since the faces are made of one 8-disk and some 4-disks. We choose
arbitrarily a special face f0 of Ã(G) as depicted on the figure.

The set of all orientations of A(G) that are homologous to D0 is exactly the set
B(A(G)) of all balanced 4-orientations of A(G) by Lemma 26. Moreover, we have that
(B(A(G)),6f0) is a distributive lattice by Theorem 27. The Hasse diagram of this lattice is
represented on the left of Figure 31. Each node of the diagram is a balanced 4-orientation
of A(G) and black edges are the edges of the diagram.

The orientation on the left of Figure 2 is not in the diagram since it is not balanced.
The orientation D0, on the right of Figure 2, is the second one starting from the top. The
other orientations of the diagram are obtained from D0 by flipping oriented faces of the

reduced angle graph Ã(G), except f0.
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Figure 30: The reduced angle graph of the triangulation of Figure 1.

When a face of the reduced angle graph is oriented this is represented by a circle.
The circle is black when it corresponds to the face containing f0. The circle is magenta

if the boundary of the corresponding face of Ã(G) is oriented counterclockwise and cyan

otherwise. For the face of Ã(G) that is a 8-disk, we represent the circle around the unique
vertex that is in the interior of this 8-disk.

An edge in the Hasse diagram from D to D′ (with D 6 D′) corresponds to a face of

Ã(G) oriented counterclockwise in D whose edges are reversed to form a face oriented
clockwise in D′, i.e., a magenta circle replaced by a cyan circle. The outdegree of a
node is its number of magenta circle and its indegree is its number of cyan circle. By

Lemma 29, all the faces of Ã(G) have a circle at least once. The special face is not
allowed to be flipped and, by Lemma 30, it is oriented counterclockwise in the maximal
element of the lattice and clockwise in the minimal element. By Lemma 31, the maximal

(resp. minimal) element contains no other faces of Ã(G) oriented counterclockwise (resp.
clockwise), indeed it contains only cyan (resp. magenta) circles and one black. One can
play with the black circle and see which are the orientations of the lattice that are in
correspondence by flipping the face f0.

All the 4-orientations of the diagram are balanced so they correspond to transversal
structures by Corollary 20. These transversal structures are represented on the right of
Figure 31. The lattice may have been defined directly on the transversal structures using
the same transformations as in the planar case (see [Fus09, Figure 6 and Theorem 2]).
But we prefer to present this by considering α-orientations here since it is a more general
framework that also enables to use directly results from [GKL16] without re-proving the
lattice structure.
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Figure 31: The Hasse diagram of the distributive lattice of the balanced 4-orientations of
the angle map of an essentially 4-connected toroidal triangulation.
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6 Bijection with unicellular mobiles

6.1 From essentially 4-connected toroidal triangulations to mobiles

Consider an essentially 4-connected toroidal triangulation G and its angle map A(G). In
order to use the lattice structure on the (non-empty) set B(A(G)) we need to choose a
particular face of A(G), i.e., a particular edge of G. This choice has to be done appropri-
ately so that the minimal element of the lattice have some interesting properties for the
bijection. For that purpose, we have to consider quadrangles of G. We choose a half-edge
h0 of G that is in the interior and incident to a maximal quadrangle of G. We call h0 the
root half-edge of G. The vertex v0 of G incident to h0 is called the root vertex. The face f0
of A(G) containing h0 is called the root face. Consider the order 6f0 define on B(A(G))
in Section 5.2. By Theorem 27, (B(A(G)),6f0) forms a distributive lattice. Thus we can
consider the minimal balanced 4-orientation Dmin of B(A(G)) with respect to f0. Since
there is no ambiguity, we may also say that Dmin is minimal with respect to h0.

By Corollary 20, Dmin corresponds to a transversal structure of G and admits a TTS-
labeling (see Section 3.1). By convention, the transversal structure of G associated with
Dmin that we consider is the one where h0 is an outgoing half-edge of color blue, i.e., in
the TTS-labeling the half-edge is labeled 0.

Let us associate to any 4-orientation D of A(G) a particular graph M embedded on
the torus, called mobile associated with D. The vertex set of M is the same as G. Its edge
set is composed of some edges of G plus some half-edges that are incident to only one
vertex. We sometimes call the edges of M full-edges to avoid confusion with half-edges of
M . Moreover we see the full-edges of M as two half-edges of M that meet at the middle
of the edge. Then the set of half-edges of M is defined by the following rule: a half-edge
h of G, incident to a vertex v of G, is an half-edge of M if and only if the edge of D
just after h in clockwise order around v is outgoing (see Figure 32). If G is rooted on a
particular half-edge h0, then the extended mobile M+ is obtained from M by adding the
root half-edge h0 if not already in M . If the two half-edges of the same edge of G are
in M (resp. M+), then they meet in order to form a full-edge of M (resp. M+). The
half-edges of M (resp. M+) that are not part of a full-edge of M (resp. M+) are called
stems and they are presented by an arrow on the figures.

Figure 32: Rule for half-edges of the mobile.

A balanced transversal structure of K7 is given on Figure 33 with the corresponding
balanced 4-orientation of its angle map that is minimal with respect to the barred half-
edge. The extended mobile associated with this orientation is represented twice, once with
the angle map and once alone as a hexagon whose opposite sides are identified to form a
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toroidal map. The vertices are labeled from 1 to 7, and the root half-edge is represented
in magenta on the figures.
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Figure 33: Balanced transversal structure of K7, given with the corresponding balanced
4-orientation of its angle map, that is minimal with respect to the barred half-edge, and
the corresponding extended mobile, represented as a hexagon whose opposite sides are
identified.

Note that the mobile can be computed directly from the transversal structure by
considering the following set of half-edges for M : an half-edge h of G, incident to a vertex
v of G, is a half-edge of M if and only if it is the last edge of an interval (outgoing
blue, outgoing red, incoming blue, incoming red) of v in clockwise order around v. This
point of view corresponds more to the planar study of transversal structure from [Fus09].
But the rule of Figure 32 corresponds to a more general framework to construct so-called
“mobile” (related to the labeled mobiles introduced in [BFG04]) that can be applied to
any orientation (see [BF12a, BF12b, BC11]) and not only to transversal structure.

Part of the TTS-labeling of Dmin can be represented on the mobile M by keeping
only the labels that are on half-edges of M . By the mobile rule, one can note that a
mobile-labeling satisfies the following properties: the four labels that appear around each
vertex are exactly 0, 1, 2, 3 in counterclockwise order and the two labels that appear on
each edge differ exactly by (2 mod 4) (see Figure 34 where the TTS-labeling is represented
on the transversal structure and on the corresponding mobile).

We say that an edge e of G is covered by M (resp. M+) if there is at least one half-edge
of e in M (resp. M+). We say that a vertex v of G is covered by M (resp. M+) if there
is at least one half-edge incident to v in M (resp. M+).

The main result of this section is the following theorem:

Theorem 37. Consider an essentially 4-connected toroidal triangulation G, and a root
half-edge h0 of G that is in the interior and incident to a maximal quadrangle of G.
Then the extended mobile M+ associated with the minimal balanced 4-orientation of A(G)
with respect to h0 is a toroidal unicellular map covering all the vertices and edges of G.
Moreover, either h0 is a stem of M+ or its removal creates two connected components,
one of which is a tree.
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Figure 34: TTS-labeling represented on the mobile.

Proof. Consider the minimal balanced 4-orientation Dmin of A(G) with respect to h0, the
associated mobile M and the extended mobile M+. We consider the superposition of
Dmin and M+ (see the middle of Figure 33).

Let us first prove that M has a unique face. Consider a particular face F of M . Note
that this face is not necessarily homeomorphic to an open disk (it can be homeomorphic
to a torus, a cylinder, a disk, with punctures) so the border of F can be made of several
closed walk of M . By definition of the mobile M , each occurrence of a vertex v on the
border of F has an incident edge e of Dmin that is outgoing in the interior of F and such
that there is no other edge of Dmin incident to v between e and the border of F while
going counterclockwise around v from e (see rule of Figure 32).

Similarly as in the proof of Lemma 34, start from any edge e0 of Dmin inside F and
consider the right-walk W = (ei)i>0 of Dmin. By previous paragraph, each time a vertex
of the border of F is reached by W , the “right” outgoing edge puts W back inside F , so
W cannot leave F . Since A(G) has a finite number of edges, some edges are used several
times in W . Consider a minimal subsequence W ′ = ek, . . . , e` such that no edge appears
twice and ek = e`+1. Thus W ends periodically on the sequence of edges ek, . . . , e`. So, by
Lemma 32, the right side of W ′ encloses a region R homeomorphic to an open disk and
W ′ is a {4, 8}-disk. Let f0 be the root face of A(G), i.e., the face of A(G) containing h0.
By Lemma 31, Dmin contains no clockwise non-empty 0-homologous oriented subgraph
with respect to f0 (see definition in Section 5.2). Since W ′ is going clockwise around R
according to the interior of R, we have that R contains f0.

The edges of G “around” a {4, 8}-disk of A(G) form a quadrangle as depicted by the
bold black edges of Figure 35. Let Q be the quadrangle of G “around” the {4, 8}-disk W ′.
Recall that the root half-edge h0 is in the interior and incident to a maximal quadrangle.
Thus the interior of this maximal quadrangle contains Q and h0 is one of the thin black
half-edges of Figure 35.

Lemma 35 shows that all the edges of A(G) that are in the interior of a 8-disk of A(G)
and incident to it are entering it. Thus the orientation of the {4, 8}-disk W ′ and of the
edges in its interior and incident to it are as depicted on Figure 36. Then by the definition
of the mobile M (see rule of Figure 32), there is no half-edge of M in the interior of Q
and incident to Q. Thus h0 is not in M . So h0 is in the strict interior of F and F is the
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4-disk 8-disk

Figure 35: The quadrangle of G around a {4, 8}-disk of A(G).

unique face of M . Moreover M+ has strictly one more half-edge than M .

4-disk 8-disk

Figure 36: Orientation of the {4, 8}-disk.

The number of half-edges of M is equal to 4n (one half-edge for each outgoing edge of
the 4-orientation Dmin of A(G)). Thus the number of half-edges of M+ is equal to 4n+ 1.
The toroidal triangulation G has exactly 3n edges. So M+ has at least n + 1 full-edges.
Since M+ is a graph embedded on the torus with n vertices, if it has strictly more than
n + 1 edges, then it does not have a unique face. So M+ has exactly n + 1 edges and it
is a unicellular map covering all the vertices. The number of distinct edges of G covered
by M+ is exactly (4n+ 1)− (n+ 1) = 3n. So M+ is covering all the edges of G.

Since there is no half-edge of M in the interior of Q and incident to Q. We have that
either W ′ is a 4-disk and h0 is a stem of M+ or W ′ is a 8-disk and the removal of h0 from
M+ creates two connected components, one of which is a tree.

By Lemma 12, there is a unique maximal quadrangle containing the root half-edge,
that we call the root quadrangle.

The example of K7 of Figure 33, is an example where the {4, 8}-disk inside the root
quadrangle is a 4-disk. There is no vertices in the strict interior of the root quadrangle
and the root half-edge h0 of M+ (in magenta) is not part of a full-edge of M+.

When the root quadrangle has some vertices in its interior, then the {4, 8}-disk inside
the root quadrangle is in fact a 8-disk and the part of the mobile M inside this root
quadrangle is a tree (exactly like in the planar case, see [Fus09]). In M+ this tree is
connected to the “toroidal” part of M that is external to the root quadrangle with the
addition of the half-edge h0 added to M+.
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Figure 37 is an example of an essentially 4-connected toroidal triangulation with some
nested quadrangles. The barred half-edge is the root half-edge. It is chosen inside a non
empty root quadrangle. There are also non empty quadrangles outside the root quadran-
gle. The triangulation is given with a balanced transversal structure whose corresponding
orientation of the angle graph (not represented) is the minimal balanced 4-orientation
with respect to the barred half-edge. The corresponding extended mobile is given. One
can see that Theorem 37 is satisfied, i.e., the extended mobile is a unicellular map covering
all the vertices and edges. The magenta half-edge, corresponds to the root half-edge and
links the two connected part of the mobile, one of which is a tree.

Figure 37: Example of a balanced transversal structure of an essentially 4-connected
toroidal triangulation with some nested quadrangles and the corresponding extended mo-
bile.

A toroidal unicellular map on n vertices has exactly n + 1 edges. Since the total
number of edges of a triangulation on n vertices is 3n, a consequence of Theorem 37 is
that the extended mobile M+ has exactly n vertices, n + 1 edges and 2n − 1 stems. In
total, M+ has 2(n+ 1) + 2n− 1 = 4n+ 1 half-edges. So the root half-edge is not part of
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the mobile M and is added to M to obtain M+. So all the vertices of M+ have degree 4,
except the root vertex that has degree 5.

6.2 Recovering the original triangulation

This section is dedicated to showing how to recover the original triangulation from the
extended mobile. The recovering process is described by the following theorem.

Theorem 38. Consider an essentially 4-connected toroidal triangulation G, and a root
half-edge h0 of G, incident to a vertex v0, such that h0 is in the interior and incident to
a maximal quadrangle of G. From the extended mobile M+ associated with the minimal
balanced 4-orientation of A(G) with respect to h0, one can reattach all the stems of M+

to obtain G by starting from the angle of v0 just after h0 in clockwise order around v0 and
walking along the face of M+ in counterclockwise order (according to the interior of this
face): each time a stem is met, it is reattached in order to create a triangular face on its
left side.

Theorem 38 is illustrated on Figure 38 to recover K7 from the extended mobile of
Figure 33. We have represented only the first and last two steps of the method. One can
also play with the extended mobile of Figure 37 to recover the corresponding triangulation.
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Figure 38: Recovering K7 from the extended mobile.

In fact in this section we define a method, more general than the one described in
Theorem 38, that is useful for Sections 7.
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Let Mr(n) denote the set of toroidal unicellular maps with exactly n vertices, n + 1
edges and 2n−1 stems such that all vertices have degree 4, except one vertex (called root
vertex) that has degree 5, moreover the root vertex has a marked incident half-edge (called
the root half-edge) that is either a stem or whose removal creates two connected compo-
nents, one of which is a tree. Note that the extended mobile M+ given by Theorem 37 is
an element of Mr(n).

We use the classical closure procedure (see [Fus09]) to reattach step by step all the
stems of an element M+ of Mr(n). Let M0 = M+, and, for 1 6 k 6 2n − 1, let Mk

be the map obtained from Mk−1 by reattaching one of its stem (we explicit below which
stem is reattached and how). The special face of M0 is its only face. For 1 6 k 6 2n− 1,
the special face of Mk is the face on the right of the stem of Mk−1 that is reattached
to obtain Mk. For 0 6 k 6 2n − 1, the border of the special face of Mk consists of
a sequence of edges and stems. We define an admissible triple as a sequence (e1, e2, s),
appearing in counterclockwise order along the border of the special face of Mk, such that
e1 = {u, v} and e2 = {v, w} are edges of Mk and s is a stem attached to w. The closure
of the admissible triple consists in attaching s to u, so that it creates an edge {w, u} and
so that it creates a triangular face (u, v, w) on its left side (when oriented from w to u).
The complete closure of U consists in closing a sequence of admissible triples, i.e., for
1 6 k 6 2n− 1, the map Mk is obtained from Mk−1 by closing any admissible triple.

Note that, for 0 6 k 6 2n − 1, the special face of Mk contains all the stems of Mk.
The closure of a stem reduces the number of edges on the border of the special face and
the number of stems by 1. At the beginning, the unicellular map M0 has n + 1 edges
and 2n − 1 stems. So along the border of its special face, there are 2n + 2 edges and
2n − 1 stems. Thus there is exactly three more edges than stems on the border of the
special face of M0 and this is preserved while closing stems. So at each step there is
necessarily at least one admissible triple and the sequence Mk is well defined. Since the
difference of three is preserved, the special face of M2n−2 is a quadrangle with exactly one
stem. So the reattachment of the last stem creates two faces that have length three and
at the end M2n−1 is a toroidal triangulation. Note that at a given step there might be
several admissible triples but their closure are independent and the order in which they
are performed does not modify the obtained triangulation M2n−1.

We now apply the closure method to our particular case. Consider an essentially 4-
connected toroidal triangulation G, a root half-edge h0 of G that is in the interior and
incident to a maximal quadrangle of G, and the extended mobile M+ associated with the
minimal balanced 4-orientation of A(G) with respect to h0. Recall that M+ is an element
of Mr(n) so we can apply on M+ the complete closure procedure described above. We
use the same notation as before, i.e., let M0 = M+ and for 1 6 k 6 2n− 1, the map Mk

is obtained from Mk−1 by closing any admissible triple. The following lemma shows that
the triangulation obtained by this method is G:

Lemma 39. The complete closure of M+ is G, i.e., M2n−1 = G.

Proof. We prove by induction on k that every face of Mk is a face of G, except for the
special face. This is true for k = 0 since M0 = M+ has only one face, the special face. Let
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0 6 k 6 2n − 2, and suppose by induction that every non-special face of Mk is a face of
G. Let (e1, e2, s) be the admissible triple of Mk such that its closure leads to Mk+1, with
e1 = {u, v} and e2 = {v, w}. The closure of this triple leads to a triangular face (u, v, w)
of Mk+1. This face is the only “new” non-special face while going from Mk to Mk+1.

Suppose, by contradiction, that this face (u, v, w) is not a face of G. Let av (resp. aw)
be the angle of Mk at the special face, between e1 and e2 (resp. e2 and s). Since G is a
triangulation, and (u, v, w) is not a face of G, there exists at least one stem of Mk that
should be attached to av or aw to form a proper edge of G. Let s′ be such a stem that is
the nearest from s. In G the edges corresponding so s and s′ should be incident to the
same triangular face T . Let x be the vertex incident to s′. Let z ∈ {v, w} such that s′

should be reattached to z. If z = v, then s should be reattached to x to form a triangular
face of G. If z = w, then s should be reattached to a common neighbor of w and x located
on the border of the special face of Mk in counterclockwise order between w and x. So in
both cases s should be reattached to a vertex y located on the border of the special face
of Mk in counterclockwise order between w and x (with possibly y = x). To summarize
s goes from w to y and s′ from x to z, and z, w, y, x appear in counterclockwise around
T with z = w or y = x. The two half-edges h, h′ of T that are in the same edges with
s, s′ are not in M+. By the mobile rule (see Figure 32), the two half-edges h, h′ that are
not in M+ corresponds in the orientation of A(G) to two distinct outgoing edges for the
dual-vertex corresponding to T . This contradicts the fact that the considered orientation
of A(G) is a 4-orientation and that dual-vertices should have outdegree 1.

So for 0 6 k 6 2n − 2, all the non-special faces of Mk are faces of G. In particular
every face of M2n−1 except one is a face of G. Then clearly the (triangular) special face
of M2n−1 is also a face of G, hence M2n−1 = G.

Lemma 39 shows that one can recover the original triangulation from M+ with any
sequence of admissible triples that are closed successively. This does not explain how to
find the admissible triples efficiently. In fact the root half-edge h0 can be used to find a
particular admissible triple of Mk. We define the root angle a0 of G as the angle of v0
just after h0 in clockwise order around v0. This definition of a0 naturally extends to M+

or when some admissible triples are reattached.

Lemma 40. For 0 6 k 6 2n−2, let s be the first stem met while walking counterclockwise
from a0 in the special face of Mk. Then before s, at least two edges are met and the last
two of these edges form an admissible triple with s.

Proof. Since s is the first stem met, there are only edges that are met before s. Suppose
by contradiction that there is only zero or one edge met before s. Then the reattachment
of s to form the corresponding edge of G is necessarily such that the triangular face T
that is formed on the left side of the stem contains the root half-edge h0 on its border.
Let h be the half-edge of T that is in the same edge with s and not in M+. Then the two
half-edges h, h0 that are not in M corresponds in the orientation of A(G) to two distinct
outgoing edges for the dual-vertex corresponding to T . This contradicts the fact that
the considered orientation of A(G) is a 4-orientation and that dual-vertices should have
outdegree 1.
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Lemma 40 shows that one can reattach all the stems by walking once along the face
of M+ in counterclockwise order starting from a0. Thus we obtain Theorem 38.

Note that M+ is such that the complete closure procedure described here never wraps
over the root angle, i.e., when a stem is reattached, the root angle is always in the face
that is on its right side. The property of never wrapping over the root angle is called safe
here. Note that sometimes this property is called “balanced” in the literature and here the
word “balanced” is already used with a completely different meaning. LetMr,s(n) denote
the set of elements ofMr(n) that are safe. So the extended mobile given by Theorem 37
is an element of Mr,s(n).

We exhibit in Section 6.4 a bijection between appropriately rooted essentially 4-
connected toroidal triangulations and a particular subset of Mr,s(n).

The possibility to close admissible triples in any order to recover the original triangu-
lation is interesting compared to the simpler method of Theorem 38 since it enables to
recover the triangulation even if the root half-edge is not given. Indeed, when the root
angle is not given, then one can simply start from any angle of M+, walk twice around
the face of M+ in counterclockwise order and reattach all the admissible triples that are
encountered along this walk. Walking twice ensures that at least one complete round
is done from the root angle. Since only admissible triples are considered, we are sure
that no unwanted reattachment is done during the process and that the final map is G.
This enables us to reconstruct G in linear time even if the root angle is not known. This
property will also be used in Section 7 for enumeration purpose.

6.3 Asymptotically optimal encoding

A 4-connected planar triangulation on n vertices, can be encoded with a binary word
of length ∼ n log2(

27
4

) ≈ 2.7549n (see [Fus07, Theorem 4.2]). This is asymptotically
optimal since, by results of Tutte, the number Pn of 4-connected planar triangulations
on n vertices satisfies log2(Pn) ∼ n log2(

27
4

). The results of previous sections allow us to
generalize this optimal encoding to the toroidal case.

A ternary tree is a plane tree, rooted at a leaf, such that every inner vertex has
degree exactly four. A ternary tree T on n inner vertices can easily be encoded using
a binary word on 3n bits by the following: walk in counterclockwise order around T
from the root angle, write a “1” when an inner vertex is discovered for the first time,
and a “0” when a leaf is traversed. A ternary tree on n inner vertices has n inner
vertices and 2n + 2 leaves. So we obtain a binary word of length 3n + 2 with n bits 1.
Using [BGH03, Lemma 7], this word can then be encoded with a binary word of length
log2

(
3n+2
n

)
+ o(n) ∼ n log2(

27
4

) ≈ 2.7549n bits.
Consider an essentially 4-connected toroidal triangulation G, a root half-edge h0 of G

that is in the interior and incident to a maximal quadrangle of G, and the extended mobile
M+ associated with the minimal balanced 4-orientation of A(G) with respect to h0. By
Theorem 38 one can retrieve the triangulation G from M+. Hence to encode G, one just
has to encode M+. The extended mobile M+ is a toroidal unicellular map with n vertices,
n+ 1 edges, 2n− 1 stems. All its vertices have degree 4, except the root vertex that has

the electronic journal of combinatorics 26(1) (2019), #P1.13 50



degree 5. Either h0 is a stem of M+ or its removal creates two connected components,
one of which is a tree.

Let k > 0 be the number of (inner) vertices of the tree part attached to h0, with k = 0
if h0 is a stem. We remove the half-edge h0 from M+, and obtain : a toroidal component
G1, that we root at the angle where h0 is attached, and a tree component T2, that we root
at the half-edge opposite to h0. So G1 is a toroidal unicellular map with n − k vertices,
n− k + 1 edges, 2n− 2k − 2 stems. And T2 is a planar tree with k vertices, k − 1 edges,
2k + 2 stems. Moreover, all the vertices of G1 and T2 have degree 4. Now we choose
two edges e1, e2 of G1, such that G1 \ {e1, e2} is acyclic. We transform G1 into a planar
tree T1 by cutting e1, e2 and transforming each of e1, e2 into two special stems of T1. We
root T1 on a stem by keeping the information of where are the special stems, which pairs
should be reattached together, and where is the angle attached to h0. This information
can be stored with O(log(n)) bits. One can recover G1 from T1 by reattaching the special
stems in order to form non-contractible cycles and changing the root. Thus we are left to
encode two ternary trees T1 and T2 with n− k and k inner vertices, respectively.

By applying the ternary tree encoding method on T1 and T2 we obtain the following
theorem:

Theorem 41. Any essentially 4-connected toroidal triangulation on n vertices, can be
encoded with a binary word of length ∼ n log2(

27
4

) ≈ 2.7549n and this is asymptotically
optimal.

The optimality of Theorem 41 is due to the fact that the number of essentially 4-
connected toroidal triangulations is at least the number of 4-connected planar triangula-
tions.

Here is a remark on the complexity of the encoding part. All the encoding and
decoding process is linear as soon as a balanced transversal structure is given. But even if
the proof of Theorem 1 is constructive and gives a polynomial algorithm to find a balanced
transversal structure, the obtained algorithm is not linear. The difficulty is to be able
to find contractible edges, and contract all the graph to a single vertex, in linear time.
Currently this has to be done by Lemma 21 that does not give linear complexity. So the
question to be able to find in linear time a balanced transversal structure of an essentially
4-connected triangulation is an interesting and open problem.

In the plane, the proof of the existence of such objects is usually done quite easily
by using a so-called shelling order (or canonical order). This method consists in starting
from the outer face and removing the vertices one by one. It leads to simple linear time
algorithms. We do not see how to generalize this kind of method here since the toroidal
objects that we considered are too homogeneous and there is no special face (and thus no
particular starting point) playing the role of the outer face.

6.4 Bijective consequences

Consider an essentially 4-connected toroidal triangulation G, a root half-edge h0 of G
that is in the interior and incident to a maximal quadrangle, and the extended mobile

the electronic journal of combinatorics 26(1) (2019), #P1.13 51



M+ associated with the minimal balanced 4-orientation of A(G) with respect to h0. The-
orems 37 and 38 show that M+ gives a toroidal unicellular map with stems from which
one can recover the original triangulation. Thus there is a bijection between essentially
4-connected toroidal triangulations rooted from an appropriate half-edge and their corre-
sponding set of extended mobiles. The goal of this section is to describe exactly the set
of these extended mobiles.

Recall from Section 6.2 that the obtained extended mobiles are elements of Mr,s(n).
One may hope that there is a bijection between essentially 4-connected toroidal trian-
gulations appropriately rooted and Mr,s(n). This is the classic behavior in the planar
case since there is a unique lattice associated with the set of α-orientations of a planar
map (for a fixed α). But here, things are different since the set of 4-orientations of the
angle map is now partitioned into several lattices and there might be several minimal
elements, some of which behave well with respect to the mobile rule. Indeed, there exists
examples of minimal non-balanced 4-orientations of angle maps of essentially 4-connected
toroidal triangulations appropriately rooted such that the corresponding extended mobile
is inMr,s(n). The balanced property is the property that defines uniquely our considered
minimal element and thus we have to translate this property on the set of mobiles.

Note that there are two types of toroidal unicellular maps. Two cycles of a unicellular
map may intersect either on a single vertex (square case) or on a path (hexagon case).
We call such maps square unicellular maps or hexagon unicellular maps, respectively. The
square can be seen as a particular case of the hexagon where one side has length zero
and thus the two corners of the hexagon are identified. In the square case (resp. hexagon
case), the unicellular map has exactly 2 (resp. 3) distinct cycles that are moreover non-
contractible and not weakly homologous to each other.

Recall that given a cycle C of G with a direction of traversal, we have γ(C) equals the
number of edges of A(G) leaving C on its right minus the number of edges of A(G) leaving
C on its left. Recall that the root angle of G is the angle just after the root half-edge in
clockwise order. In each angle of the extended mobile M+, except the root angle, there is
an outgoing edge of A(G) (see rule of Figure 32). So for a cycle C of the extended mobile,
one can compute γ(C) by considering the angles of M+ on the left and right side of C,
except the root angle. Then, since we are considering balanced 4-orientations of the angle
map, for any (non-contractible) cycle C of the extended mobile obtained by Theorem 37,
we have γ(C) = 0.

Consider an element M+ of Mr(n). We say that an unicellular map of Mr(n) is
balanced if every cycle of the unicellular map has the same number of angles on the left
and right sides, with the special rule that the root angle does not count. Let Mr,s,b(n)
denote the subset of elements of Mr,s(n) that are balanced.

Let us recall, for the sake of clarity, the complete definition ofMr,s,b(n) that is the set
of toroidal unicellular maps with exactly n vertices, n + 1 edges and 2n − 1 stems such
that:

• “r” for root: All vertices have degree 4, except one vertex (called root vertex)
that has degree 5, moreover the root vertex has a marked incident half-edge (called
the root half-edge) that is either a stem or whose removal creates two connected
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components, one of which is a tree.

• “s” for safe: When the stems of admissible triples are reattached (in any order),
the angle just after the root half-edge in clockwise order (called the root angle) is
always in the face that is on the right side of the stems.

• “b” for balanced: Every (non-contractible) cycle of the map has the same number
of angles on its left and right sides, with the special rule that the root angle does
not count.

Let Tr(n) be the set of essentially 4-connected toroidal triangulations on n vertices
rooted at a half-edge that is in the interior and incident to a maximal quadrangle.

We have the following bijection:

Theorem 42. There is a bijection between Tr(n) and Mr,s,b(n).

Proof. Consider the mapping g that associates to an element of Tr(n), the extended mobile
M+ obtained by Theorem 37. By the above discussion the image of g is inMr,s,b(n) and g
is injective since one can recover the original triangulation from its image by Theorem 38.

Conversely, given an element M+ of Mr,s,b(n) with root angle a0 (just after the root
half-edge in clockwise order around the root vertex), one can build a toroidal map G by
the complete closure procedure described in Section 6.2. The number of stems and edges
of M+ implies that all faces of G are triangles. We explain later why G has no contractible
loop nor multiple edges and that it is essentially 4-connected.

While making the complete closure, one can create a 4-orientation D of A(G) with the
following method. For each half-edge h of M+ distinct from h0, such that h is incident to
vertex v, add to D an outgoing half-edge incident to v and just after h in clockwise order
around v. Note that this is done not only for stems of M+ but for all the half-edges of
M+, including those that are part of full-edges of M+, except h0.

Consider the moment when an admissible triple (e1, e2, s) of Mk is closed in order to
obtain Mk+1, with 0 6 k 6 2n− 2. Let e1 = (u, v), e2 = (v, w) and s is a stem attached
to w. When the stem s is reattached to u to form a triangular face T on its left side, it
is reattached to u in order to leave the half-edge of D leaving u (if any) on the right side
(see Figure 39). Note that if the angle at u is the root angle, then there is no half-edge
of D leaving u. By doing so we maintain the property that for all the angles of the face
containing the root angle (called the special face in Section 6.2), there is an outgoing
half-edge of D, except for the root angle.

u

v w

u

v w

Figure 39: Reattachment of a stem.
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In order to describe the edges of D completely, we consider two cases whether s is the
last stem that is reattached or not.

• s is not the last reattached stem

By the safe property, s has the root angle on its right side when it is reattached. So
the angle at v (resp. w) between e1, e2 (resp. e2, s) in clockwise order is not the root
angle. So inside the triangle T , we can reattached the two half-edges of D incident
to v, w to the dual-vertex f of A(G) corresponding to T and add an additional edge
to D from f to u (see Figure 40).

u

v w

u

v w

Figure 40: Reattachment of a stem and orientation of the angle map.

• s is the last reattached stem

By the safe property, the root angle is in the face on the right side of s. Thus
we are in one of the three case of Figure 41 depending on the position of the root
half-edge according to s (the root half-edge is represented in magenta). In each case
we reattached the four depicted half-edges of D and add two additional edges to D
that are outgoing for dual-vertices of D as described on Figure 41.

w

u

v w

u

v

w

u

v w

u

v

w

u

v w

u

v

Figure 41: The three possible cases for the reattachment of the last stem.
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By doing so we are sure to reattach all the half-edges of D to dual-vertices of A(G). In
the end, all primal-vertices have outdegree 4 and all dual-vertices have outdegree 1. So we
have defined a 4-orientation D of A(G) on which the mobile rule (see Figure 32) plus the
addition of the root half-edge gives M+. Since we are considering a 4-orientation of A(G),
the map G has no contractible loop nor multiple edges and it is essentially 4-connected,
otherwise, there will be a contradiction in a region homeomorphic to an open disk by a
simple counting argument. It remains to show that G is appropriately rooted and that D
corresponds to the minimal balanced 4-orientation with respect to this root, then g will
be surjective.

Since M+ is balanced it has at least two non-contractible and not weakly homologous
cycles C1, C2 with the same number of angles on their respective left and right sides,
with the special rule that the root angle does not count. All these angles corresponds
to exactly one outgoing edge of D by construction of D. So the orientation D of A(G)
satisfies γ(C1) = γ(C2) = 0. So by Lemma 24, the 4-orientation D is balanced.

Suppose by contradiction that D is not minimal with respect to h0. Let f0 be the
face of A(G) containing h0. We use the terminology and notations of Section 5.2. Then
in the Hasse diagram of the lattice (B(A(G)),6f0), there is an element below D: Let
D′ be a balanced 4-orientation of A(G) such that D′ 6f0 D. By Section 5.2, we have

D′ \ D ∈ F̃ ′. Let F̃ = D′ \ D. So F̃ is the counterclockwise facial walk of a face of

Ã(G) not containing f0. So this facial walk is oriented counterclockwise (resp. clockwise)

according to its interior in D′ (resp. D). By Lemma 34, F̃ is quasi-contractible and its
outer facial walk is a {4, 8}-disk W . Then, by Lemma 35, if W is a 8-disk, the edges that
are in the interior of W and incident to it are entering it. So in D, the orientation of W
and of the edges in its interior and incident to it are as depicted on Figure 36. Then, by
definition of the mobile (see Figure 32), there is no half-edge of M+ in the interior of W
and incident to vertices of W . If W is a {4}-disk, then the unique edge of G inside W
is not covered by M+. If W is a {8}-disk, then either there are some edges of G inside
W that are not covered by M+, or M+ is made of several connected components. In
any cases, this contradicts the fact that M+ is an element of Mr,s,b(n) from which G is
obtained by applying the complete closure procedure. So D is minimal with respect to h0,
and thus it is the minimal balanced 4-orientation with respect to h0

Suppose by contradiction that h0 is not “in the interior and incident” to a maximal
quadrangle. Then by Lemma 12, there is a unique maximal quadrangle Q whose interior
contains h0. Since h0 is not “in the interior and incident” to Q, it is in the strict interior
of Q. The quadrangle Q corresponds to a {4, 8}-disk W of A(G) (see Figure 35). Note
that W is a maximal {4, 8}-disk containing h0. So, by Lemma 36, in D, the {4, 8}-disk
W is oriented clockwise with respect to its interior. It is not possible that W is a 4-disk
since then h0 is not in the strict interior of Q but incident to it. So W is a 8-disk. By
Lemma 35, the edges that are in the interior of W and incident to it are entering it. Then
the orientation of W and of the edges in its interior and incident to it are as depicted
on Figure 36. Then by the definition of the mobile (see rule of Figure 32), there is no
half-edge of M+ in the interior of Q and incident to Q. So either there are some edges
of G that are not covered by M+, or M+ is made of several connected components. In
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both cases, this contradicts the fact that M+ is an element of Mr,s,b(n) from which G is
obtained by applying the complete closure procedure. So h0 is in the interior and incident
to a maximal quadrangle of G.

7 Counting essentially 4-connected toroidal triangulations

Let Th(n) be the set of essentially 4-connected toroidal triangulations on n vertices, rooted
at any half-edge. In this section we show how to count Th(n) (see Theorem 54). The
first values of |Th(n)|, for n > 0, are 0, 1, 6, 40, 268, 1801, 12120 (sequence A289208 in
OEIS [Slo]). Figure 42 illustrates the six elements of Th(2).

Figure 42: The six elements of Th(2): two different underlying graphs, each with three
possible roots represented by an outgoing half-edge.

7.1 Decomposition into planar and toroidal parts

Consider an element of Th(n). Recall that by Lemma 12, there is a unique maximal
quadrangle containing the root half-edge, that we call the root quadrangle. We define the
corners of a quadrangle of a map as the four angles that appear in the interior of this
quadrangle when its interior is removed (if non empty). We define Th,c(n) as the set of
elements of Th(n) with a marked corner of the root quadrangle. The elements of Th,c are
decomposed into the toroidal part that is outside the root quadrangle and the planar part
that is in the interior of the root quadrangle.

We first need the following lemma, which shows that removing the interior of the root
quadrangle does not change the connectivity of the remaining part. Even if the statement
has nothing to do with transversal structures, the proof is using them as in Section 2.3.

Lemma 43. If G is an essentially 4-connected toroidal triangulations given with a max-
imal quadrangle Q, then the map G′ obtained by removing all the vertices and edges that
lie in the interior of Q is an essentially 4-connected toroidal map.

Proof. Let G be an essentially 4-connected toroidal triangulations given with a maximal
quadrangle Q and G′ obtained by removing all the vertices and edges that lie in the
interior of Q.

Consider a root half-edge h0 of G that is in the interior and incident to Q. Consider
the minimal balanced 4-orientation Dmin of A(G) with respect to h0. By Corollary 20,
this 4-orientation corresponds to a transversal structure of G. Consider the {4, 8}-disk W
of A(G) that is inside the maximal quadrangle Q. By Lemma 36, in Dmin, the {4, 8}-disk
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W is oriented clockwise with respect to its interior. Lemma 35 shows that all the edges
of A(G) that are in the interior of a 8-disk of A(G) and incident to it are entering it. So
the transversal structure of G represented on the maximal quadrangle Q is as depicted on
one of the three cases of Figure 43 (where the outer edges represent the quadrangle Q).

Figure 43: Transversal structure on the maximal quadrangle Q.

Recall that from Section 2.3, that for a vertex v of G∞ and i ∈ {B,R,−B,−R}, i 6= j,
the subgraph Pi(v) of G∞ is obtained by keeping all the edges that are on an oriented
path of G∞i starting at v. By Lemma 8, the subgraphs Pi(v) are acyclic. Let P ′i (v) be
defined similarly but in G′∞. So P ′i (v) is a subgraph of Pi(v), thus it is also acyclic. Note
that removing the interior of the quadrangle Q on the three cases of Figure 43, does not
change the fact that around every vertex there are edges that are outgoing blue, outgoing
red, incoming blue and incoming red. So the P ′i (v) are infinite.

As in the proof of Lemma 10, suppose by contradiction that there exists three vertices
x, y, z ofG′∞ such thatG′′ = G′∞\{x, y, z} is not connected. Then, by Lemma 7, the graph
G′′ has a finite connected component R. Let v be a vertex of R. For i ∈ {B,R,−B,−R},
i 6= j, the infinite and acyclic graph P ′i (v) does not lie in R so it intersects one of x, y, z. So
for two distinct i, j, the two graphs P ′i (v) and P ′j(v) intersect in a vertex distinct from v.
Thus the two graphs Pi(v) and Pj(v) intersect in a vertex distinct from v, a contradiction
to Lemma 9.

Let T tc (n) be the set of essentially 4-connected toroidal maps on n vertices, where all
faces are triangles, except one that is a maximal quadrangle, and, with a marked corner
of this quadrangle. In particular we have |T tc (0)| = 0 and |T tc (1)| = 1.

Let T ph,c(n) be the set of 4-connected planar maps on n inner vertices, where all faces
are triangles, except the outer-face that is a quadrangle, with a marked corner of this
quadrangle, and rooted at an inner half-edge. Note that here, n counts the number of
inner vertices, so there are n + 4 vertices in an element of T ph,c(n). In particular we have
|T ph,c(0)| = 4 and |T ph,c(1)| = 8.

Then we have the following bijection:

Lemma 44. There is a bijection between Th(n) × {1, 2, 3, 4} and
⋃

16k6n(T ph,c(n − k) ×
T tc (k)).

Proof. By Lemma 12, there is a bijection between Th(n) × {1, 2, 3, 4} and Th,c(n). By
Lemma 43, there is a bijection between Th,c(n) and

⋃
16k6n(T ph,c(n − k) × T tc (k)). The

composition of these two bijections gives the result.
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By Lemma 44, the enumeration of the elements of Th is reduced to the enumeration
of their planar part T ph,c and their toroidal part T tc .

Recall from Section 6.3, that a ternary tree is a plane tree, rooted at a leaf, such that
every inner vertex has degree exactly four. For n > 1, let A(n) denote the set of ternary
trees with n inner vertices. By convention we consider that the tree composed of a single
vertex is the unique element of A(0). The associated generating function satisfies:

A(z) =
∑
n

|A(n)|zn = 1 + zA(z)3. (1)

The enumeration of T ph,c is given by the following lemma:

Lemma 45.

|T ph,c(n)| = 4

n+ 1

(
3n+ 1

n

)
and the associate generating function satisfies:

T ph,c(z) =
∑
n>0

|T ph,c(n)|zn = 4A(z)2.

Proof. [Fus09, Theorem 3] is a bijection between the set P(n) of (unrooted) plane tree
such that every inner vertex has degree exactly four and the set T p(n) of (unrooted)
4-connected planar maps on n inner vertices, where all faces are triangles, except the
outer-face that is a quadrangle.

Let T ph (n) be the set of elements of T p(n) rooted at an inner half-edge. Let Po(n) be
the elements of P(n) with one oriented edge. In the bijection of [Fus09, Theorem 3], each
inner edge of the map corresponds to an edge of the corresponding tree. So rooting the
elements of T p(n) on a particular inner half-edge, corresponds to orienting an edge of the
tree. Thus we have a bijection between T ph (n) and Po(n).

Cutting an element of Po(n) at the oriented edge creates bijectively a couple of ternary
trees with respectively k and n− k inner vertices, with 0 6 k 6 n. Hence:

Po(z) =
∑
n

|Po(n)|zn = A(z)2.

As shown in [GX06, p 11], the coefficients of A(z)2 admit a simple expression:

|Po(n)| = 1

n+ 1

(
3n+ 1

n

)
.

An element of T ph,c(n) is obtained from an element of T ph (n) by marking one corner of
the outer face. There are four such choice so T ph,c(n) = 4T ph (n) = 4Po(n) and we obtain
the lemma.
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Figure 44: The unrooted mobile obtained from the extended mobile of Figure 37.

7.2 Bijection with square and hexagonal unicellular maps

Given an element M+ of Mr,s,b(n) (see Section 6.4 for the definition), we define the
unrooted mobile M associated with M+ as the toroidal unicellular map obtained from M+

by removing the root half-edge and the tree part attached to the root half-edge (if any).
Figure 44 gives the unrooted mobile associated with the extended mobile of Figure 37.

Let Mb(n) denote the set of (non-rooted) toroidal unicellular maps with exactly n
vertices, n+1 edges and 2n−2 stems such that all vertices have degree 4, and every cycle
of the map has the same number of angles on its left and right sides (balanced property).

Consider an element M+ of Mr,s,b(n). Let k > 0 be the number of vertices in the
tree part attached to the root half-edge (if any), with k = 0 if the root half-edge is a
stem. Then one can see that the unrooted mobile M associated with M+ is an element
of Mb(n− k).

Consider an element M of Mb(n). A mobile-labeling of M is a labeling ` of the half-
edges of M with integers 0, 1, 2, 3 such that the labels that appear around each vertex are
exactly 0, 1, 2, 3 in counterclockwise order and the two labels that appear on each edge
differ exactly by (2 mod 4), see right of Figure 34 for an example. Let G be the graph
obtained from M by closing all its admissible triples. Since, M has 2n− 2 stems, we have
that G is a “toroidal triangulation minus one edge”, i.e., a toroidal map whose all faces
are triangles except one that is a quadrangle. The extension of ` to G is the labeling of
all the half-edges of G obtained from ` by keeping the property that the two labels that
appear on each edge differs exactly by 2 mod 4. Next lemma shows that the quadrangle
of G is labeled as on Figure 45 in the extension of the mobile-labeling.

Each angle of M corresponds to consecutive angles of G (reattaching a stem into an
angle, splits this angle in two). Conversely, to each angle of G we can associate the unique
corresponding angle of M from which it comes from. Then we have the following:

Lemma 46. Consider an element M of Mb(n) given with a particular angle α. Then M
admits a unique mobile-labeling, noted `(α), such that the angle α is between half-edges
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Figure 45: Labeling of the remaining quadrangle after extending a mobile-labeling.

labeled 0 and 1. Moreover, after closing the admissible triples of M to obtain G, the
extension of `(α) to G is such that the quadrangle Q of G is labeled as on Figure 45. And
the four angles of M that corresponds to the angles of Q are incident to half-edges with
exactly the same labels in M and in Q.

Proof. The toroidal unicellular map M has n vertices, n+ 1 edges and 2n− 2 stems such
that all vertices have degree 4, and every cycle of the map has the same number of angles
on its left and right sides.

Let h be the half-edge of M that is incident to α and just after α in clockwise order
around its incident vertex. Let `(α) be the labeling of the half-edges of M with integers
0, 1, 2, 3 obtained by the following: Label h with 0 and then extend the labeling to all the
half-edges of M by keeping the property that the labels that appear around each vertex
are exactly 0, 1, 2, 3 in counterclockwise order and the two labels that appear on each edge
differ exactly by (2 mod 4). This is possible and consistent since every cycle of the map
has the same number of angles on its left and right sides. Indeed, given a cycle C of length
k, there are 2k angles on each sides, so the modification of the labels while starting from a
half-edge of C, walking along C and going back to the starting half-edge is the following:
the number of edges of C times (2 mod 4), i.e., (2k mod 4), plus the number of angles on
the right side of C, i.e., (2k mod 4), so (4k mod 4) = 0 in total. Thus, this definition of
the mobile-labeling `(α) is consistent and moreover it is the unique such labeling. So we
have the first part of the lemma.

Let M0 = M . For 1 6 k 6 2n− 2, let Mk be the map obtained from Mk−1 by closing
an admissible triple of Mk−1. Extend the labeling `(α) while closing admissible triples
by keeping the property that the two labels that appear on each edge differs exactly by
2 mod 4. We prove by induction on k, that each map Mk, for 0 6 k 6 2n − 2, satisfies
the following: each angle of the special face of Mk is between half-edges whose labels
are distinct (and precisely the same as for the corresponding angle of Mk−1 if k > 1),
moreover the labels that appear in counterclockwise order around each vertex of Mk form
four non-empty intervals of 0, 1, 2, 3. Indeed, M0 satisfies the property and suppose that
for 1 6 k 6 2n − 2, we have Mk−1 that satisfies the property. Consider the admissible
triple (e1, e2, s) of Mk−1 that is closed to obtain Mk. Let e1 = {u, v} and e2 = {v, w} with
s is a stem attached to w. Let i ∈ {0, 1, 2, 3} such that s is labeled i. Then since Mk−1
satisfies the property on the labels we have that:
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• the half-edge of e2 incident to w is labeled (i+ 1) mod 4

• the half-edge of e2 incident to v is labeled (i+ 3) mod 4

• the half-edge of e1 incident to v is labeled i

• the half-edge hu of e1 incident to u is labeled (i+ 2) mod 4

• the half-edge h′u incident to u and just after hu in counterclockwise order around u
is labeled (i+ 3) mod 4

When the admissible triple is closed, a half-edge hs, opposite to s is created and receive the
label (i+ 2) mod 4. So the half-edges hu, hs, h

′
u appear consecutively in counterclockwise

order around u. Moreover they are labeled (i+ 2) mod 4, (i+ 2) mod 4 and (i+ 3) mod 4
respectively. So all the induction properties are preserved. Finally, M2n−2 satisfies the
property and its special face, that is a quadrangle, is labeled as on Figure 45 and the four
angles of M that corresponds to the angles of Q are incident to half-edges with exactly
the same labels in M and in Q.

Recall that there are two types of toroidal unicellular maps. Two distinct cycles of a
toroidal unicellular map may intersect either on a single vertex (square case) or on a path
(hexagon case). In a square (resp. hexagon) unicellular map, there are exactly 2 (resp.
3) distinct cycles. A vertex of a toroidal unicellular map is called special if is contained
in all the cycles of the map. Note that there is exactly one special vertex in a square
unicellular map, and exactly two special vertices in a hexagon unicellular map.

LetMs
b(n) (resp. Mh

b (n)) denote the set of elements ofMb(n) that are square (resp.
hexagon) unicellular maps. Moreover we denote the sets Mb,a(n),Ms

b,a(n),Mh
b,a(n) the

sets of elements of Mb(n),Ms
b(n),Mh

b (n), respectively, that are rooted at an angle of a
special vertex.

We have the following bijection:

Lemma 47. There is a bijection between T tc (n)×{1, 2} and (M s
b,a(n)×{1, 2})∪(Mh

b,a(n)×
{0}).

Proof. We define a bijective function from T tc (n)×{1, 2} to (Ms
b,a(n)×{1, 2})∪(Mh

b,a(n)×
{0}). This function is defined via three intermediate functions a, g′ and r defined below.

Let a (for “add”) be the mapping defined on the elements G of T tc (n) that adds to G
a diagonal e0 in the interior of the (maximal) quadrangle Q of G, incident to the marked
corner α of Q, and returns the obtained map Z rooted at the half-edge h0 of e0 incident
to α. Let T ′r (n) be the subset of Tr(n) (see definition in Section 6.4) such that the two
faces incident to the root half-edge form a maximal quadrangle. We claim the following:

Claim 48. a is a bijection from T tc (n) to T ′r (n).

Proof. Let G be an element of T tc (n) and Z its image by a. Consider the notations of
the definition of a. Since G is essentially 4-connected, the added edge e0 cannot create a
contractible loop in Z. If adding e0 creates a pair of homotopic multiple edges in Z with
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an edge e′0, then there are two edges of the quadrangle Q of G plus edge e′0 that form
a separating triangle of G∞ contradicting the 4-connectedness of G∞. So the obtained
map Z is a toroidal triangulation with no contractible loop nor homotopic multiple edges.
Moreover since Q is a maximal quadrangle, the edge e0 cannot create a separating triangle
of Z∞. So by Lemma 11, the toroidal triangulation Z is essentially 4-connected. Moreover
Z has the particularity that the two faces incident to the root half-edge h0 form a maximal
quadrangle of Z. So Z is is in T ′r (n).

Let a be the mapping defined on the elements Z of T ′r (n) that removes from Z the edge
containing the root half-edge and mark the obtained quadrangle at the corner incident to
h0. Then clearly a ◦ a = Id.

Conversely, let Z be an element of T ′r (n) and consider its image G by a. We have
Z is an essentially 4-connected toroidal triangulation on n vertices rooted at a half-edge
that is in the interior and incident to a maximal quadrangle, and such that the two faces
incident to the root half-edge form a maximal quadrangle. So G is a toroidal map on n
vertices, where all faces are triangles, except one that is a maximal quadrangle and with
a marked corner of this quadrangle. The map G is obtained from Z by removing the
interior of a maximal quadrangle so, by Lemma 43, G is essentially 4-connected. So G is
in T tc (n).

We clearly have a ◦ a = Id. So a is a bijection from T tc (n) to T ′r (n). ♦

Let g′ be the restriction of the bijection g, defined in the proof of Theorem 42, to the
elements of T ′r (n). LetM′

r,s,b(n) be the subset ofMr,s,b(n) (see definition in Section 6.4)
such that the root half-edge is a stem. We claim the following:

Claim 49. g′ is a bijection from T ′r (n) to M′
r,s,b(n).

Proof. Let Z be an element of T ′r (n) and M+ ∈ Mr,s,b(n) its image by g. By definition
of T ′r (n), the two faces incident to the root half-edge h0 form a maximal quadrangle Q.
In the minimal balanced 4-orientation of A(Z) with respect to h0, the 4-disk W inside Q
is oriented clockwise by Lemma 36 (see left of Figure 36). Then by the definition of the
mobile (see rule of Figure 32), there is no half-edge of M+ in the interior of Q except h0.
So h0 is a stem of M+. So M+ is in M′

r,s,b(n).

Let g′ be the restriction of g−1 to the elements of M′
r,s,b(n). Since g is a bijection, we

have g′ ◦ g′ = Id.
Conversely, let M+ be an element of M′

r,s,b(n) and consider its image Z by g−1. By
the proof of Theorem 42, the complete closure procedure on M+ gives an essentially
4-connected toroidal triangulation Z of Tr(n) rooted at h0 and such that h0 is in the
interior and incident to a maximal quadrangle Q′. Moreover, M+ is the extended mobile
associated with the minimal balanced 4-orientation Dmin of A(Z) with respect to h0. The
quadrangle Q′ corresponds to a {4, 8}-disk W of A(Z) (see Figure 35). Note that W is
a maximal {4, 8}-disk containing h0. So, by Lemma 36, W is oriented clockwise with
respect to its interior in Dmin. Then, by Lemma 35, the orientation of W and of the edges
in its interior and incident to it are as depicted on Figure 36. Then by the definition of
the mobile (see rule of Figure 32), there is no half-edge of M+, distinct from h0, in the
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interior of Q′ and incident to Q′. Since M+ is covering all the edges of Z, we have that
Q′ has no edges in its interior, except the one containing h0. So Q′ is the quadrangle
formed by the two faces incident to h0. So the two faces incident to h0 form a maximal
quadrangle and so Z is an element of T ′r (n). Since g is a bijection, we have g′ ◦ g′ = Id.
So g′ is a bijection from T ′r (n) to M′

r,s,b(n). ♦

Let r (for “remove”) be the mapping defined on the elements (M+, x) of M′
r,s,b(n)×

{1, 2}, that removes the root half-edge h0 of M+ that is a stem and roots the obtained
mobile M at an angle of a special vertex by the following rule. Let α be the angle of
M such that M+ is obtained from M by adding h0 in the angle α. Consider the unique
mobile-labeling `(α) of M , given by Lemma 46. If M is square, let β be the angle of the
special vertex of M that is between the half-edges labeled 0 and 1. In this case, r returns
(M,x) rooted at β. If M is hexagon, let v1 (resp. v2) be the first (resp. second) special
vertex of M that is encountered while walking counterclockwise along the border of the
unique face of M , starting from α. For i ∈ {1, 2}, let βi be the angle of vi that is between
half-edges labeled 0 and 1. In this case, r returns (M, 0) rooted at βx. We claim the
following:

Claim 50. r is a bijection fromM′
r,s,b(n)×{1, 2} to (Ms

b,a(n)×{1, 2})∪(Mh
b,a(n)×{0}).

Proof. It is clear by the definition of r that the image by r of an element of M′
r,s,b(n)×

{1, 2} is in (Ms
b,a(n)× {1, 2}) ∪ (Mh

b,a(n)× {0}).
Let r be the mapping defined on the elements (M, y) of (Ms

b,a(n)×{1, 2})∪(Mh
b,a(n)×

{0}) by the following. Let β be the root angle of M and consider the unique labeling `(β)
of M , given by Lemma 46. Close all the admissible triples of M to obtain a map G whose
special face is a quadrangle Q. Propagate the labeling `(β) to G by keeping the property
that the two labels that appear on an edge has to differ exactly by (2 mod 4). Then by
Lemma 46 the quadrangle Q of G is labeled as on Figure 45. So Q has a unique angle α
between half-edges labeled 0 and 1. We also denote α the angle of M that corresponds to
the angle α of Q. Let M+ be the map obtained from M by forgetting its root angle β and
adding a root half-edge h0 incident to α. If M is square, then let x = y. If M is hexagon,
let x be such that β is an angle incident to the x-th special vertex of M encountered while
walking counterclockwise along the face of M , starting from α. Then r returns (M+, x).

We claim that:

(1) r ◦ r = Id

Let (M+, x) be an element of M′
r,s,b(n) × {1, 2} and (M, y) its image by r. We use the

notation of the definition of r, i.e., the map M is obtained from M+ by removing the root
half-edge h0 of M+, incident to the angle α of M and rooting M according to the labeling
`(α) at an angle β between half-edges labeled 0 and 1. By Lemma 46, there is a unique
mobile-labeling of M such that β is between half-edges labeled 0 and 1. So the labeling
`(β) used in the definition of r is exactly the same as `(α). So M+ is obtained from M
by adding a half-edge h0 at an angle between half-edges labeled 0 and 1 of `(β).

From M+, one can build the graph Z = g−1(M+) ∈ T ′r (n) by closing admissible triples
in any order. The recovering method of Theorem 38 says that the root half-edge h0 can
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be the last stem that is reattached by this procedure. So the graph G defined in the
definition of r is obtained from Z by removing the edge containing the root half-edge. So
M+ is obtained from M by adding a half-edge h0 at an angle of M corresponding to one
of the angle of the quadrangle Q of G.

By Lemma 46, the extension of the labeling `(β) to G shows that the quadrangle Q of
G, is labeled as on Figure 45. Moreover the angles of M that corresponds to the angles
of Q are incident to half-edges with exactly the same labels in M and in Q. So there is
a unique such angle α of M between half-edges labeled 0 and 1. So M+ is obtained from
M by adding a half-edge h0 at the angle of M corresponding to α and r ◦ r = Id.

This proves (1).

Conversely, let (M, y) be an element of (Ms
b,a(n)×{1, 2})∪(Mh

b,a(n)×{0}) and (M+, x)
its image by r. Since M is balanced, we have that M+ is also balanced. Moreover, the
root half-edge h0 is added to M in an angle of the special face obtained after reattaching
all the admissible triples of M . So M+ is safe and (M+, x) is in M′

r,s,b(n)× {1, 2}.
It is clear that r ◦ r = Id, so r is a bijection. ♦

By Claim 48 to 50, we have r ◦ (g′, Id) ◦ (a, Id) is a bijection from T tc (n) × {1, 2} to
(Ms

b,a(n)× {1, 2}) ∪ (Mh
b,a(n)× {0}).

7.3 Enumeration of skeletons

A skeleton is a toroidal unicellular map such that every inner vertex, i.e., every vertex
of degree at least two, belongs to its cycles. A skeleton is balanced if every cycle of the
map has the same number of angles on its left and right sides. A skeleton is square
(resp. hexagon) if it is a square (resp. hexagon) unicellular map. Let Sa(n) be the set
of skeletons on n inner vertices, such that all inner vertices have degree 4, and rooted at
an angle of a special vertex. Let Sb,a(n) be the set of balanced element of Sa(n). Let
Ssa(n), Sha (n), Ssb,a(n) and Shb,a(n) be the sets of square and hexagon elements of Sa(n) and
Sb,a(n), respectively.

Given an element M of Mb(n), the skeleton of M is obtained from M by removing
all the vertices that are not vertices of the cycles of M nor in their neighborhood. It is
direct to see that the skeletons of elements of Mb,a(n) are in Sb,a(n).

An element of Mb,a(n) can be uniquely decomposed into an element of Sb,a(k), for
some k > 1, and a (2k − 2)-uplet of ternary trees (each ternary tree being attached to a
leaf of the skeleton) such that the total number of inner vertices of the trees is n− k.

Let F(n, k) be the set of k-uplets of rooted ternary trees with total number of inner
vertices n. Its associated generating function satisfies F (z, u) =

∑
n,k |F(n, k)|znuk =∑

k A(z)kuk = 1
1−uA(z) . Moreover, it is known that |F(n, k)| = k

2n−k

(
3n−k−1

n

)
(see [Sta99,

Theorem 5.3.10]).
Let Ssb,a and Shb,a be the generating functions associated with Ssb,a and Shb,a, respectively,

i.e., Ssb,a(z) =
∑

n |Ssb,a(n)|zn and Shb,a(z) =
∑

n |Shb,a(n)|zn.
Then we have the following lemma:
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Lemma 51.

|Ms
b,a(n)| =

n∑
k=1

|Ssb,a(k)|.|F(n− k, 2k − 2)|

|Mh
b,a(n)| =

n∑
k=1

|Shb,a(k)|.|F(n− k, 2k − 2)|

and the associated generating functions satisfy:

M s
b,a(z) =

∑
n>1

|Ms
b,a(n)|zn = Ssb,a(zA(z)2)/A(z)2

Mh
b,a(z) =

∑
n>1

|Mh
b,a(n)|zn = Shb,a(zA(z)2)/A(z)2.

Proof. The first two formulas are clear by above decomposition. Moreover, each element
of Ms

b,a(n) is obtained by substituting each of the 2k − 2 leaves of an element of Ssb,a(k)
by a ternary tree. So we have:

M s
b,a(z) =

∑
k>1

|Ssb,a(k)|A(z)2k−2zk

=
1

A(z)2

∑
k>1

|Ssb,a(k)|(A(z)2z)k

=
Ssb,a(zA(z)2)

A(z)2
.

Similarly, we have Mh
b,a(z) =

Sh
b,a(zA(z)

2)

A(z)2
.

By Lemma 51, we are reduced to the enumeration of Ssb,a and Shb,a.
Consider an element S of Sa(n). If S is square, consider the two edge-disjoint closed

walks of S started from the special vertex, noted W1 and W2. We assume that W1 and
W2 are chosen such that the two half-edges h1, h2 that are incident to the root angle
of S are traversed from the special vertex in W1, W2, respectively, and that h1 and h2
appear consecutively in counterclockwise order around the special vertex. If S is hexagon,
then consider the three walks W1, W2 and W3 of S starting from the special vertex v1
containing the root angle, ending at the second special vertex v2, such that the three paths
W1,W2,W3 appears consecutively in counterclockwise order around v1, starting from the
leaf attached to v1. Note that, for the square or hexagonal case, the Wi are uniquely
defined and oriented. Along each walk Wi, the inner vertices that are encountered may
have both leaves on the right, both leaves on the left, or one leaf on each side. In next
two lemmas, we encode this by using Grand Motzkin prefix/paths defined below.

A Grand Motzkin prefix (or GM prefix for short) of length n, is a path in Z2, starting
at the point (0, 0), ending at the point (n, δ), with δ ∈ Z, and composed of k steps (1, 1),
(1,−1) and (1, 0). Let gm(n, δ) be the number of GM prefix of length n starting at (0, 0)
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and ending at (n, δ) and GM(z, u) =
∑

n,δ gm(n, δ)znuδ. There is one GM prefix of length
0 and a GM prefix of length n > 0 is obtained by adding one step (1, 1), (1,−1) or (1, 0)
to a GM prefix of length (n− 1). This decomposition leads to the following equation:

GM(z, u) = 1 + z(u+ 1/u+ 1)GM(z, u) =
1

1− z(u+ 1/u+ 1)
=
∑
n>0

(1 + 1/u+ u)nzn.

Let [zn]f denote the coefficient of zn of function f(z), i.e., if f =
∑

n fnz
n then

[zn] = fn.
A Grand Motzkin path (or GM path for short) of length k is a Grand Motzkin prefix of

length k, ending at the point (k, 0). The generating function associated with GM paths
satisfies GM(z) = [u0]GM(z, u) = 1√

1−2z−3z2 (see [FM14]).
The square skeletons satisfy:

Lemma 52.

|Ssb,a(n)| = 3n − (−1)n

4

Ssb,a(z) =
z

1− 2z − 3z2
.

Proof. With above notations, an element of Ssb,a(n) is uniquely decomposed into a special
vertex and the two closed walks W1 and W2. for i ∈ {1, 2}, let ri (resp. li) be the
number of leaves of S incident to an inner vertex of Wi that are on the right (resp. left)
side of Wi. Let δi = (ri − li)/2. Since the special node as no leaves attached to it, the
balanced property implies that δ1 = δ2 = 0. So if Wi contains ki inner vertices, then Wi

can be encoded by a GM path of length ki. This decomposition results in the product of
respective generating series: Ssb,a(z) = z.GM(z)2 = z

1−2z−3z2 .
Now observe that Ssb,a(z)− 2zSsb,a(z)− 3z2Ssb,a(z) = z. We deduce the following recur-

rence: for n > 2, we have |Ssb,a(n)| = 2|Ssb,a(n − 1)| + 3|Ssb,a(n − 2)|. Moreover, we have

|Ssb,a(0)| = 0 and |Ssb,a(1)| = 1. Since 3n−(−1)n
4

satisfies the same conditions |Ssb,a(n)|, the
two are identical.

The hexagon skeletons satisfy:

Lemma 53.

|Shb,a(n)| = (n− 2).3n−1 +
5.3n−1 + (−1)n

4

Shb,a(z) =
4z2

(z + 1)(3z − 1)2
.

Proof. Let S be an element of Sha (n). Note that S is not assumed to be balanced here.
Considering this larger class, we are able extract the series Shb,a(z) by following the standard
diagonal method [Sta99, Section 6.3]. As with above notations, consider the three walks
W1, W2 and W3 of S starting from the special vertex v1 containing the root angle, ending
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at the second special vertex v2, such that the three paths W1,W2,W3 appear consecutively
in counterclockwise order around v1, starting from the leaf attached to v1.

There are different cases to consider depending on the position of the leaves. We say
that S is of Type i if the leaf of v2 is after Wi in the counterclockwise order around v2 (see
the top line of Figure 46). In order to ease the upcoming computation, let rename these
walks depending of the type. For types 1 and 3, let Wc = W1,Wx = −W2 and Wy = −W3

(see the bottom left and bottom right of Figure 46). For type 2, let Wc = W3,Wx = −W1

and Wy = −W2 (see the bottom center of Figure 46, where edges have been redrawn
differently than in top-center figure).

W3

W1
W2

v1

v2

W3

W1
W2

v1

v2

W3

W1
W2

v1

v2

Type 1 Type 2 Type 3

v1

v2

Wc

Wy

Wx

v1

v2

Wc

Wy

Wx

v1

v2

Wc

Wy

Wx

Figure 46: Different types of hexagon skeletons.

Let C1, C2 be the cycles of S made of Wc + Wx and Wc + Wy respectively, with the
direction of traversal corresponding to the orientation of Wc,Wx,Wy. For i ∈ {1, 2}, let
δi be the number of leaves of S incident to Ci that are on its right side minus the number
of leaves of S incident to Ci that are on its left side, divided by two.

Let Sha (k, `, n) denote the elements of Sha (n) such that δ1 = k and δ2 = `, with
(k, `) ∈ Z2. Let Sha (u, v, z) be the associated generating function, i.e., Sha (u, v, z) =∑

(k,`,n)∈Z2×N |Sha (k, `, n)|ukv`zn. This generating function can be computed with the fol-

lowing method. A hexagonal skeleton can be decomposed into 2 special vertices (con-
tributing for z2) plus tetra-valent caterpillars Cc, Cx and Cy respectively contributing for
GM(z, uv), GM(z, u) and GM(z, v). Depending of the type of hexagon skeleton, the
special vertices are contributing for +1, 0 or −1 to δ1 and δ2, this is translated by a factor
( 1
uv

+ uv + 1) on the generating function. There are four possible root angles around v1,

the electronic journal of combinatorics 26(1) (2019), #P1.13 67



so we have:

Sha (u, v, z) = 4z2(uv +
1

uv
+ 1)(GM(z, uv).GM(z, u).GM(z, v))

= − 4z2(u2v2 + uv + 1)uv

(u2z + uz − u+ z)(v2z + vz − v + z)(u2v2z + uvz − uv + z)
.

Observe that Shb,a(z) = [v0][u0]Sha (u, v, z).

The denominator of Sha (u, v, z), seen as a polynomial of u admits four roots: U, 1
U
, U
v

and 1
Uv

where U = 1−z−
√
−3z2−2z+1
2z

, and we have:

Sha (u, v, z) = − 4(u2v2 + uv + 1)u

(u− U)(u− 1
U

)(u− U
v

)(u− 1
Uv

)v(v2z + vz − v + z)
.

Hence Sha (u, v, z) can be converted into partial fractions of u:

Sha (u, v, z) = A.

(
U2 + Uv + v2

(1− Uu)U2v2(U2 − v)
+

U2v2 + Uv + 1

(1− U
u

)uUv2(1− U2v)

+
U2 + U + 1

(1− U
uv

)(U2 − v)Uuv2
+

U2 + U + 1

(1− Uuv)U2v(1− U2v)

)
,

where A = 4v3U3

(v−1)(U2−1)(v2z+vz−v+z) .

As A = O(z3) and U = O(z) (when z tends to 0), this identity splits into a sum of
four power series in z with coefficients in Q[u, 1

u
, v, 1

v
], two with only negative powers of u

and two with only nonnegative powers of u.

Sha (u, v, z) = A.

(
U2 + Uv + v2

U2v2(U2 − v)

∑
n>0

(Uu)n +
U2v2 + Uv + 1

uUv2(1− U2v)

∑
n>0

(
U

u

)n
+

U2 + U + 1

(U2 − v)Uuv2

∑
n>0

(
U

uv

)n
+

U2 + U + 1

U2v(1− U2v)

∑
n>0

(Uuv)n
)
.

Hence the coefficient [u0] can be directly extracted:

[u0]Sha (u, v, z) = A.

(
U2 + Uv + v2

U2v2(U2 − v)
+

U2 + U + 1

U2v(1− U2v)

)
=

4(v2z + vz + v + z)z2v√
−(z + 1)(3z − 1)(v2z2 + vz2 + 2vz + z2 − v)(v2z + vz − v + z)

.

Again, the denominator of [u0]Sha (u, v, z), seen as a polynomial of v admits four roots:

V0,
1
V0
, V1,

1
V1

where V0 = U and V1 = − z2+
√
−(z+1)(3z−1)(1−z)+2z−1

2z2
.

Hence [u0]Sha (u, v, z) can be converted into partial fractions of v:
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[u0]Sha (u, v, z) = B.

(
V0(V

2
0 z + V0z + V0 + z)

(1− V0/v)v(V 2
0 − 1)(V0V1 − 1)

+
V1(V

2
1 z + V1z + V1 + z)

(1− V1/v)v(−V 2
1 + 1)(V0V1 − 1)

+
V 2
0 z + V0z + V0 + z

(1− V0v)(V 2
0 − 1)(V0V1 − 1)

+
V 2
1 z + V1z + V1 + z

(1− V1v)(1− V 2
1 )(V0V1 − 1)

)
,

where B = 4V0V 1

z
√
−(z+1)(3z−1)(V0−V1)

.

As B = O(z), V0 = O(z) and V1 = O(z2), this identity splits into a sum of four power
series in z with coefficients in Q[v, 1

v
], two with only negative powers of v and two with

only nonnegative powers of v.

[u0]Sh
a (u, v, z) = B.

(
V0(V 2

0 z + V0z + V0 + z)

v(V 2
0 − 1)(V0V1 − 1)

∑
n>0

(
V0

v

)n

+
V1(V 2

1 z + V1z + V1 + z)

v(−V 2
1 + 1)(V0V1 − 1)

∑
n>0

(
V1

v

)n

+
V 2
0 z + V0z + V0 + z

(V 2
0 − 1)(V0V1 − 1)

∑
n>0

(V0v)
n

+
V 2
1 z + V1z + V1 + z

(1− V 2
1 )(V0V1 − 1)

∑
n>0

(V1v)
n

)
,

Hence the coefficient [v0] can be directly extracted:

[v0][u0]Sh
a (u, v, z) = B

(
V 2
0 z + V0z + V0 + z

(V 2
0 − 1)(V0V1 − 1)

+
V 2
1 z + V1z + V1 + z

(V 2
1 − 1)(V0V1 − 1)

)
.

Which simplifies into the second part of the lemma:

Sh
b,a(z) = [v0][u0]Sh

a (u, v, z) =
4z2

(z + 1)(3z − 1)2
.

We can observe that Sh
b,a(z) − 5zSh

b,a(z) + 3z2Sh
b,a(z) + 9z3Sh

b,a(z) = 4z. We deduce the following

recurrence for n > 3, |Shb,a(n)| = 5|Shb,a(n − 1)| − 3|Shb,a(n − 2)| − 9|Shb,a(n − 3)|. Moreover, we have

|Shb,a(0)| = |Shb,a(1)| = 0 and |Shb,a(2)| = 4. Since (n− 2).3n−1 + 5.3n−1+(−1)n

4 satisfies the same conditions

as |Shb,a(n)|, the two are identical.

7.4 Enumeration theorem

The full enumeration theorem that we obtain is the following (the first part is precisely
Theorem 2 already stated in the introduction):

Theorem 54. The generating function associated with the number Th(n) of essentially
4-connected toroidal triangulations on n vertices, rooted on any half-edge, is:

Th(z) =
∑
n>0

|Th(n)|zn =
zA(z)

7zA(z)2 − 21zA(z) + 9z + 1

where A(z) is the generating function of (leaf-rooted) ternary trees satisfying A(z) =
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1 + zA(z)3. Moreover, the values of |Th(n)| are given by the following formulas:

|Th(n)| = 1

4

n∑
k=1

|T ph,c(n− k)|.|T tc (k)|

|T ph,c(n)| = 4

n+ 1

(
3n+ 1

n

)
|T tc (n)| =

n∑
k=1

S(k).|F(n− k, 2k − 2)|

S(n) =
(−1)n−1 + (3 + 4n)3n−1

8

|F(n, k)| = k

2n− k

(
3n− k − 1

n

)
.

Proof. By Lemma 44, we have:

|Th(n)| = 1

4

n∑
k=0

|T ph,c(n− k)|.|T tc (k)|

and so:

Th(z) =
1

4
T ph,c(z)T tc (z). (2)

By Lemma 45, we have:

|T ph,c(n)| = 4

n+ 1

(
3n+ 1

n

)
T ph,c(z) = 4A(z)2. (3)

By Lemma 47, we have:

|T tc (n)| = |Ms
b,a(n)|+ 1

2
|Mh

b,a(n)| (4)

T tc (z) = M s
b,a(z) +

1

2
Mh

b,a(z). (5)

Let S(n) = |Ssb,a(n)| + 1
2
|Shb,a(n)| and S(z) = Ssb,a(z) + 1

2
Shb,a(z). So, by Lemma 51,

Equations (4) and (5) become:

|T tc (n)| =
n∑
k=1

S(k).|F(n− k, 2k − 2)|

T tc (z) =
S(zA(z)2)

A(z)2
. (6)
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From Lemmas 52 and 53, we obtain:

S(n) =
(−1)n−1 + (3 + 4n)3n−1

8

S(z) =
z(1− z)

(1 + z)(1− 3z)2
. (7)

From (6) and (7), we obtain:

T tc (z) =
z − z2.A(z)2

(z.A(z)2 + 1).(3z.A(z)2 − 1)2
. (8)

Combining (2), (3) and (8) gives :

Th(z) =
(z − z2A(z)2)A(z)2

(zA(z)2 + 1)(3zA(z)2 − 1)2
.

By (1) (see Section 7.1), one can replace zA3 by A− 1 in above formula and obtain:

Th(z) =
zA(z)

7zA(z)2 − 21zA(z) + 9z + 1
.

Part of the proof of Theorem 54 relies on generating function analysis and do not
completely explain the simplicity of some expressions. For instance, sequences of the
number of different kinds of skeletons (Ssb,a(n) and Shb,a(n)) have nice simple formulas (see
Lemmas 52 and 53) that deserve clean bijective interpretations. Note that these sequences
already appear in OEIS [Slo] (resp. A015518, A191008). Having a bijective proof of the
enumeration of skeletons could be essential to provide an efficient (e.g. sub-quadratic)
random generation algorithm for essentially 4-connected toroidal maps.

8 Conclusion

In this paper, we have generalized transversal structures and some of its applications to
the toroidal case. Using only a local property in the definition, as in the planar case, is not
enough to obtain interesting properties. Indeed, the set of toroidal transversal structures
of a given toroidal map is partitioned into several distributive lattices. The main point of
this paper is to be able to find a global property, called “balanced”, that such an object
may have or may not have. Then, the set of balanced objects defines a unique lattice
whose minimal element has properties useful to apply techniques devised for the planar
case. A challenging question is to see if one can go further and found a generalization of
the balanced property in higher genus. Currently we have no idea of what could be the
answer even for the double torus.
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