1. Let $p : \text{Flower}_5 \to B_2$ be the covering represented in the following Figure.

Call a the lower loop edge of B_2. On what condition related to a does a loop of B_2 lift to a loop in Flower_5? Deduce that for any vertex v of Flower_5, we have $p_*\pi_1(\text{Flower}_5, v) \triangleleft \pi_1(B_2)$, i.e. $\pi_1(\text{Flower}_5, v)$ is normal in $\pi_1(B_2)$. What is the quotient group? Justify your answer in two different ways.

2. Let f be a morphism from the covering $p : H \to G$ to the covering $q : K \to G$. Consider a vertex v in H and a path α in G with initial vertex $p(v)$. Show the identity

$$f(v)\cdot \alpha = f(v, \alpha)$$

3. Show that a covering morphism with H connected, must be the identity.

4. Consider the Petersen graph $P = P(5, 2)$ (see Exercise sheet #2). Let r be the automorphism of P acting on $C_5(5)$ by a one-shift (vertex i is sent to vertex $i + 1$). What is the quotient graph $P/\langle r \rangle$? Can you obtain the same quotient graph as a quotient of the graph (1-skeleton) of the 3 dimensional cube?

5. Give a characterisation of the embedding of $\pi_1(P)$ induced by the quotient in the previous exercise.

6. Prove that there exists a free action of $\mathbb{Z}/n\mathbb{Z}$ on the complete graph K_n if and only if n is odd. What is the quotient graph for $n = 5$? Give a characterisation of the corresponding embedding of $\pi_1(K_5)$ in the fundamental group of the quotient.

7. Give an example of a graph morphism between connected graphs whose edge or vertex fibers all have the same size though the morphism is not a covering.