The structure of quasi-transitive graphs avoiding a minor with applications to the Domino Conjecture.

Louis Esperet*, Ugo Giocanti*, Clément Legrand-Duchesne*

*Université Grenoble Alpes, Laboratoire G-SCOP, France *Université de Bordeaux, LaBRI, France

Séminaire Rauzy, 2023

Wang tiling problem

Wang tiling problem

Image source:

https://commons.wikimedia.org/w/index.php?curid=12128873

Wang tiling problem

Theorem (Berger, '66)

The Wang tiling problem is undecidable.

$\Gamma = \langle S \rangle$: finitely generated group. Assume $S = S^{-1}$.

 $\Gamma = \langle S \rangle$: finitely generated group. Assume $S = S^{-1}.Cay(\Gamma, S)$ is the labelled graph with vertex set Γ and adjacencies xy for every $x, y \in \Gamma$ such that $y \in x \cdot S$.

Cay(\mathbb{Z}^2 , S), with $S = \{(1,0), (-1,0), (0,1), (0,-1)\}$


```
Fix (\Gamma, S).
Pattern of Cay(\Gamma, S): coloring p of \{1_{\Gamma}, s\} for some s \in S.
p appears in a vertex-coloring of Cay(\Gamma, S) if there is a pair (w, w \cdot s) colored p.
```

Fix (Γ, S) .

Pattern of Cay(Γ , S): coloring p of $\{1_{\Gamma}, s\}$ for some $s \in S$.

p appears in a vertex-coloring of $Cay(\Gamma, S)$ if there is a pair $(w, w \cdot s)$ colored *p*.

Domino problem on (Γ, S) :

Input: a finite alphabet Σ and a finite set $\mathcal{F} = \{p_1, \dots, p_t\}$ of forbidden patterns.

Question: Is there a coloring $c : V(G) \to \Sigma$ avoiding \mathcal{F} ?

Domino Problem on groups

Fix (Γ, S) . Pattern of Cay (Γ, S) : coloring p of $\{1_{\Gamma}, s\}$ for some $s \in S$. p appears in a vertex-coloring of Cay (Γ, S) if there is a pair $(w, w \cdot s)$ colored p.

Domino Problem on groups

Fix (Γ, S) . Pattern of Cay (Γ, S) : coloring p of $\{1_{\Gamma}, s\}$ for some $s \in S$. p appears in a vertex-coloring of Cay (Γ, S) if there is a pair $(w, w \cdot s)$ colored p.

Free-groups \simeq groups Γ that admit a tree as a Cayley graph.

Theorem (Karass, Pietrowski, Solitar '73)

 Γ is virtually-free if and only if one/all its Cayley graphs have bounded treewidth.

<u>Claim</u>: If G has bounded degree, then G has bounded treewidth if and only if G is a subgraph of a k-blow up of a tree for some $k \ge 0$.

Theorem (Karass, Pietrowski, Solitar '73)

 Γ is virtually-free if and only if one/all its Cayley graphs have bounded treewidth.

<u>Claim</u>: If G has bounded degree, then G has bounded treewidth if and only if G is a subgraph of a k-blow up of a tree for some $k \ge 0$.

Conjecture (Ballier-Stein 2018)

The domino problem on Γ is decidable if and only if Γ is virtually-free.

A group is planar if one of its Cayley graphs is planar.

A group is planar if one of its Cayley graphs is planar. [Maschke 1896] Exhaustive list of all the planar finite groups. A group is planar if one of its Cayley graphs is planar. [Maschke 1896] Exhaustive list of all the planar finite groups. [Maskit 1965, Zieschang et al. 1980] Full characterization of accumulation-free planar groups. Decidable on virtually-free groups;

[Berger 1966] Undecidable on \mathbb{Z}^2 ;

[Aubrun Barbieri Moutot 2019] Undecidable on fundamental groups of surfaces.

Decidable on virtually-free groups;

[Berger 1966] Undecidable on \mathbb{Z}^2 ;

[Aubrun Barbieri Moutot 2019] Undecidable on fundamental groups of surfaces.

Theorem

The conjecture is true for planar groups.

G: infinite graph.

Ray: 1-ended infinite path $r = (x_1, x_2, x_3, ...)$ in a graph G.

G: infinite graph. Ray: 1-ended infinite path $r = (x_1, x_2, x_3, ...)$ in a graph *G*. $r \sim r'$ if for every finite $X \subseteq_{fin} V(G)$, the infinite components of *r* and *r'* are in the same connected component of $G \setminus X$. *G*: infinite graph. Ray: 1-ended infinite path $r = (x_1, x_2, x_3, ...)$ in a graph *G*. $r \sim r'$ if for every finite $X \subseteq_{fin} V(G)$, the infinite components of *r* and *r'* are in the same connected component of $G \setminus X$. ends of *G*: equivalence classes of rays. *G*: infinite graph. Ray: 1-ended infinite path $r = (x_1, x_2, x_3, ...)$ in a graph *G*. $r \sim r'$ if for every finite $X \subseteq_{fin} V(G)$, the infinite components of *r* and *r'* are in the same connected component of $G \setminus X$. ends of *G*: equivalence classes of rays. How many ends in the following graphs?

Ends

G: infinite graph.

Ray: 1-ended infinite path $r = (x_1, x_2, x_3, ...)$ in a graph G.

 $r \sim r'$ if for every finite $X \subseteq_{fin} V(G)$, the infinite components of r and r' are in the same connected component of $G \setminus X$.

ends of G: equivalence classes of rays.

How many ends in the following graphs?

Ends

G: infinite graph. Ray: 1-ended infinite path $r = (x_1, x_2, x_3, ...)$ in a graph *G*. $r \sim r'$ if for every finite $X \subseteq_{fin} V(G)$, the infinite components of *r* and *r'* are in the same connected component of $G \setminus X$. ends of *G*: equivalence classes of rays. How many ends in the following graphs?

G: infinite graph. Ray: 1-ended infinite path $r = (x_1, x_2, x_3, ...)$ in a graph *G*. $r \sim r'$ if for every finite $X \subseteq_{fin} V(G)$, the infinite components of *r* and *r'* are in the same connected component of $G \setminus X$. ends of *G*: equivalence classes of rays. How many ends in the following graphs?

Theorem (Freudenthal, '44)

A Cayley graph has either 0, 1, 2 or infinitely many ends.

Theorem (Bundgaard-Nielsen '42, Fox '52)

If a group Γ is planar with one end, then it contains the fundamental group of a surface as a subgroup of finite index.

Ends ω, ω' are *k*-distinguishable if there is a set $X \subseteq \Gamma$ of size at most *k* separating their rays.

Ends ω, ω' are *k*-distinguishable if there is a set $X \subseteq \Gamma$ of size at most *k* separating their rays. *G* is accessible if there is some $k \ge 0$ such that all its ends are *k*-distinguishable. Ends ω, ω' are *k*-distinguishable if there is a set $X \subseteq \Gamma$ of size at most *k* separating their rays.

G is accessible if there is some $k \ge 0$ such that all its ends are *k*-distinguishable.

Accessible?

Ends ω, ω' are *k*-distinguishable if there is a set $X \subseteq \Gamma$ of size at most *k* separating their rays.

G is accessible if there is some $k \ge 0$ such that all its ends are *k*-distinguishable.

Accessible?

Accessibility

Ends ω, ω' are *k*-distinguishable if there is a set $X \subseteq \Gamma$ of size at most *k* separating their rays.

G is accessible if there is some $k \ge 0$ such that all its ends are *k*-distinguishable.

Accessible?

Ends ω, ω' are *k*-distinguishable if there is a set $X \subseteq \Gamma$ of size at most *k* separating their rays. *G* is accessible if there is some $k \ge 0$ such that all its ends are *k*-distinguishable. Accessible?

Theorem (Dunwoody 2007)

Planar groups are accessible.

Accessibility

Ends ω, ω' are *k*-distinguishable if there is a set $X \subseteq \Gamma$ of size at most *k* separating their rays. *G* is accessible if there is some $k \ge 0$ such that all its ends are *k*-distinguishable. Accessible?

Theorem (Dunwoody 2007)

Planar groups are accessible.

Theorem (Bass-Serre theory)

If Γ is accessible, then

- either Γ is virtually free
- or Γ contains a finitely generated subgroup with one end.

A graph H is a minor of G if H can be obtained from G after performing the following operations:

- vertex deletions;
- edge deletions;
- edge contractions.
- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.

- vertex deletions;
- edge deletions;
- edge contractions.

A group is planar if one of its Cayley graphs is planar.

A group is planar if one of its Cayley graphs is planar. A group is minor excluded if one of its Cayley graphs excludes a (countable) minor. A group is planar if one of its Cayley graphs is planar.

A group is minor excluded if one of its Cayley graphs excludes a (countable) minor.

<u>Remark:</u> G minor-excluded \Leftrightarrow G is K_{∞} -minor free.

A group is planar if one of its Cayley graphs is planar.

A group is minor excluded if one of its Cayley graphs excludes a (countable) minor.

<u>Remark</u>: G minor-excluded \Leftrightarrow G is K_{∞} -minor free.

Theorem

The Domino conjecture is true for planar groups and more generally for minor-excluding groups.

G: (connected) graph, countable vertex set, locally finite.

Theorem (finite/planar)

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most k whose torsos are either finite or quasi-transitive 3-connected planar minors of G.

Theorem (finite/planar)

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most k whose torsos are either finite or quasi-transitive 3-connected planar minors of G. Moreover, E(T)has finitely many Aut(G)-orbits.

Main result

Theorem (finite treewidth/planar)

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.

Main result

Theorem (finite treewidth/planar)

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T, \mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar. Moreover, E(T) has finitely many Aut(G)-orbits.

Corollary

For every locally finite quasi-transitive graph G avoiding K_{∞} as a minor, there is an integer k such that G is K_k -minor-free.

Generalizes [Thomassen '92] dealing with the 4-connected case.

- Prove results on groups by working in the more general world of quasi-transitive graphs.
- Key tool: canonicity (allows to do induction in the context of tree-decompositions).

- Prove results on groups by working in the more general world of quasi-transitive graphs.
- Key tool: canonicity (allows to do induction in the context of tree-decompositions).

Questions:

- A quasi-transitive graphical reformulation of Domino's conjecture?
- If G is quasi-transitive, is there a proper colouring of G with a finite number of colours such that the colored graph G is quasi-transitive?

- Prove results on groups by working in the more general world of quasi-transitive graphs.
- Key tool: canonicity (allows to do induction in the context of tree-decompositions).

Questions:

- A quasi-transitive graphical reformulation of Domino's conjecture?
- If G is quasi-transitive, is there a proper colouring of G with a finite number of colours such that the colored graph G is quasi-transitive?

Thanks

- *G* is k + 1-connected if $|V| \ge k + 1$ and for every set *X* of at most *k* vertices, $G \setminus X$ is connected.
- G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order 3 separate exactly 2 components, and one of them have size 1.

- *G* is k + 1-connected if $|V| \ge k + 1$ and for every set *X* of at most *k* vertices, $G \setminus X$ is connected.
- G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order 3 separate exactly 2 components, and one of them have size 1.
- 4-connected \Rightarrow quasi-4-connected \Rightarrow 3-connected \Rightarrow 2-connected

Proof idea

G is k + 1-connected if $|V| \ge k + 1$ and for every set *X* of at most *k* vertices, $G \setminus X$ is connected.

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order 3 separate exactly 2 components, and one of them have size 1. Try to combine the following two results:

Theorem (Thomassen '92)

Let G be a quasi-transitive, quasi-4-connected, locally finite graph which excludes K_{∞} as a minor. Then G is planar or has finite treewidth.

G is k + 1-connected if $|V| \ge k + 1$ and for every set *X* of at most *k* vertices, $G \setminus X$ is connected.

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order 3 separate exactly 2 components, and one of them have size 1. Try to combine the following two results:

Theorem (Thomassen '92)

Let G be a quasi-transitive, quasi-4-connected, locally finite graph which excludes K_{∞} as a minor. Then G is planar or has finite treewidth.

In this case there is nothing to decompose!
Theorem (Grohe '16)

Every finite 3-connected graph G has a tree-decomposition of adhesion at most 3 whose torsos are minor of G and are complete graphs on at most 4 vertices or quasi-4-connected graphs.

Theorem (Grohe '16)

Every finite 3-connected graph G has a tree-decomposition of adhesion at most 3 whose torsos are minor of G and are complete graphs on at most 4 vertices or quasi-4-connected graphs.

Bad news: only applies to finite graphs and no canonicity.

Application: Finite presentability.

Theorem (Droms '06)

Planar groups are finitely presented.

Theorem (Droms '06)

Planar groups are finitely presented.

Corollary

Every minor-excluding finitely generated group Γ is finitely presented.

Proof based on the approach of [Hamann '18]

Accessibility: first defined in the context of groups.

A ray in a graph G is an infinite path $r = (x_1, x_2, x_3, ...)$.

 $r \simeq r'$ iff for every finite $S \subseteq V(G)$, there is an inifinite component of G containing an infinite subpath of both r and r'.

An end ω is a class of equivalence of rays in a graph.

 ω and ω' are *k*-distinguishable if there exist $S \subseteq V(G)$ of size at most *k* separating all their rays.

Accessibility: first defined in the context of groups.

A ray in a graph G is an infinite path $r = (x_1, x_2, x_3, ...)$.

 $r \simeq r'$ iff for every finite $S \subseteq V(G)$, there is an inifinite component of G containing an infinite subpath of both r and r'.

An end ω is a class of equivalence of rays in a graph.

 ω and ω' are *k*-distinguishable if there exist $S \subseteq V(G)$ of size at most *k* separating all their rays.

G is accessible if there exists $k \in \mathbb{N}$ such that every two distinct ends are *k*-distinguishable.

[Woess '87] Locally finite quasi-transitive bounded treewidth graphs are accessible.

[Woess '87] Locally finite quasi-transitive bounded treewidth graphs are accessible.

[Dunwoody '07] Locally finite quasi-transitive planar graphs are accessible.

[Woess '87] Locally finite quasi-transitive bounded treewidth graphs are accessible.

[Dunwoody '07] Locally finite quasi-transitive planar graphs are accessible.

Corollary

Locally finite quasi-transitive graphs that exclude K_{∞} as a minor are accessible.