## Twin-width of ordered structures

Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk

Université Grenoble Alpes, Laboratoire G-SCOP
Umeå February 2023

## Overview

[BKTW 20] Twin-width I: tractable FO model checking [BGKTW 20] Twin-width II: small classes
[BGKTW 20] Twin-width III: max independent set, min dominating set, and coloring
[BGOSTT 21] Twin-width IV: ordered graphs and matrices
[BGOT 22] Twin-width V: linear minors, modular counting, and matrix multiplication
[BKRT 21] Twin-width VI: the lens of contraction sequences
[BGTT 22] Twin-width VII: groups
[BCKKLT 22] Twin-width VIII: delineation and win-wins
http://perso.ens-lyon.fr/edouard.bonnet/twinwidth.html

## Overview

[BKTW 20] Twin-width I: tractable FO model checking [BGKTW 20] Twin-width II: small classes
[BGKTW 20] Twin-width III: max independent set, min dominating set, and coloring
[BGOSTT 21] Twin-width IV: ordered graphs and matrices
[BGOT 22] Twin-width V : linear minors, modular counting, and matrix multiplication
[BKRT 21] Twin-width VI: the lens of contraction sequences
[BGTT 22] Twin-width VII: groups
[BCKKLT 22] Twin-width VIII: delineation and win-wins
http://perso.ens-lyon.fr/edouard.bonnet/twinwidth.html

## Definition (Contraction sequence)

Contraction sequence of $G=(V, E)$ : sequence of trigraphs ( $G=G_{n}, G_{n-1}, \ldots, G_{1}$ ) where $G_{i-1}$ is obtained by identifying two vertices of $G_{i}$.

## Definition (Contraction sequence)

Contraction sequence of $G=(V, E)$ : sequence of trigraphs ( $G=G_{n}, G_{n-1}, \ldots, G_{1}$ ) where $G_{i-1}$ is obtained by identifying two vertices of $G_{i}$.
$V\left(G_{i}\right) \leftrightarrow$ partition of $V(G)$.

## Definition (Contraction sequence)

Contraction sequence of $G=(V, E)$ : sequence of trigraphs
( $G=G_{n}, G_{n-1}, \ldots, G_{1}$ ) where $G_{i-1}$ is obtained by identifying two vertices of $G_{i}$.
$V\left(G_{i}\right) \leftrightarrow$ partition of $V(G)$.
For every $X, Y \in V\left(G_{i}\right)$ put:

- An edge $X Y \in E\left(G_{i}\right)$ if $G[X, Y]$ is a biclique;
- A nonedge in $G_{i}$ if $G[X, Y]$ has no edge;
- A red edge $X Y \in R\left(G_{i}\right)$ otherwise.


A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.


A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.


A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.


A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.


A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.


A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.


A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that $G_{i}$ is obtained by performing one contraction in $G_{i+1}$.

## Definition (Contraction sequence,twin-width)

Contraction sequence of $G=(V, E)$ : sequence of trigraphs
( $G=G_{n}, G_{n-1}, \ldots, G_{1}$ ) where $G_{i-1}$ is obtained by identifying two vertices of $G_{i}$.
$V\left(G_{i}\right) \leftrightarrow$ partition of $V(G)$.
For every $X, Y \in V\left(G_{i}\right)$ put:

- An edge if $G[X, Y]$ is a biclique;
- A nonedge if $G[X, Y]$ has no edge;
- A red edge otherwise.
$\left(G_{i}\right)_{i}$ has width at most $d$ if every $G_{i}$ has red degree at most $d$.
The twin-width of $G$ is the minimum width a contraction sequence of $G$ could have.


## Warnings

- "Vertex-contraction" means "vertex-identification".


## Warnings

- "Vertex-contraction" means "vertex-identification".
- Twin-width is not decreasing when taking subgraphs.


## Warnings

- "Vertex-contraction" means "vertex-identification".
- Twin-width is not decreasing when taking subgraphs. However it changes when considering induced subgraphs: for every $H \leq_{\text {ind }} G$, $t w w(H) \leq t w w(G)$.


## Examples and properties

- Cographs $\Leftrightarrow$ Graphs with twin-width 0 ;


## Examples and properties

- Cographs $\Leftrightarrow$ Graphs with twin-width 0 ;
- Trees have twin-width at most 2 ;


## Examples and properties

- Cographs $\Leftrightarrow$ Graphs with twin-width 0 ;
- Trees have twin-width at most 2 ;
- [JP 22] Graphs of treewidth $t$ have twin-width at most $3 \cdot 2^{t-1}$;


## Examples and properties

- Cographs $\Leftrightarrow$ Graphs with twin-width 0 ;
- Trees have twin-width at most 2 ;
- [JP 22] Graphs of treewidth $t$ have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;


## Examples and properties

- Cographs $\Leftrightarrow$ Graphs with twin-width 0 ;
- Trees have twin-width at most 2 ;
- [JP 22] Graphs of treewidth $t$ have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;
- $K_{t}$-minor free graphs have twin-width $2^{2^{2^{\mathcal{O}(t)}}}$;


## Examples and properties

- Cographs $\Leftrightarrow$ Graphs with twin-width 0 ;
- Trees have twin-width at most 2 ;
- [JP 22] Graphs of treewidth $t$ have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;
- $K_{t}$-minor free graphs have twin-width $2^{2^{2^{\mathcal{O}(t)}}}$;
- Graphs with clique-width $t$ have twin-width $2^{\mathcal{O}(t)}$;


## Examples and properties

- Cographs $\Leftrightarrow$ Graphs with twin-width 0 ;
- Trees have twin-width at most 2 ;
- [JP 22] Graphs of treewidth $t$ have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;
- $K_{t}$-minor free graphs have twin-width $2^{2^{\mathcal{O}^{\mathcal{O}(t)}}}$;
- Graphs with clique-width $t$ have twin-width $2^{\mathcal{O}(t)}$;
- Permutation graphs $G_{\sigma}$ such that $\sigma$ avoids a pattern $\tau$ have twin-width $2^{\mathcal{O}(|\tau|)}$;
- Cographs $\Leftrightarrow$ Graphs with twin-width 0 ;
- Trees have twin-width at most 2 ;
- [JP 22] Graphs of treewidth $t$ have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;
- $K_{t}$-minor free graphs have twin-width $2^{2^{\mathcal{O}^{\mathcal{O}(t)}}}$;
- Graphs with clique-width $t$ have twin-width $2^{\mathcal{O}(t)}$;
- Permutation graphs $G_{\sigma}$ such that $\sigma$ avoids a pattern $\tau$ have twin-width $2^{\mathcal{O}(|\tau|)}$;
- ...


## Algorithmic aspect of twin-width

Theorem (Bergé, Bonnet, Déprés 22)
Deciding whether a given graph has twin-width at most 4 is NP-Complete.

## Algorithmic aspect of twin-width

## Theorem (Bergé, Bonnet, Déprés 22)

Deciding whether a given graph has twin-width at most 4 is NP-Complete.

## Question (Fundamental question of twin-width)

Can we approximate twin-width?

## Algorithmic aspect of twin-width

## Theorem (Bergé, Bonnet, Déprés 22)

Deciding whether a given graph has twin-width at most 4 is NP-Complete.

## Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking $d, G$ as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if $G$ has twin-width more than $d$, or an $f(d)$-sequence otherwise?

## Algorithmic aspect of twin-width

## Theorem (Bergé, Bonnet, Déprés 22)

Deciding whether a given graph has twin-width at most 4 is NP-Complete.

## Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking $d, G$ as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if $G$ has twin-width more than $d$, or an $f(d)$-sequence otherwise?

Positive answer for every known "interesting family" of bounded twin-width.

## FO model checking on graphs

$\varphi \in \mathrm{FO}\left(E^{(2)}\right)$ : first order formula describing a graph problem.

## FO model checking on graphs

$\varphi \in \mathrm{FO}\left(E^{(2)}\right)$ : first order formula describing a graph problem.

## Example

$$
\varphi:=\exists x_{1}, \exists x_{2}, \ldots, \exists x_{k}, \forall x,\left(\bigvee_{i=1}^{k} x=x_{i}\right) \vee\left(\bigvee_{i=1}^{k} E\left(x, x_{i}\right)\right)
$$

corresponds to $k$-Dominating Set problem.

FO model checking on graphs
$\varphi \in \mathrm{FO}\left(E^{(2)}\right)$ : first order formula describing a graph problem.

## Example

$H$ : fixed graph with $V(H)=\left\{v_{1}, \ldots, v_{k}\right\}$.

$$
\begin{gathered}
\varphi_{H}:=\exists x_{1}, \exists x_{2}, \ldots, \exists x_{k}, \\
\left(\bigwedge_{i \leq i<j \leq k} x_{i} \neq x_{j}\right) \wedge\left(\bigwedge_{v_{i} v_{j} \in E(H)} E\left(x_{i}, x_{j}\right)\right) \wedge\left(\bigwedge_{v_{i} v_{j} \in E(\bar{H})} \neg E\left(x_{i}, x_{j}\right)\right)
\end{gathered}
$$

## FO model checking on graphs

$\varphi \in \mathrm{FO}\left(E^{(2)}\right)$ : first order formula describing a graph problem.

## Example

$H$ : fixed graph with $V(H)=\left\{v_{1}, \ldots, v_{k}\right\}$.

$$
\begin{gathered}
\varphi_{H}:=\exists x_{1}, \exists x_{2}, \ldots, \exists x_{k}, \\
\left(\bigwedge_{1 \leq i<j \leq k} x_{i} \neq x_{j}\right) \wedge\left(\bigwedge_{v_{i} v_{j} \in E(H)} E\left(x_{i}, x_{j}\right)\right) \wedge\left(\bigwedge_{v_{i} v_{j} \in E(\bar{H})} \neg E\left(x_{i}, x_{j}\right)\right)
\end{gathered}
$$

corresponds to the $H$-Induced Subgraph problem.

## FO model checking on graphs

$\varphi \in \mathrm{FO}\left(E^{(2)}\right)$ : first order formula describing a graph problem.

## Definition

A class of graphs $C$ is FO-FPT if there is an algorithm deciding for every $G \in \mathcal{C}$ whether $G \vDash \varphi$ in time $\mathcal{O}\left(f(|\varphi|) \cdot n^{\mathcal{O}(1)}\right)$ for some computable $f$.

## FO model checking on graphs

$\varphi \in \mathrm{FO}\left(E^{(2)}\right)$ : first order formula describing a graph problem.

## Definition

A class of graphs $\mathcal{C}$ is FO-FPT if there is an algorithm deciding for every $G \in \mathcal{C}$ whether $G \vDash \varphi$ in time $\mathcal{O}\left(f(|\varphi|) \cdot n^{\mathcal{O}(1)}\right)$ for some computable $f$.

## Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

There exists an algorithm that, given a graph $G$, a certificate that $t w w(G) \leq d$ and a formula $\varphi$, decides whether $G \vDash \varphi$ in time $\mathcal{O}(f(d,|\varphi|) \cdot n)$.

## FO model checking on graphs

$\varphi \in \mathrm{FO}\left(E^{(2)}\right)$ : first order formula describing a graph problem.

## Definition

A class of graphs $\mathcal{C}$ is FO-FPT if there is an algorithm deciding for every $G \in \mathcal{C}$ whether $G \vDash \varphi$ in time $\mathcal{O}\left(f(|\varphi|) \cdot n^{\mathcal{O}(1)}\right)$ for some computable $f$.

## Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

There exists an algorithm that, given a graph $G$, a certificate that $t w w(G) \leq d$ and a formula $\varphi$, decides whether $G \vDash \varphi$ in time $\mathcal{O}(f(d,|\varphi|) \cdot n)$.

## Remark

Existence of an approximation algorithm for twin-width $\Rightarrow$ classes of bounded twin-width are FO-FPT.

## FO+MOD model checking on graphs

$\varphi \in \mathrm{FO}+\operatorname{MOD}\left(E^{(2)}\right)$ : first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]} x, \phi(x)$ expressing "there exists $i \bmod p$ witnesses $x$ for $\phi^{\prime \prime}$.

## FO+MOD model checking on graphs

$\varphi \in \mathrm{FO}+\operatorname{MOD}\left(E^{(2)}\right)$ : first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]} x, \phi(x)$ expressing "there exists $i \bmod p$ witnesses $x$ for $\phi^{\prime \prime}$.

## Example

$$
\varphi^{2}(x, y):=\exists^{1[2]} z, E(x, z) \wedge E(z, y)
$$

"there exists an odd number of $x y$-paths of size 2 ".

## FO+MOD model checking on graphs

$\varphi \in \mathrm{FO}+\operatorname{MOD}\left(E^{(2)}\right)$ : first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]} x, \phi(x)$ expressing "there exists $i \bmod p$ witnesses $x$ for $\phi^{\prime \prime}$.

## Example

$$
\varphi^{2}(x, y):=\exists^{1[2]} z, E(x, z) \wedge E(z, y)
$$

"there exists an odd number of $x y$-paths of size 2 ".

## Example

$$
\psi(x, y):=\exists^{0[2]} z, E(x, z) \wedge \varphi^{2}(z, y)
$$

## FO+MOD model checking on graphs

$\varphi \in \mathrm{FO}+\operatorname{MOD}\left(E^{(2)}\right)$ : first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]} x, \phi(x)$ expressing "there exists $i \bmod p$ witnesses $x$ for $\phi^{\prime \prime}$.

## Example

$$
\varphi^{2}(x, y):=\exists^{1[2]} z, E(x, z) \wedge E(z, y)
$$

"there exists an odd number of $x y$-paths of size 2 ".

## Example

$$
\psi(x, y):=\exists^{0[2]} z, E(x, z) \wedge \varphi^{2}(z, y)
$$

"there exists an even number of $x y$-paths of size 3 ".

## FO+MOD model checking on graphs

$\varphi \in \mathrm{FO}+\operatorname{MOD}\left(E^{(2)}\right)$ : first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]} x, \phi(x)$ expressing "there exists $i \bmod p$ witnesses $x$ for $\phi^{\prime \prime}$.

## Definition

A class of graphs $\mathcal{C}$ is (FO+MOD)-FPT if there is an algorithm deciding for every $G \in \mathcal{C}$ whether $G \vDash \varphi$ in time $\mathcal{O}\left(f(|\varphi|) \cdot n^{\mathcal{O}(1)}\right)$ for some computable $f$.

## FO+MOD model checking on graphs

$\varphi \in \mathrm{FO}+\operatorname{MOD}\left(E^{(2)}\right)$ : first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]} x, \phi(x)$ expressing "there exists $i \bmod p$ witnesses $x$ for $\phi^{\prime \prime}$.

## Definition

A class of graphs $\mathcal{C}$ is (FO+MOD)-FPT if there is an algorithm deciding for every $G \in \mathcal{C}$ whether $G \vDash \varphi$ in time $\mathcal{O}\left(f(|\varphi|) \cdot n^{\mathcal{O}(1)}\right)$ for some computable $f$.

## Theorem (BKTW 20, BGOT 22)

There exists an algorithm that, given a graph $G$, a certificate that $\operatorname{tww}(G) \leq d$ and a FO+MOD formula $\varphi$, decides whether $G \vDash \varphi$ in time $\mathcal{O}(f(d,|\varphi|) \cdot n)$.

## Interpretations and transductions

Interpretation: $\varphi(x, y) \in F O\left(E^{(2)}\right)$ (or $F O+M O D\left(E^{(2)}\right)$ ) on two free variables $x, y$. For every graph $G$, define $\varphi(G)$ on vertex set $V(G)$ and edge set: $E(\varphi(G)):=\{u v, G \vDash \varphi(u, v)\}$.

## Interpretations and transductions

Interpretation: $\varphi(x, y) \in F O\left(E^{(2)}\right)\left(\right.$ or $\left.F O+M O D\left(E^{(2)}\right)\right)$ on two free variables $x, y$. For every graph $G$, define $\varphi(\boldsymbol{G})$ on vertex set $V(\boldsymbol{G})$ and edge set: $E(\varphi(G)):=\{u v, G \vDash \varphi(u, v)\}$.

## Example

$$
\varphi(x, y)=\neg E(x, y)
$$

$\varphi(G)=\bar{G}$ : complement graph.

## Interpretations and transductions

Interpretation: $\varphi(x, y) \in F O\left(E^{(2)}\right)$ (or $F O+M O D\left(E^{(2)}\right)$ ) on two free variables $x, y$. For every graph $G$, define $\varphi(G)$ on vertex set $V(G)$ and edge set: $E(\varphi(G)):=\{u v, G \vDash \varphi(u, v)\}$.

## Example

$$
\varphi(x, y)=\neg E(x, y)
$$

$\varphi(G)=\bar{G}$ : complement graph.

## Example

$$
\varphi(x, y)=E(x, y) \vee(\exists z, E(x, z) \wedge E(z, y))
$$

## Interpretations and transductions

Interpretation: $\varphi(x, y) \in F O\left(E^{(2)}\right)\left(\right.$ or $\left.F O+M O D\left(E^{(2)}\right)\right)$ on two free variables $x, y$. For every graph $G$, define $\varphi(G)$ on vertex set $V(G)$ and edge set: $E(\varphi(G)):=\{u v, G \vDash \varphi(u, v)\}$.

## Example

$$
\varphi(x, y)=\neg E(x, y)
$$

$\varphi(G)=\bar{G}$ : complement graph.

## Example

$$
\varphi(x, y)=E(x, y) \vee(\exists z, E(x, z) \wedge E(z, y))
$$

$\varphi(G)=G^{2}$ : square graph.

## Interpretations and transductions

Interpretation: $\varphi(x, y) \in F O\left(E^{(2)}\right)$ (or $F O+M O D\left(E^{(2)}\right)$ ) on two free variables $x, y$. For every graph $G$, define $\varphi(G)$ on vertex set $V(G)$ and edge set: $E(\varphi(G)):=\{u v, G \vDash \varphi(u, v)\}$.
$\mathcal{C}$ : class of graphs $\rightarrow \varphi(\mathcal{C}):=\operatorname{Clos}\{\varphi(G), G \in \mathcal{C}\}$.

## Independence

$\mathcal{G}:=$ class of all finite graphs.

## Independence

$\mathcal{G}:=$ class of all finite graphs.

## Definition

A hereditary class $\mathcal{C}$ of graphs is independent if there exists an interpretation $\varphi(x, y) \in F O$ such that $\varphi(\mathcal{C})=\mathcal{C}$.
Otherwise it is dependent.

## Independence

$\mathcal{G}:=$ class of all finite graphs.

## Definition

A hereditary class $\mathcal{C}$ of graphs is independent if there exists an interpretation $\varphi(x, y) \in F O$ such that $\varphi(\mathcal{C})=\mathcal{C}$.
Otherwise it is dependent.

## Example

$\mathcal{C}:=\operatorname{Clos}\left(\left\{K_{n}^{(1)}, n \in \mathcal{N}\right\}\right)$ is independent.

## Independence

$\mathcal{G}:=$ class of all finite graphs.

## Definition

A hereditary class $\mathcal{C}$ of graphs is independent if there exists an interpretation $\varphi(x, y) \in F O$ such that $\varphi(\mathcal{C})=\mathcal{C}$.
Otherwise it is dependent.

## Example

$\mathcal{C}:=\operatorname{Clos}\left(\left\{K_{n}^{(1)}, n \in \mathcal{N}\right\}\right)$ is independent.

$$
\varphi(x, y):=\exists z,(\operatorname{deg}(z) \leq 2) \wedge E(x, z) \wedge E(z, y) .
$$

## Independence

$\mathcal{G}:=$ class of all finite graphs.

## Definition

A hereditary class $C$ of graphs is independent if there exists an interpretation $\varphi(x, y) \in F O$ such that $\varphi(\mathcal{C})=\mathcal{G}$.
Otherwise it is dependent.

## Example

$\mathcal{C}:=\operatorname{Clos}\left(\left\{K_{n}^{(1)}, n \in \mathcal{N}\right\}\right)$ is independent.

$$
\varphi(x, y):=\exists z,\left(\forall z^{\prime}, E\left(z, z^{\prime}\right) \Rightarrow\left(z^{\prime}=x\right) \vee\left(z^{\prime}=y\right)\right) \wedge E(x, z) \wedge E(z, y)
$$

## Independence

$\mathcal{G}:=$ class of all finite graphs.

## Definition

A hereditary class $\mathcal{C}$ of graphs is independent if there exists an interpretation $\varphi(x, y) \in F O$ such that $\varphi(\mathcal{C})=\mathcal{C}$.
Otherwise it is dependent.

## Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

If $\mathcal{C}$ is a class of graphs of twin-width at most $t$ and $\varphi(x, y)$ an interpretation, then:

$$
t w w(\varphi(\mathcal{C})) \leq f(t,|\varphi|)
$$

for some computable $f$.

## Independence

$\mathcal{G}:=$ class of all finite graphs.

## Definition

A hereditary class $\mathcal{C}$ of graphs is independent if there exists an interpretation $\varphi(x, y) \in F O$ such that $\varphi(\mathcal{C})=\mathcal{C}$.
Otherwise it is dependent.

## Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

If $\mathcal{C}$ is a class of graphs of twin-width at most $t$ and $\varphi(x, y)$ an interpretation, then:

$$
t w w(\varphi(\mathcal{C})) \leq f(t,|\varphi|)
$$

for some computable $f$.

- Also true for FO+MOD interpretations;
- Classes of graphs of bounded twin-width are dependent.


## Twin-width of ordered structures

Graphs are given together with a total order on their vertices. Equivalent to work on an adjacency matrix of $G$.


Left: Total order on $V(G): a<b<c<d<e<f<g$. Right: the associated ordered adjacency matrix.

Twin-width of ordered structures


## Remark

A graph $G$ has twin-width at most $d$ if and only if there is a total ordering $<$ of $V(G)$ such that $(G,<)$ has twin-width at most $d$.

## Remark

A graph $G$ has twin-width at most $d$ if and only if there is a total ordering $<$ of $V(G)$ such that $(G,<)$ has twin-width at most $d$.

Definition of twin-width can be extended to matrices with entries on a finite alphabet (e.g. $\mathbb{F}_{q}$ ).

## Algorithmic aspect of twin-width for ordered structures

## Theorem (BGOSTT 21)

There is an algorithm that, given an ordered graph $(G,<)$ and an integer $d$, returns in time $\mathcal{O}\left(f(d) n^{2} \log (n)\right)$ :

- "No" if $\operatorname{tww}(G)>d$;
- a $g(d)$-sequence otherwise.


## Algorithmic aspect of twin-width for ordered structures

## Theorem (BGOSTT 21)

There is an algorithm that, given an ordered graph $(G,<)$ and an integer $d$, returns in time $2^{2^{\left.2^{2^{O}\left(d^{2} \log (d)\right.}\right)}} n^{2} \log (n)$ :

- "No" if $\operatorname{tww}(G)>d$;
- a $2^{2^{2^{\mathcal{O}}\left(d^{4}\right)}}$-sequence otherwise.


## Algorithmic aspect of twin-width for ordered structures

## Theorem (BGOSTT 21)

There is an algorithm that, given an ordered graph $(G,<)$ and an integer $d$, returns in time $\mathcal{O}\left(f(d) n^{2} \log (n)\right)$ :

- "No" if $\operatorname{tww}(G)>d$;
- a $g(d)$-sequence otherwise.

Characterizations of twin-width boundedness in the ordered case

## Theorem (Graph version)

Let $\mathcal{C}$ be a hereditary class of ordered graphs. The following are equivalent.
(1) $\mathcal{C}$ has bounded twin-width;
(2) $C$ is $F O-F P T$;
(3) $C$ is $(F O+M O D)-F P T$;
(4) $\mathcal{C}$ is dependent;
(5) $C$ is $(F O+M O D)$-dependent;
(6) $C$ contains $2^{O(n)}$ ordered $n$-vertex graphs.
(1) Contains less than $\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} k$ ! ordered $n$-vertex graphs, for some $n$.

## Matrix multiplication

$A, B$ : matrices over $\mathbb{F}_{2}\left(\right.$ or $\left.\mathbb{F}_{k}\right)$.
Goal: Compute $A \cdot B$ in time $f(t w w(A), t w w(B)) \cdot n^{\mathcal{O}(1)}$.

## Matrix multiplication

$A, B$ : matrices over $\mathbb{F}_{2}\left(\right.$ or $\left.\mathbb{F}_{k}\right)$.
Goal: Compute $A \cdot B$ in time $f(t w w(A), t w w(B)) \cdot n^{\mathcal{O}(1)}$.

$$
\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right)=\left(\begin{array}{cc}
A B & 0 \\
0 & B A
\end{array}\right)
$$

allows to reduce to the problem of squaring a matrix.

## Graph interpretation

## Definition

$G$ : graph. $G^{[2]}$ : modular square of $G$, with same vertices and:

$$
E\left(G^{[2]}\right):=\{u v:|N(u) \cap N(v)|=1 \quad(\bmod 2)\} .
$$

## Graph interpretation

## Definition

$G$ : graph. $G^{[2]}$ : modular square of $G$, with same vertices and:

$$
E\left(G^{[2]}\right):=\{u v:|N(u) \cap N(v)|=1 \quad(\bmod 2)\} .
$$

## Remark

The adjacency matrices of $G^{[2]}$ are square of the ones of $G$.

## Graph interpretation

## Definition

$G$ : graph. $G^{[2]}$ : modular square of $G$, with same vertices and:

$$
E\left(G^{[2]}\right):=\{u v:|N(u) \cap N(v)|=1 \quad(\bmod 2)\} .
$$

## Remark

The adjacency matrices of $G^{[2]}$ are square of the ones of $G$.


## A first "algorithm"

$\varphi^{[2]}(x, y):=\exists^{1[2]} z, E(x, z) \wedge E(z, y)$. For every $G: \varphi^{[2]}(G)=G^{[2]}$.

A first "algorithm"
$\varphi^{[2]}(x, y):=\exists^{1[2]} z, E(x, z) \wedge E(z, y)$. For every $G: \varphi^{[2]}(G)=G^{[2]}$.

## Theorem

- Given a twin-decomposition of width d of $G$, a twin-decomposition of width $f(d)$ of $G^{[2]}$ can be computed in time $f(d) \cdot n$.
- Together with approximation algorithm + previous remarks $\rightarrow$ there is a $\mathcal{O}_{d, q}\left(n^{2} \log (n)\right)$-time algorithm taking $A, B n \times n$ matrices and returning $A B$.

A first "algorithm"
$\varphi^{[2]}(x, y):=\exists^{1[2]} z, E(x, z) \wedge E(z, y)$. For every $G: \varphi^{[2]}(G)=G^{[2]}$.

## Theorem

- Given a twin-decomposition of width d of $G$, a twin-decomposition of width $f(d)$ of $G^{[2]}$ can be computed in time $f(d) \cdot n$.
- Together with approximation algorithm + previous remarks $\rightarrow$ there is a $\mathcal{O}_{d, q}\left(n^{2} \log (n)\right)$-time algorithm taking $A, B n \times n$ matrices and returning $A B$.

Completely unpractical

## A "real" algorithm for matrix multiplication

## Theorem

There exists a $\mathcal{O}\left(d^{2} 4^{d} n\right)$-time algorithm that, given a graph $G$ and a certificate that $t w w(G) \leq d$, outputs a certificate that $t w w\left(\boldsymbol{G}^{[2]}\right)=\mathcal{O}\left(d^{2} 2^{d}\right)$ encoding $G^{[2]}$.

A "real" algorithm for matrix multiplication

## Theorem

There exists a $\mathcal{O}\left(d^{2} 4^{d} n\right)$-time algorithm that, given a graph $G$ and a certificate that $t w w(G) \leq d$, outputs a certificate that $t w w\left(G^{[2]}\right)=\mathcal{O}\left(d^{2} 2^{d}\right)$ encoding $G^{[2]}$.
$\rightarrow$ Extends to a FPT-algorithm for matrix multiplication over $\mathbb{F}_{2}$ with same complexity.

A "real" algorithm for matrix multiplication

## Theorem

There exists a $\mathcal{O}\left(d^{2} 4^{d} n\right)$-time algorithm that, given a graph $G$ and a certificate that $t w w(G) \leq d$, outputs a certificate that $t w w\left(G^{[2]}\right)=\mathcal{O}\left(d^{2} 2^{d}\right)$ encoding $G^{[2]}$.
$\rightarrow$ Extends to a FPT-algorithm for matrix multiplication over $\mathbb{F}_{2}$ with same complexity.
$\rightarrow$ Extends over $\mathbb{F}_{q}$ for $q$ : prime power.

A "real" algorithm for matrix multiplication

## Theorem

There exists a $\mathcal{O}\left(d^{2} 4^{d} n\right)$-time algorithm that, given a graph $G$ and a certificate that $t w w(G) \leq d$, outputs a certificate that $t w w\left(\boldsymbol{G}^{[2]}\right)=\mathcal{O}\left(d^{2} 2^{d}\right)$ encoding $G^{[2]}$.
$\rightarrow$ Extends to a FPT-algorithm for matrix multiplication over $\mathbb{F}_{2}$ with same complexity.
$\rightarrow$ Extends over $\mathbb{F}_{q}$ for $q$ : prime power.
Can be combined with approximation algorithm to give a $\mathcal{O}_{d, q}\left(n^{2} \log (n)\right)$ algorithm computing product of matrices $A$ and $B$ when $t w w(A), t w w(B) \leq d$.

Thanks

