Twin-width of ordered structures

Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk

Université Grenoble Alpes, Laboratoire G-SCOP

Umeå February 2023

[BKTW 20] Twin-width I: tractable FO model checking

[BGKTW 20] Twin-width II: small classes

[BGKTW 20] Twin-width III: max independent set, min dominating set, and coloring

[BGOSTT 21] Twin-width IV: ordered graphs and matrices

[BGOT 22] Twin-width V: linear minors, modular counting, and matrix multiplication

[BKRT 21] Twin-width VI: the lens of contraction sequences

[BGTT 22] Twin-width VII: groups

[BCKKLT 22] Twin-width VIII: delineation and win-wins

http://perso.ens-lyon.fr/edouard.bonnet/twinwidth.html

[BKTW 20] Twin-width I: tractable FO model checking

[BGKTW 20] Twin-width II: small classes

[BGKTW 20] Twin-width III: max independent set, min dominating set, and coloring

[BGOSTT 21] Twin-width IV: ordered graphs and matrices

[BGOT 22] Twin-width V: linear minors, modular counting, and matrix multiplication

[BKRT 21] Twin-width VI: the lens of contraction sequences

[BGTT 22] Twin-width VII: groups

[BCKKLT 22] Twin-width VIII: delineation and win-wins

http://perso.ens-lyon.fr/edouard.bonnet/twinwidth.html

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs $(G = G_n, G_{n-1}, \dots, G_1)$ where G_{i-1} is obtained by identifying two vertices of G_i .

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs $(G = G_n, G_{n-1}, \dots, G_1)$ where G_{i-1} is obtained by identifying two vertices of G_i . $V(G_i) \leftrightarrow$ partition of V(G).

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs

 $(G = G_n, G_{n-1}, \dots, G_1)$ where G_{i-1} is obtained by identifying two vertices of G_i .

 $V(G_i) \leftrightarrow \text{partition of } V(G).$

For every $X, Y \in V(G_i)$ put:

- An edge $XY \in E(G_i)$ if G[X, Y] is a biclique;
- A nonedge in G_i if G[X, Y] has no edge;
- A red edge $XY \in R(G_i)$ otherwise.

Definition (Contraction sequence, twin-width)

Contraction sequence of G = (V, E): sequence of trigraphs $(G = G_n, G_{n-1}, \dots, G_1)$ where G_{i-1} is obtained by identifying two vertices of G_i . $V(G_i) \leftrightarrow$ partition of V(G).

For every $X, Y \in V(G_i)$ put:

- An edge if *G*[*X*, *Y*] is a biclique;
- A nonedge if G[X, Y] has no edge;
- A red edge otherwise.

 $(G_i)_i$ has width at most d if every G_i has red degree at most d. The twin-width of G is the minimum width a contraction sequence of G could have. • "Vertex-contraction" means "vertex-identification".

- "Vertex-contraction" means "vertex-identification".
- Twin-width is not decreasing when taking subgraphs.

- "Vertex-contraction" means "vertex-identification".
- Twin-width is not decreasing when taking subgraphs. However it changes when considering induced subgraphs: for every $H \leq_{ind} G$, $tww(H) \leq tww(G)$.

• Cographs \Leftrightarrow Graphs with twin-width 0;

- Cographs \Leftrightarrow Graphs with twin-width 0;
- Trees have twin-width at most 2;

- Cographs \Leftrightarrow Graphs with twin-width 0;
- Trees have twin-width at most 2;
- [JP 22] Graphs of treewidth t have twin-width at most $3 \cdot 2^{t-1}$;

- Cographs ⇔ Graphs with twin-width 0;
- Trees have twin-width at most 2;
- [JP 22] Graphs of treewidth t have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;

- Cographs \Leftrightarrow Graphs with twin-width 0;
- Trees have twin-width at most 2;
- [JP 22] Graphs of treewidth t have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;
- K_t -minor free graphs have twin-width $2^{2^{2^{O(t)}}}$;

- Cographs \Leftrightarrow Graphs with twin-width 0;
- Trees have twin-width at most 2;
- [JP 22] Graphs of treewidth t have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;
- K_t -minor free graphs have twin-width $2^{2^{2^{O(t)}}}$;
- Graphs with clique-width t have twin-width $2^{\mathcal{O}(t)}$;

- Cographs ⇔ Graphs with twin-width 0;
- Trees have twin-width at most 2;
- [JP 22] Graphs of treewidth t have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;
- K_t -minor free graphs have twin-width $2^{2^{2^{O(t)}}}$;
- Graphs with clique-width t have twin-width $2^{\mathcal{O}(t)}$;
- Permutation graphs G_{σ} such that σ avoids a pattern τ have twin-width $2^{\mathcal{O}(|\tau|)};$

Examples and properties

- Cographs ⇔ Graphs with twin-width 0;
- Trees have twin-width at most 2;
- [JP 22] Graphs of treewidth t have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;
- K_t -minor free graphs have twin-width $2^{2^{2^{O(t)}}}$;
- Graphs with clique-width t have twin-width $2^{\mathcal{O}(t)}$;
- Permutation graphs G_{σ} such that σ avoids a pattern τ have twin-width $2^{\mathcal{O}(|\tau|)};$

• ...

Deciding whether a given graph has twin-width at most 4 is NP-Complete.

Deciding whether a given graph has twin-width at most 4 is NP-Complete.

Question (Fundamental question of twin-width)

Can we approximate twin-width?

Deciding whether a given graph has twin-width at most 4 is NP-Complete.

Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking d, G as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if G has twin-width more than d, or an f(d)-sequence otherwise?

Deciding whether a given graph has twin-width at most 4 is NP-Complete.

Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking d, G as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if G has twin-width more than d, or an f(d)-sequence otherwise?

Positive answer for every known "interesting family" of bounded twin-width.

$\varphi \in FO(E^{(2)})$: first order formula describing a graph problem.

Example

$\varphi \in FO(E^{(2)})$: first order formula describing a graph problem.

$\varphi := \exists x_1, \exists x_2, \dots, \exists x_k, \forall x, \left(\bigvee_{i=1}^k x = x_i\right) \lor \left(\bigvee_{i=1}^k E(x, x_i)\right)$

corresponds to *k*-Dominating Set problem.

 $\varphi \in FO(E^{(2)})$: first order formula describing a graph problem.

Example

H: fixed graph with $V(H) = \{v_1, \dots, v_k\}$.

$$\varphi_{H} := \exists x_{1}, \exists x_{2}, \dots, \exists x_{k},$$

$$\left(\bigwedge_{1 \leq i < j \leq k} x_{i} \neq x_{j}\right) \land \left(\bigwedge_{v_{i}v_{j} \in E(H)} E(x_{i}, x_{j})\right) \land \left(\bigwedge_{v_{i}v_{j} \in E\left(\overline{H}\right)} \neg E(x_{i}, x_{j})\right)$$

FO model checking on graphs

 $\varphi \in FO(E^{(2)})$: first order formula describing a graph problem.

Example

H: fixed graph with $V(H) = \{v_1, \dots, v_k\}$.

$$\varphi_{H} := \exists x_{1}, \exists x_{2}, \dots, \exists x_{k},$$

$$\left(\bigwedge_{1 \leq i < j \leq k} x_{i} \neq x_{j}\right) \wedge \left(\bigwedge_{v_{i}v_{j} \in E(H)} E(x_{i}, x_{j})\right) \wedge \left(\bigwedge_{v_{i}v_{j} \in E\left(\overline{H}\right)} \neg E(x_{i}, x_{j})\right)$$

corresponds to the *H*-Induced Subgraph problem.

$\varphi \in \mathrm{FO}(E^{(2)})$: first order formula describing a graph problem.

Definition

A class of graphs C is FO-FPT if there is an algorithm deciding for every $G \in C$ whether $G \vDash \varphi$ in time $\mathcal{O}(f(|\varphi|) \cdot n^{\mathcal{O}(1)})$ for some computable f.

 $\varphi \in FO(E^{(2)})$: first order formula describing a graph problem.

Definition

A class of graphs C is FO-FPT if there is an algorithm deciding for every $G \in C$ whether $G \models \varphi$ in time $\mathcal{O}(f(|\varphi|) \cdot n^{\mathcal{O}(1)})$ for some computable f.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

There exists an algorithm that, given a graph G, a certificate that $tww(G) \le d$ and a formula φ , decides whether $G \vDash \varphi$ in time $\mathcal{O}(f(d, |\varphi|) \cdot n)$.

FO model checking on graphs

 $\varphi \in FO(E^{(2)})$: first order formula describing a graph problem.

Definition

A class of graphs C is FO-FPT if there is an algorithm deciding for every $G \in C$ whether $G \models \varphi$ in time $\mathcal{O}(f(|\varphi|) \cdot n^{\mathcal{O}(1)})$ for some computable f.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

There exists an algorithm that, given a graph G, a certificate that $tww(G) \leq d$ and a formula φ , decides whether $G \vDash \varphi$ in time $\mathcal{O}(f(d, |\varphi|) \cdot n)$.

Remark

Existence of an approximation algorithm for twin-width \Rightarrow classes of bounded twin-width are FO-FPT.
$\varphi \in \text{FO} + \text{MOD}(E^{(2)})$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]}x, \phi(x)$ expressing "there exists *i* mod *p* witnesses *x* for ϕ ".

 $\varphi \in \text{FO} + \text{MOD}(E^{(2)})$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]}x, \phi(x)$ expressing "there exists *i* mod *p* witnesses *x* for ϕ ".

Example

$$\varphi^2(x, y) := \exists^{1[2]} z, E(x, z) \land E(z, y)$$

"there exists an odd number of xy-paths of size 2".

FO+MOD model checking on graphs

 $\varphi \in \text{FO} + \text{MOD}(E^{(2)})$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]}x, \phi(x)$ expressing "there exists *i* mod *p* witnesses *x* for ϕ ".

Example

$$\varphi^2(x, y) := \exists^{1[2]} z, E(x, z) \land E(z, y)$$

"there exists an odd number of xy-paths of size 2".

Example

$$\psi(x, y) := \exists^{0[2]} z, E(x, z) \land \varphi^2(z, y)$$

FO+MOD model checking on graphs

 $\varphi \in \text{FO} + \text{MOD}(E^{(2)})$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]}x, \phi(x)$ expressing "there exists *i* mod *p* witnesses *x* for ϕ ".

Example

$$\varphi^2(x, y) := \exists^{1[2]} z, E(x, z) \land E(z, y)$$

"there exists an odd number of xy-paths of size 2".

Example

$$\psi(x, y) := \exists^{0[2]} z, E(x, z) \land \varphi^2(z, y)$$

"there exists an even number of xy-paths of size 3".

 $\varphi \in \text{FO} + \text{MOD}(E^{(2)})$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]}x, \phi(x)$ expressing "there exists *i* mod *p* witnesses *x* for ϕ ".

Definition

A class of graphs C is (FO+MOD)-FPT if there is an algorithm deciding for every $G \in C$ whether $G \vDash \varphi$ in time $\mathcal{O}(f(|\varphi|) \cdot n^{\mathcal{O}(1)})$ for some computable f. $\varphi \in \text{FO} + \text{MOD}(E^{(2)})$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]}x, \phi(x)$ expressing "there exists *i* mod *p* witnesses *x* for ϕ ".

Definition

A class of graphs C is (FO+MOD)-FPT if there is an algorithm deciding for every $G \in C$ whether $G \vDash \varphi$ in time $\mathcal{O}(f(|\varphi|) \cdot n^{\mathcal{O}(1)})$ for some computable f.

Theorem (BKTW 20, BGOT 22)

There exists an algorithm that, given a graph G, a certificate that $tww(G) \le d$ and a FO+MOD formula φ , decides whether $G \vDash \varphi$ in time $\mathcal{O}(f(d, |\varphi|) \cdot n)$.

Example

$$\varphi(x, y) = \neg E(x, y)$$

 $\varphi(G) = \overline{G}$: complement graph.

Example

$$\varphi(x, y) = \neg E(x, y)$$

 $\varphi(G) = \overline{G}$: complement graph.

Example

$$\varphi(x, y) = E(x, y) \lor (\exists z, E(x, z) \land E(z, y))$$

Example $\varphi(x, y) = \neg E(x, y)$ $\varphi(G) = \overline{G}: \text{ complement graph.}$

Example

$$\varphi(x, y) = E(x, y) \lor (\exists z, E(x, z) \land E(z, y))$$

 $\varphi(G) = G^2$: square graph.

Interpretation: $\varphi(x, y) \in FO(E^{(2)})$ (or $FO + MOD(E^{(2)})$) on two free variables x, y. For every graph G, define $\varphi(G)$ on vertex set V(G) and edge set: $E(\varphi(G)) := \{uv, G \models \varphi(u, v)\}.$ *C*: class of graphs $\rightarrow \varphi(C) := \text{Clos}\{\varphi(G), G \in C\}.$

Definition

A hereditary class C of graphs is independent if there exists an interpretation $\varphi(x, y) \in FO$ such that $\varphi(C) = G$. Otherwise it is dependent.

Definition

A hereditary class C of graphs is independent if there exists an interpretation $\varphi(x, y) \in FO$ such that $\varphi(C) = G$. Otherwise it is dependent.

Example

$$\mathcal{C} := \operatorname{Clos}(\{K_n^{(1)}, n \in \mathcal{N}\}) \text{ is independent.}$$

Independence

 $\mathcal{G} :=$ class of all finite graphs.

Definition

A hereditary class C of graphs is independent if there exists an interpretation $\varphi(x, y) \in FO$ such that $\varphi(C) = G$. Otherwise it is dependent.

Example

$$\mathcal{C} := \operatorname{Clos}(\{K_n^{(1)}, n \in \mathcal{N}\})$$
 is independent.

 $\varphi(x, y) := \exists z, (\deg(z) \le 2) \land E(x, z) \land E(z, y).$

Definition

A hereditary class C of graphs is independent if there exists an interpretation $\varphi(x, y) \in FO$ such that $\varphi(C) = G$. Otherwise it is dependent.

Example

$$\mathcal{C} := \operatorname{Clos}(\{K_n^{(1)}, n \in \mathcal{N}\}) \text{ is independent.}$$

 $\varphi(x, y) := \exists z, (\forall z', E(z, z') \Rightarrow (z' = x) \lor (z' = y)) \land E(x, z) \land E(z, y).$

Independence

 $\mathcal{G} :=$ class of all finite graphs.

Definition

A hereditary class C of graphs is independent if there exists an interpretation $\varphi(x, y) \in FO$ such that $\varphi(C) = G$. Otherwise it is dependent.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

If C is a class of graphs of twin-width at most t and $\varphi(x, y)$ an interpretation, then:

 $tww(\varphi(\mathcal{C})) \leq f(t,|\varphi|)$

for some computable f.

Independence

 $\mathcal{G} :=$ class of all finite graphs.

Definition

A hereditary class C of graphs is independent if there exists an interpretation $\varphi(x, y) \in FO$ such that $\varphi(C) = G$. Otherwise it is dependent.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

If C is a class of graphs of twin-width at most t and $\varphi(x, y)$ an interpretation, then:

```
tww(\varphi(\mathcal{C})) \leq f(t, |\varphi|)
```

for some computable f.

- Also true for FO+MOD interpretations;
- Classes of graphs of bounded twin-width are dependent.

Graphs are given together with a total order on their vertices. Equivalent to work on an adjacency matrix of G.

Left: Total order on V(G): a < b < c < d < e < f < g. Right: the associated ordered adjacency matrix.

Remark

A graph G has twin-width at most d if and only if there is a total ordering < of V(G) such that (G, <) has twin-width at most d.

Remark

A graph G has twin-width at most d if and only if there is a total ordering < of V(G) such that (G, <) has twin-width at most d.

Definition of twin-width can be extended to matrices with entries on a finite alphabet (e.g. \mathbb{F}_q).

Algorithmic aspect of twin-width for ordered structures

Theorem (BGOSTT 21)

There is an algorithm that, given an ordered graph (G, <) and an integer d, returns in time $\mathcal{O}(f(d)n^2 \log(n))$:

- "No" if tww(G) > d;
- a g(d)-sequence otherwise.

Algorithmic aspect of twin-width for ordered structures

Theorem (BGOSTT 21)

There is an algorithm that, given an ordered graph (G, <) and an integer d, returns in time $2^{2^{2^{o}(d^2 \log(d))}} n^2 \log(n)$: • "No" if tww(G) > d; • $a 2^{2^{o}(d^4)}$ -sequence otherwise.

Algorithmic aspect of twin-width for ordered structures

Theorem (BGOSTT 21)

There is an algorithm that, given an ordered graph (G, <) and an integer d, returns in time $\mathcal{O}(f(d)n^2 \log(n))$:

- "No" if tww(G) > d;
- a g(d)-sequence otherwise.

Characterizations of twin-width boundedness in the ordered case

Theorem (Graph version)

Let C be a hereditary class of ordered graphs. The following are equivalent.

- C has bounded twin-width;
- C is FO-FPT;
- **◎** *C* is (FO+MOD)-FPT;
- O is dependent;
- **6** *C* is (FO+MOD)-dependent;
- C contains $2^{O(n)}$ ordered n-vertex graphs.
- C contains less than $\sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} k!$ ordered *n*-vertex graphs, for some *n*.

A, B: matrices over \mathbb{F}_2 (or \mathbb{F}_k). Goal: Compute $A \cdot B$ in time $f(tww(A), tww(B)) \cdot n^{\mathcal{O}(1)}$. A, B: matrices over \mathbb{F}_2 (or \mathbb{F}_k). Goal: Compute $A \cdot B$ in time $f(tww(A), tww(B)) \cdot n^{\mathcal{O}(1)}$.

$$\begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} = \begin{pmatrix} AB & 0 \\ 0 & BA \end{pmatrix}$$

allows to reduce to the problem of squaring a matrix.

Definition

G: graph. $G^{[2]}$: modular square of *G*, with same vertices and: $E(G^{[2]}) := \{uv : |N(u) \cap N(v)| = 1 \pmod{2}\}.$

Definition

G: graph. $G^{[2]}$: modular square of G, with same vertices and:

$$E(G^{[2]}) := \{ uv : |N(u) \cap N(v)| = 1 \pmod{2} \}.$$

Remark

The adjacency matrices of $G^{[2]}$ are square of the ones of G.

Graph interpretation

Definition

G: graph. $G^{[2]}$: modular square of G, with same vertices and:

$$E(G^{[2]}) := \{ uv : |N(u) \cap N(v)| = 1 \pmod{2} \}.$$

Remark

The adjacency matrices of $G^{[2]}$ are square of the ones of G.

$\varphi^{[2]}(x, y) := \exists^{1[2]}z, E(x, z) \land E(z, y).$ For every $G: \varphi^{[2]}(G) = G^{[2]}$.

 $\varphi^{[2]}(x, y) := \exists^{1[2]}z, E(x, z) \land E(z, y).$ For every $G: \varphi^{[2]}(G) = G^{[2]}$.

Theorem

- Given a twin-decomposition of width d of G, a twin-decomposition of width f(d) of G^[2] can be computed in time f(d) ⋅ n.
- Together with approximation algorithm + previous remarks \rightarrow there is a $\mathcal{O}_{d,q}(n^2 \log(n))$ -time algorithm taking $A, B \ n \times n$ matrices and returning AB.

 $\varphi^{[2]}(x, y) := \exists^{1[2]}z, E(x, z) \land E(z, y).$ For every $G: \varphi^{[2]}(G) = G^{[2]}$.

Theorem

- Given a twin-decomposition of width d of G, a twin-decomposition of width f(d) of G^[2] can be computed in time f(d) ⋅ n.
- Together with approximation algorithm + previous remarks \rightarrow there is a $\mathcal{O}_{d,q}(n^2 \log(n))$ -time algorithm taking $A, B \ n \times n$ matrices and returning AB.

Completely unpractical

Theorem

There exists a $\mathcal{O}(d^24^d n)$ -time algorithm that, given a graph G and a certificate that $tww(G) \leq d$, outputs a certificate that $tww(G^{[2]}) = \mathcal{O}(d^22^d)$ encoding $G^{[2]}$.

Theorem

There exists a $\mathcal{O}(d^{2}4^{d}n)$ -time algorithm that, given a graph G and a certificate that $tww(G) \leq d$, outputs a certificate that $tww(G^{[2]}) = \mathcal{O}(d^{2}2^{d})$ encoding $G^{[2]}$.

 \rightarrow Extends to a FPT-algorithm for matrix multiplication over \mathbb{F}_2 with same complexity.

Theorem

There exists a $\mathcal{O}(d^{2}4^{d}n)$ -time algorithm that, given a graph G and a certificate that $tww(G) \leq d$, outputs a certificate that $tww(G^{[2]}) = \mathcal{O}(d^{2}2^{d})$ encoding $G^{[2]}$.

 \rightarrow Extends to a FPT-algorithm for matrix multiplication over \mathbb{F}_2 with same complexity.

 \rightarrow Extends over \mathbb{F}_q for q: prime power.

Theorem

There exists a $\mathcal{O}(d^{2}4^{d}n)$ -time algorithm that, given a graph G and a certificate that $tww(G) \leq d$, outputs a certificate that $tww(G^{[2]}) = \mathcal{O}(d^{2}2^{d})$ encoding $G^{[2]}$.

 \rightarrow Extends to a FPT-algorithm for matrix multiplication over \mathbb{F}_2 with same complexity.

 \rightarrow Extends over \mathbb{F}_q for q: prime power.

Can be combined with approximation algorithm to give a $\mathcal{O}_{d,q}(n^2 \log(n))$ algorithm computing product of matrices A and B when $tww(A), tww(B) \leq d$. Thanks