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Canonical tree-decompositions

Tree-decomposition of G: (T ,) where T : tree,  = (Vt)t∈V (T ) family of
subsets Vt of V (G) s.t:

V (G) =
⋃

t∈V (T ) Vt;
for every nodes t, t′, t′′ such that t′ is on the unique path of T from t
to t′′, Vt ∩ Vt′′ ⊆ Vt′ ;
every edge e ∈ E(G) is contained in some induced subgraph G[Vt] for
some t ∈ V (T ).

(T ,) is canonical if Aut(G) induces an action on T s.t. foreach
t ∈ V (T ),  ∈ Aut(G), Vt⋅ = Vt ⋅ .
Adhesion sets: the sets Vt ∩ Vt′ for tt′ ∈ E(T ).
Torso GJVtK: G[Vt] + all edges belonging to the adhesion sets Vt ∩ Vt′ for
t′ ∈ V (T ).
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Decompositions in components of low connectivity

G: any graph, components C1, C2,….

C1

C2
C3

C4
C5
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Decompositions in components of low connectivity

G: connected graph.
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Decompositions in components of low connectivity

Theorem (Tutte; DSS)

Every 2-connected locally finite graph G has a canonical
tree-decomposition of adhesion at most 2 whose torsos are either finite
cycles, edges, or 3-connected graphs.
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Decompositions in components of low connectivity

→ What if G is 3-connected?
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Decompositions in components of low connectivity

→ What if G is 3-connected?
The notion of “maximal 4-connected component” is not the right one to
use.
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Robertson-Seymour structure theorem

[Robertson-Seymour ’03] “If a finite graph G exclude some minor H , there
is some gH ⩾ 0 then G has a tree-decomposition where each torso almost
embeds in a surface of genus gH .”

[Diestel-Thomas ’99]: “Extends to infinite graphs excluding some finite
minor.”
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Main result

Theorem (finite/planar)

Let G be a quasi-transitive locally finite graph excluding K∞ as a minor.
Then there is an integer k such that G admits a canonical
tree-decomposition (T ,), of adhesion at most k whose torsos are either
finite or quasi-transitive 3-connected planar minors of G.
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Corollary

For every locally finite quasi-transitive graph G avoiding K∞ as a minor,
there is an integer k such that G is Kk-minor-free.

Generalizes [Thomassen ’92] dealing with the 4-connected case.

G is accessible if there is a k ⩾ 0 s.t. for every two different ends, there is a
set of k vertices separating them.

[Woess ’87] Locally finite quasi-transitive bounded treewidth graphs
are accessible.
[Dunwoody ’07] Locally finite quasi-transitive planar graphs are
accessible.

Corollary
Locally finite quasi-transitive graphs that exclude K∞ as a minor are
accessible.
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Proof idea

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order
3 separate exactly 2 components, and one of them have size 1.

Try to combine the following two results:

Theorem (Thomassen ’92)

Let G be a locally finite, quasi-transitive, quasi-4-connected graph G. If G
has a thick end, then G is either planar or admits K∞ as a minor.

Corollary
Let G be a quasi-transitive, quasi-4-connected, locally finite graph which
excludes K∞ as a minor. Then G is planar or has finite treewidth.

Theorem (Grohe ’16)

Every finite graph G has a tree-decomposition of adhesion at most 3 whose
torsos are minor of G and are complete graphs on at most 4 vertices or
quasi-4-connected graphs.
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Grohe’s decomposition
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Grohe’s decomposition
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Grohe’s decomposition
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Plan of the proof

1 Assume that G is 3-connected, thanks to Tutte’s decomposition.

2 Find a canonical tree-decomposition that distinguishes the tangles of
order 4.

3 Assume that G is infinite with a unique tangle of order 4.
4 Adapt Grohe’s approach to find a canonical tree-decomposition of G

with a unique infinite torso which is “almost quasi-4-connected”.
5 Prove that this torso has either bounded treewidth or is 3-connected

planar.
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Separations

Separation: triple (Y , S,Z) s.t. V (G) = Y ⊎ S ⊎ Z and E[Y ,Z] = ∅.

(Y , S,Z) tight if there are connected components CY ⊆ Y , CZ ⊆ Z of
G∖S with N(CY ) = N(CZ) = S.

Lemma (Thomassen-Woess ’93)

G locally finite. For every v ∈ V (G) and k ⩾ 1, there is a finite number of
tight separations (Y , S,Z) of order k in G such that v ∈ S.
If Γ acts quasi-transitively on G, there is a finite number of Γ-orbits of
tight separations of order at most k in G.

→ (T ,) canonical tree-decomposition of G locally finite of bounded
adhesion with tight edge-separations, then E(T )∕Aut(G) finite.

Hamburg, March 2023 11 / 32



Separations

Separation: triple (Y , S,Z) s.t. V (G) = Y ⊎ S ⊎ Z and E[Y ,Z] = ∅.
(Y , S,Z) tight if there are connected components CY ⊆ Y , CZ ⊆ Z of
G∖S with N(CY ) = N(CZ) = S.

Lemma (Thomassen-Woess ’93)

G locally finite. For every v ∈ V (G) and k ⩾ 1, there is a finite number of
tight separations (Y , S,Z) of order k in G such that v ∈ S.
If Γ acts quasi-transitively on G, there is a finite number of Γ-orbits of
tight separations of order at most k in G.

→ (T ,) canonical tree-decomposition of G locally finite of bounded
adhesion with tight edge-separations, then E(T )∕Aut(G) finite.

Hamburg, March 2023 11 / 32



Separations

Separation: triple (Y , S,Z) s.t. V (G) = Y ⊎ S ⊎ Z and E[Y ,Z] = ∅.
(Y , S,Z) tight if there are connected components CY ⊆ Y , CZ ⊆ Z of
G∖S with N(CY ) = N(CZ) = S.

Lemma (Thomassen-Woess ’93)

G locally finite. For every v ∈ V (G) and k ⩾ 1, there is a finite number of
tight separations (Y , S,Z) of order k in G such that v ∈ S.

If Γ acts quasi-transitively on G, there is a finite number of Γ-orbits of
tight separations of order at most k in G.

→ (T ,) canonical tree-decomposition of G locally finite of bounded
adhesion with tight edge-separations, then E(T )∕Aut(G) finite.

Hamburg, March 2023 11 / 32



Separations

Separation: triple (Y , S,Z) s.t. V (G) = Y ⊎ S ⊎ Z and E[Y ,Z] = ∅.
(Y , S,Z) tight if there are connected components CY ⊆ Y , CZ ⊆ Z of
G∖S with N(CY ) = N(CZ) = S.

Lemma (Thomassen-Woess ’93)

G locally finite. For every v ∈ V (G) and k ⩾ 1, there is a finite number of
tight separations (Y , S,Z) of order k in G such that v ∈ S.
If Γ acts quasi-transitively on G, there is a finite number of Γ-orbits of
tight separations of order at most k in G.

→ (T ,) canonical tree-decomposition of G locally finite of bounded
adhesion with tight edge-separations, then E(T )∕Aut(G) finite.

Hamburg, March 2023 11 / 32



Separations

Separation: triple (Y , S,Z) s.t. V (G) = Y ⊎ S ⊎ Z and E[Y ,Z] = ∅.
(Y , S,Z) tight if there are connected components CY ⊆ Y , CZ ⊆ Z of
G∖S with N(CY ) = N(CZ) = S.

Lemma (Thomassen-Woess ’93)

G locally finite. For every v ∈ V (G) and k ⩾ 1, there is a finite number of
tight separations (Y , S,Z) of order k in G such that v ∈ S.
If Γ acts quasi-transitively on G, there is a finite number of Γ-orbits of
tight separations of order at most k in G.

→ (T ,) canonical tree-decomposition of G locally finite of bounded
adhesion with tight edge-separations, then E(T )∕Aut(G) finite.

Hamburg, March 2023 11 / 32



Some useful tools

Lemma (HLMR ’19)

If G quasi-transitive locally finite and (T ,) canonical tree-decomposition
of bounded adhesion with E(T )∕Aut(G) finite, then G[Vt] and GJVtK are
quasi-transitive locally finite.

Proposition (CHM ’22)

Let G be quasi-transitive locally finite and (T ,) be a canonical
tree-decomposition of G of bounded adhesion with tight separations. If
there is a canonical family (Tt,t)t∈V (T ) of canonical tree-decompositions of
the torsos GJVtK with bounded adhesion and tight separations, then there
exists a canonical tree-decomposition (T ′, ′) of G that refines (T ,) with
respect to the family (Tt,t)t∈V (T ).
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Separations of order 3: degeneracy

A separation (Y , S,Z) ∈ Sep=3(G) is degenerate if Z connected, S
independent set and |Y | = 1.
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Separations of order 3: degeneracy

A separation (Y , S,Z) ∈ Sep=3(G) is degenerate if Z connected, S
independent set and |Y | = 1.

Z S Y
Degenerate separation

Lemma (Grohe ’16)

Let G be a 3-connected locally finite graph, and (Y , S,Z) be a proper
separation of order 3. Then GJZ ∪ SK is a (faithful) minor of G if and only
if (Y , S,Z) is non-degenerate.
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separation of order 3. Then GJZ ∪ SK is a (faithful) minor of G if and only
if (Y , S,Z) is non-degenerate.

Corollary
Let G be a 3-connected locally finite graph, and (T ,) be a
tree-decomposition of G whose edge-separations have order 3 and are
non-degenerate. Then GJVtK is a (faithful) minor of G for each t ∈ V (T ).
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Plan of the proof (reminder)

1 Assume that G is 3-connected, thanks to Tutte’s decomposition.
2 Find a canonical tree-decomposition that distinguishes the tangles of

order 4.
3 Assume that G is infinite with a unique tangle of order 4.
4 Adapt Grohe’s approach to find a canonical tree-decomposition of G

with a unique infinite torso which is “almost quasi-4-connected”.
5 Prove that this torso has either bounded treewidth or is 3-connected

planar.
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Tangles of order 4

A tangle (of order 4) is a subset  of Sep<4(G) such that
1 For all separations (Y , S,Z) ∈ Sep<4(G), either (Y , S,Z) ∈  or
(Z,S, Y ) ∈  ;

2 For all separations (Y1, S1, Z1), (Y2, S2, Z2), (Y3, S3, Z3) ∈  , either
Z1 ∩Z2 ∩Z3 ≠ ∅ or there exists an edge with an endpoint in each Zi;
and

3 For all separations (Y , S,Z) ∈  , Z ≠ ∅.

Order ⪯ on Sep<4(G):
(Y , S,Z) ⪯ (Y ′, S′, Z′) if and only if S′ ∪ Y ′ ⊆ S ∪ Y and S ∪Z ⊆ S′ ∪Z′.
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Region/End tangles

A tangle  of order 4 is:
A region tangle if it is w.q.o.
An end tangle otherwise.
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Region/End tangles
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Region/End tangles
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Step 2: Distinguishing tangles of order 4

Theorem (CHM ’22)

G locally finite. There exists a canonical tree-decomposition (T ,) that
distinguishes the set tangles of order at most 4.

→ (T ,) has non-degenerate separations.
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Step 3: graphs with a unique region tangle

→ Every torso has at most one tangle of order 4.

Goal: Show that such tangles are region tangles.

Proposition
k ⩾ 1, G locally finite connected quasi-transitive. Then G cannot have
exactly one end of size exactly k.

→ Generalizes [Thomassen ’92]: “G has one end ⇒ this end is thick”.
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Plan of the proof (reminder)

1 Assume that G is 3-connected, thanks to Tutte’s decomposition.
2 Find a canonical tree-decomposition that distinguishes the tangles of

order 4.
3 Assume that G is infinite with a unique (region) tangle of order 4.
4 Adapt Grohe’s approach to find a canonical tree-decomposition of G

with a unique infinite torso which is “almost quasi-4-connected”.
5 Prove that this torso has either bounded treewidth or is 3-connected

planar.
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Minimal separations of order 3

G: 3-connected with unique region tangle  .

min:= minimal non-degenerate separations of ( ,⪯).
(Y1, S1, Z1), (Y2, S2, Z2) are orthogonal if (Y1 ∪ S1) ∩ (Y2 ∪ S2) ⊆ S1 ∩ S2;
crossing otherwise.

Lemma (Grohe ’16)

If (Y1, S1, Z1), (Y2, S2, Z2) ∈ nd distinct are crossing, then there are two
distinct vertices si ∈ Si, i ∈ {1, 2} such that s1s2 ∈ E(G) and
Si ∩ Y3−i = {si} and S1 ∩ S2 = ∅. Moreover, such crossing edges form a
matching in G.
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Minimal separations of order 3

Y1 S1 Z1

Y2

S2

Z2

Orthogonal separations
Y1 S1 Z1

Y2

S2

Z2

Crossing separations
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Easy case: orthogonal family

If separations of nd are pairwise orthogonal:

X ∶=
⋂

(Y ,S,Z)∈nd

(Z ∪ S)
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Proposition

If nd is orthogonal, then GJX K is a quasi-4-connected minor of G.
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Non-orthogonal case

M : matching formed by crossing-edges.
Grohe’s main result: “After contracting every edge of M , we are in the
orthogonal case”.

R ∶=

(

⋃

(Y ,S,Z)∈nd

S

)

∪

(

⋂

(Y ,S,Z)∈nd

Z

)

M ⊆ R and in G∕M , there is an induced tangle of order 4  ′ s.t.

R ∕M = X ′ .
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<∞

<∞
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<∞

<∞

X ′
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<∞

<∞
<∞

<∞

<∞

R

Lemma
If G∕MJX ′K is planar or has bounded treewidth, then GJR K also does.
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Plan of the proof (reminder)

1 Assume that G is 3-connected, thanks to Tutte’s decomposition.
2 Find a canonical tree-decomposition that distinguishes the tangles of

order 4.
3 Assume that G is infinite with a unique (region) tangle of order 4.
4 Adapt Grohe’s approach to find a canonical tree-decomposition of G

with a unique infinite torso which is “almost quasi-4-connected”.
5 Prove that this torso has either bounded treewidth or is 3-connected

planar.
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Cayley graphs

Γ =< S >: finitely generated group. Assume S = S−1.

Cay(Γ, S) is the labelled graph with vertex set Γ and adjacencies xy for
every x, y ∈ Γ such that y ∈ S ⋅ x.

Cay(ℤ2, S), with S = {a, b}
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Finite prensentability

A finitely generated group Γ is minor-excluding if some of its locally finite
Cayley graphs exclude K∞ as a minor.

[Droms ’06] Planar groups are finitely presented.

Corollary
Every minor-excluding finitely generated group Γ is finitely presented.

Proof based on the approach of [Hamann ’18]
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Domino Problem

Source: ByParclyTaxel-Ownwork,FAL,https:
//commons.wikimedia.org/w/index.php?curid=49467917

Hamburg, March 2023 30 / 32

By Parcly Taxel - Own work, FAL, https://commons.wikimedia.org/w/index.php?curid=49467917
By Parcly Taxel - Own work, FAL, https://commons.wikimedia.org/w/index.php?curid=49467917


Domino Problem

Source: ByClaudioRocchini-Ownwork,CCBY-SA3.0,https:
//commons.wikimedia.org/w/index.php?curid=12128873
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Domino Problem

Domino problem on (Γ, S):
Input: a finite alphabet Σ and a finite set  = {F1,… , Fp} of forbidden
patterns, where Fi is a Σ-coloring of the 1-ball around 1Γ in Cay(G,S).
Question: Is there a vertex coloring c ∶ V (G)→ Σ avoiding ?
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[ABM ’19] Undecidable on surface groups.

Conjecture (Ballier-Stein ’18)

The domino problem on (Γ, S) is decidable if and only if Γ is virtually-free.

Corollary
The conjecture is true for planar groups and more generally for
minor-excluding groups.
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Questions

Question
If G is locally finite quasi-transitive, and M is an Aut(G)-invariant
matching, is there an orientation of M such that the obtained graph is still
quasi-transitive (for the action of some subgroup Γ of Aut(G))?
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