Twin-width V: Linear Minors, Modular Counting, and Matrix Multiplication

Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Stéphan Thomassé

Université Grenoble Alpes, Laboratoire G-SCOP

STACS 2023, Hamburg

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs $(G = G_n, G_{n-1}, \dots, G_1)$ where G_{i-1} is obtained by identifying two vertices of G_i .

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs $(G = G_n, G_{n-1}, \dots, G_1)$ where G_{i-1} is obtained by identifying two vertices of G_i . $V(G_i) \leftrightarrow$ partition of V(G).

Definition (Contraction sequence)

Contraction sequence of G = (V, E): sequence of trigraphs

 $(G = G_n, G_{n-1}, \dots, G_1)$ where G_{i-1} is obtained by identifying two vertices of G_i .

 $V(G_i) \leftrightarrow \text{partition of } V(G).$

For every $X, Y \in V(G_i)$ put:

- An edge $XY \in E(G_i)$ if G[X, Y] is a biclique;
- A nonedge in G_i if G[X, Y] has no edge;
- A red edge $XY \in R(G_i)$ otherwise.

Definition (Contraction sequence, twin-width)

Contraction sequence of G = (V, E): sequence of trigraphs $(G = G_n, G_{n-1}, \dots, G_1)$ where G_{i-1} is obtained by identifying two vertices of G_i . $V(G_i) \leftrightarrow$ partition of V(G).

For every $X, Y \in V(G_i)$ put:

- An edge if G[X, Y] is a biclique;
- A nonedge if G[X, Y] has no edge;
- A red edge otherwise.

 $(G_i)_i$ has width at most d if every G_i has red degree at most d. The twin-width of G is the minimum width a contraction sequence of G could have.

Examples and properties

- Cographs ⇔ Graphs with twin-width 0;
- Trees have twin-width at most 2;
- [JP 22] Graphs of treewidth t have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;
- K_t -minor free graphs have twin-width $2^{2^{2^{O(t)}}}$;
- Graphs with clique-width t have twin-width $\mathcal{O}(t)$;
- Permutation graphs G_{σ} such that σ avoids a pattern τ have twin-width $2^{\mathcal{O}(|\tau|)}$;

• ...

Graphs are given together with a total order on their vertices. Rows and columns indices of ordered matrices are totally ordered.

Left: Total order on V(G): a < b < c < d < e < f < g. Right: the associated ordered adjacency matrix.

Remark

A graph G has twin-width at most d if and only if there is a total ordering < of V(G) such that (G, <) has twin-width at most d.

Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)

Can we approximate twin-width?

Can we approximate twin-width? i.e. Is there an algorithm taking d, G as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if G has twin-width more than d, or an f(d)-sequence otherwise?

Can we approximate twin-width? i.e. Is there an algorithm taking d, G as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if G has twin-width more than d, or an f(d)-sequence otherwise?

Positive answer for every known "interesting family" of bounded twin-width.

Can we approximate twin-width? i.e. Is there an algorithm taking d, G as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if G has twin-width more than d, or an f(d)-sequence otherwise?

Positive answer for every known "interesting family" of bounded twin-width. \rightarrow True for classes of ordered graphs/matrices!

Theorem (BGOSTT '22 and BGOT '22)

There is an algorithm that, given an ordered graph (G, <) and an integer d, returns in time $\mathcal{O}(f(d)n^2 \log(n))$:

- "No" if tww(G) > d;
- a g(d)-sequence otherwise.

Can we approximate twin-width? i.e. Is there an algorithm taking d, G as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if G has twin-width more than d, or an f(d)-sequence otherwise?

Positive answer for every known "interesting family" of bounded twin-width. \rightarrow True for classes of ordered graphs/matrices!

Theorem (BGOSTT '22 and BGOT '22)

There is an algorithm that, given an ordered graph (G, <) and an integer d, returns in time $2^{2^{2^{o(d^2 \log(d))}}} n^2 \log(n)$: • "No" if tww(G) > d; • $a 2^{2^{2^{o(d^4)}}}$ -sequence otherwise.

A class of graphs has bounded treewidth if and only its minor closure avoids the $k \times k$ grid for some $k \in \mathbb{N}$.

A class of graphs has bounded treewidth if and only its minor closure avoids the $k \times k$ grid for some $k \in \mathbb{N}$.

Definition (Linear Minor)

A matrix A is a Linear Minor of a matrix B if it can be obtained from B after the removal of some rows and replacing some pairs of consecutive rows or columns by a linear combination of them.

A class of graphs has bounded treewidth if and only its minor closure avoids the $k \times k$ grid for some $k \in \mathbb{N}$.

$$B = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

A class of graphs has bounded treewidth if and only its minor closure avoids the $k \times k$ grid for some $k \in \mathbb{N}$.

Definition (Linear Minor)

A matrix A is a Linear Minor of a matrix B if it can be obtained from B after the removal of some rows and replacing some pairs of consecutive rows or columns by a linear combination of them.

Theorem (Ordered case)

A class of matrices has bounded twin-width if and only if its linear minor closure avoids some matrix.

$\varphi \in FO(E^{(2)})$: first order formula describing a graph problem.

Example

$\varphi \in FO(E^{(2)})$: first order formula describing a graph problem.

$\varphi := \exists x_1, \exists x_2, \dots, \exists x_k, \forall x, \left(\bigvee_{i=1}^k x = x_i\right) \lor \left(\bigvee_{i=1}^k E(x, x_i)\right)$

corresponds to *k*-Dominating Set problem.

$\varphi \in FO(E^{(2)})$: first order formula describing a graph problem.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

There exists an algorithm that, given a graph G, a certificate that $tww(G) \leq d$ and a formula φ , decides whether $G \vDash \varphi$ in time $\mathcal{O}(f(d, |\varphi|) \cdot n)$.

 $\varphi \in \text{FO} + \text{MOD}(E^{(2)})$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]}x, \phi(x)$ expressing "there exists *i* mod *p* witnesses *x* for ϕ ".

 $\varphi \in \text{FO} + \text{MOD}(E^{(2)})$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]}x, \phi(x)$ expressing "there exists *i* mod *p* witnesses *x* for ϕ ".

Definition

G: graph. $G^{[2]}$: modular square of G, with same vertices and:

 $E(G^{[2]}) := \{ uv : |N(u) \cap N(v)| = 1 \pmod{2} \}.$

 $\varphi \in \text{FO} + \text{MOD}(E^{(2)})$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]}x, \phi(x)$ expressing "there exists *i* mod *p* witnesses *x* for ϕ ".

Example

$$\begin{split} \varphi &:= \exists x_1, \exists x_2, \dots, \exists x_k, \forall x, \left(\bigvee_{i=1}^k x = x_i\right) \\ & \vee \left(\bigvee_{i=1}^k E_{G^{[2]}}(x, x_i)\right) \end{split}$$

"There exists a dominating set of size k in $G^{[2]}$ ".

 $\varphi \in \text{FO} + \text{MOD}(E^{(2)})$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]}x, \phi(x)$ expressing "there exists *i* mod *p* witnesses *x* for ϕ ".

Example

$$\varphi := \exists x_1, \exists x_2, \dots, \exists x_k, \forall x, \left(\bigvee_{i=1}^k x = x_i\right)$$
$$\vee \left(\bigvee_{i=1}^k \exists^{1[2]} y, E(x, y) \land E(y, x_i)\right)$$

"There exists a dominating set of size k in $G^{[2]}$ ".

 $\varphi \in \text{FO} + \text{MOD}(E^{(2)})$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]}x, \phi(x)$ expressing "there exists *i* mod *p* witnesses *x* for ϕ ".

Theorem (BKTW 20, BGOT 22)

There exists an algorithm that, given a graph G, a certificate that $tww(G) \le d$ and a FO+MOD formula φ , decides whether $G \vDash \varphi$ in time $\mathcal{O}(f(d, |\varphi|) \cdot n)$.

"Consequence" of Modular Counting+ Approximation algorithm:

Theorem

A, B $n \times n$ matrices over \mathbb{F}_2 of twin-width d.

- Then AB has twin-width f(d).
- There is a $\mathcal{O}_d(n^2 \log(n))$ -time algorithm taking A, B as input and returning AB.

"Consequence" of Modular Counting+ Approximation algorithm:

Theorem

A, B $n \times n$ matrices over \mathbb{F}_2 of twin-width d.

- Then AB has twin-width f(d).
- There is a $\mathcal{O}_d(n^2 \log(n))$ -time algorithm taking A, B as input and returning AB.

Completely unpractical

"Consequence" of Modular Counting+ Approximation algorithm:

Theorem

A, B $n \times n$ matrices over \mathbb{F}_2 of twin-width d.

- Then AB has twin-width f(d).
- There is a $\mathcal{O}_d(n^2 \log(n))$ -time algorithm taking A, B as input and returning AB.

Completely unpractical

Our contribution: an ad-hoc algorithm for matrix multiplication.

Remark

• If $tww(G) \leq d$ then $|(\mathcal{T}, \mathcal{B})| = \mathcal{O}(nd)$.

Remark

- If $tww(G) \leq d$ then $|(\mathcal{T}, \mathcal{B})| = \mathcal{O}(nd)$.
- [BGKTW '21] One can choose \mathcal{T} with depth $\mathcal{O}_d(\log(n))$.

Remark

- If $tww(G) \leq d$ then $|(\mathcal{T}, \mathcal{B})| = \mathcal{O}(nd)$.
- [BGKTW '21] One can choose \mathcal{T} with depth $\mathcal{O}_d(\log(n))$.
- [PSZ '22] gain in query time; lose in space.

$$\begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} = \begin{pmatrix} AB & 0 \\ 0 & BA \end{pmatrix}$$

allows to reduce to the problem of squaring a matrix.

Theorem

There exists a $\mathcal{O}(d^2 4^d n)$ -time algorithm that, given a twin-decomposition $(\mathcal{T}, \mathcal{B})$ of width d of A, outputs a twin-decomposition of width $\mathcal{O}(d^2 2^d)$ of A^2 .

 \rightarrow Extends to a FPT-algorithm for matrix multiplication over \mathbb{F}_2 with same complexity.

Theorem

There exists a $\mathcal{O}(d^2 4^d n)$ -time algorithm that, given a twin-decomposition $(\mathcal{T}, \mathcal{B})$ of width d of A, outputs a twin-decomposition of width $\mathcal{O}(d^2 2^d)$ of A^2 .

 \rightarrow Extends to a FPT-algorithm for matrix multiplication over \mathbb{F}_2 with same complexity.

 \rightarrow Extends over \mathbb{F}_q for q: prime power.

Danke

First step: the shape of the tree

Second step: computation of labelled edges and labelling vertices

Last step: from orange to green edges

Last step: from orange to green edges

Last step: from orange to green edges

