Twin-width V: Linear Minors, Modular Counting, and Matrix Multiplication

Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Stéphan Thomassé

Université Grenoble Alpes, Laboratoire G-SCOP
STACS 2023, Hamburg

Twin-width of unordered graphs

Definition (Contraction sequence)

Contraction sequence of $G=(V, E)$: sequence of trigraphs ($G=G_{n}, G_{n-1}, \ldots, G_{1}$) where G_{i-1} is obtained by identifying two vertices of G_{i}.

Definition (Contraction sequence)

Contraction sequence of $G=(V, E)$: sequence of trigraphs ($G=G_{n}, G_{n-1}, \ldots, G_{1}$) where G_{i-1} is obtained by identifying two vertices of G_{i}.
$V\left(G_{i}\right) \leftrightarrow$ partition of $V(G)$.

Definition (Contraction sequence)

Contraction sequence of $G=(V, E)$: sequence of trigraphs
($G=G_{n}, G_{n-1}, \ldots, G_{1}$) where G_{i-1} is obtained by identifying two vertices of G_{i}.
$V\left(G_{i}\right) \leftrightarrow$ partition of $V(G)$.
For every $X, Y \in V\left(G_{i}\right)$ put:

- An edge $X Y \in E\left(G_{i}\right)$ if $G[X, Y]$ is a biclique;
- A nonedge in G_{i} if $G[X, Y]$ has no edge;
- A red edge $X Y \in R\left(G_{i}\right)$ otherwise.

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Definition (Contraction sequence,twin-width)

Contraction sequence of $G=(V, E)$: sequence of trigraphs
($G=G_{n}, G_{n-1}, \ldots, G_{1}$) where G_{i-1} is obtained by identifying two vertices of G_{i}.
$V\left(G_{i}\right) \leftrightarrow$ partition of $V(G)$.
For every $X, Y \in V\left(G_{i}\right)$ put:

- An edge if $G[X, Y]$ is a biclique;
- A nonedge if $G[X, Y]$ has no edge;
- A red edge otherwise.
$\left(G_{i}\right)_{i}$ has width at most d if every G_{i} has red degree at most d.
The twin-width of G is the minimum width a contraction sequence of G could have.

Examples and properties

- Cographs \Leftrightarrow Graphs with twin-width 0 ;
- Trees have twin-width at most 2 ;
- [JP 22] Graphs of treewidth t have twin-width at most $3 \cdot 2^{t-1}$;
- [HJ 22] Planar graphs have twin-width at most 8;
- K_{t}-minor free graphs have twin-width $2^{2^{2^{\mathcal{O}(t)}}}$;
- Graphs with clique-width t have twin-width $\mathcal{O}(t)$;
- Permutation graphs G_{σ} such that σ avoids a pattern τ have twin-width $2^{\mathcal{O}(|\tau|)}$;
- ...

Twin-width of ordered structures

Graphs are given together with a total order on their vertices. Rows and columns indices of ordered matrices are totally ordered.

Left: Total order on $V(G): a<b<c<d<e<f<g$. Right: the associated ordered adjacency matrix.

Twin-width of ordered structures

Remark

A graph G has twin-width at most d if and only if there is a total ordering $<$ of $V(G)$ such that $(G,<)$ has twin-width at most d.

Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)
Can we approximate twin-width?

Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking d, G as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if G has twin-width more than d, or an $f(d)$-sequence otherwise?

Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking d, G as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if G has twin-width more than d, or an $f(d)$-sequence otherwise?

Positive answer for every known "interesting family" of bounded twin-width.

Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking d, G as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if G has twin-width more than d, or an $f(d)$-sequence otherwise?

Positive answer for every known "interesting family" of bounded twin-width. \rightarrow True for classes of ordered graphs/matrices!

Theorem (BGOSTT '22 and BGOT '22)

There is an algorithm that, given an ordered graph $(G,<)$ and an integer d, returns in time $\mathcal{O}\left(f(d) n^{2} \log (n)\right)$:

- "No" if $\operatorname{tww}(G)>d$;
- a $g(d)$-sequence otherwise.

Algorithmic aspect of twin-width

Question (Fundamental question of twin-width)

Can we approximate twin-width? i.e. Is there an algorithm taking d, G as input and returning in time $f(d) \cdot n^{\mathcal{O}(1)}$ either a "No" answer if G has twin-width more than d, or an $f(d)$-sequence otherwise?

Positive answer for every known "interesting family" of bounded twin-width. \rightarrow True for classes of ordered graphs/matrices!

Theorem (BGOSTT '22 and BGOT '22)

There is an algorithm that, given an ordered graph $(G,<)$ and an integer d, returns in time $2^{2^{\left.2^{2^{O}\left(d^{2} \log (d)\right.}\right)}} n^{2} \log (n)$:

- "No" if $\operatorname{tww}(G)>d$;
- a $2^{2^{2^{(O}\left(d^{4}\right)}}$-sequence otherwise.

A class of graphs has bounded treewidth if and only its minor closure avoids the $k \times k$ grid for some $k \in \mathbb{N}$.

A class of graphs has bounded treewidth if and only its minor closure avoids the $k \times k$ grid for some $k \in \mathbb{N}$.

Definition (Linear Minor)

A matrix A is a Linear Minor of a matrix B if it can be obtained from B after the removal of some rows and replacing some pairs of consecutive rows or columns by a linear combination of them.

Linear Minors

Theorem (RS '86)

A class of graphs has bounded treewidth if and only its minor closure avoids the $k \times k$ grid for some $k \in \mathbb{N}$.

$$
\boldsymbol{B}=\left[\begin{array}{llllllll}
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{ll|llll|l}1 & 0 & 1 & 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & & 1 & 1 & & 1 \\ \hline 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1\end{array}\right]$

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Theorem (RS '86)

A class of graphs has bounded treewidth if and only its minor closure avoids the $k \times k$ grid for some $k \in \mathbb{N}$.

Definition (Linear Minor)

A matrix A is a Linear Minor of a matrix B if it can be obtained from B after the removal of some rows and replacing some pairs of consecutive rows or columns by a linear combination of them.

Theorem (Ordered case)

A class of matrices has bounded twin-width if and only if its linear minor closure avoids some matrix.

FO model checking on graphs

$\varphi \in \mathrm{FO}\left(E^{(2)}\right)$: first order formula describing a graph problem.

FO model checking on graphs

$\varphi \in \mathrm{FO}\left(E^{(2)}\right)$: first order formula describing a graph problem.

Example

$$
\varphi:=\exists x_{1}, \exists x_{2}, \ldots, \exists x_{k}, \forall x,\left(\bigvee_{i=1}^{k} x=x_{i}\right) \vee\left(\bigvee_{i=1}^{k} E\left(x, x_{i}\right)\right)
$$

corresponds to k-Dominating Set problem.

FO model checking on graphs

$\varphi \in \mathrm{FO}\left(E^{(2)}\right)$: first order formula describing a graph problem.

Theorem (Bonnet, Kim, Thomassé, Watrigant '20)

There exists an algorithm that, given a graph G, a certificate that $t w w(G) \leq d$ and a formula φ, decides whether $G \vDash \varphi$ in time $\mathcal{O}(f(d,|\varphi|) \cdot n)$.

Modular Counting

$\varphi \in \mathrm{FO}+\operatorname{MOD}\left(E^{(2)}\right)$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]} x, \phi(x)$ expressing "there exists $i \bmod p$ witnesses x for $\phi^{\prime \prime}$.

Modular Counting

$\varphi \in \mathrm{FO}+\operatorname{MOD}\left(E^{(2)}\right)$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]} x, \phi(x)$ expressing "there exists $i \bmod p$ witnesses x for $\phi^{\prime \prime}$.

Definition

G : graph. $G^{[2]}$: modular square of G, with same vertices and:

$$
E\left(G^{[2]}\right):=\{u v:|N(u) \cap N(v)|=1 \quad(\bmod 2)\} .
$$

Modular Counting

$\varphi \in \mathrm{FO}+\operatorname{MOD}\left(E^{(2)}\right)$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]} x, \phi(x)$ expressing "there exists $i \bmod p$ witnesses x for $\phi^{\prime \prime}$.

Example

$$
\begin{gathered}
\varphi:=\exists x_{1}, \exists x_{2}, \ldots, \exists x_{k}, \forall x,\left(\bigvee_{i=1}^{k} x=x_{i}\right) \\
\vee\left(\bigvee_{i=1}^{k} E_{G^{[2]}}\left(x, x_{i}\right)\right)
\end{gathered}
$$

"There exists a dominating set of size k in $G^{[2] "}$.

Modular Counting

$\varphi \in \mathrm{FO}+\operatorname{MOD}\left(E^{(2)}\right)$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]} x, \phi(x)$ expressing "there exists $i \bmod p$ witnesses x for $\phi^{\prime \prime}$.

Example

$$
\begin{aligned}
\varphi: & =\exists x_{1}, \exists x_{2}, \ldots, \exists x_{k}, \forall x,\left(\bigvee_{i=1}^{k} x=x_{i}\right) \\
& \vee\left(\bigvee_{i=1}^{k} \exists^{1[2]} y, E(x, y) \wedge E\left(y, x_{i}\right)\right)
\end{aligned}
$$

"There exists a dominating set of size k in $G^{[2] "}$.

Modular Counting

$\varphi \in \mathrm{FO}+\operatorname{MOD}\left(E^{(2)}\right)$: first order formula describing a graph problem where we also allow existential quantifiers $\exists^{i[p]} x, \phi(x)$ expressing "there exists $i \bmod p$ witnesses x for $\phi^{\prime \prime}$.

Theorem (BKTW 20, BGOT 22)

There exists an algorithm that, given a graph G, a certificate that $t w w(G) \leq d$ and a $F O+$ MOD formula φ, decides whether $G \vDash \varphi$ in time $\mathcal{O}(f(d,|\varphi|) \cdot n)$.

Matrix Multiplication

"Consequence" of Modular Counting+ Approximation algorithm:

Theorem

A, $B n \times n$ matrices over \mathbb{F}_{2} of twin-width d.

- Then $A B$ has twin-width $f(d)$.
- There is a $\mathcal{O}_{d}\left(n^{2} \log (n)\right)$-time algorithm taking A, B as input and returning $A B$.

Matrix Multiplication

"Consequence" of Modular Counting+ Approximation algorithm:

Theorem

A, $B n \times n$ matrices over \mathbb{F}_{2} of twin-width d.

- Then $A B$ has twin-width $f(d)$.
- There is a $\mathcal{O}_{d}\left(n^{2} \log (n)\right)$-time algorithm taking A, B as input and returning $A B$.

Completely unpractical

Matrix Multiplication

"Consequence" of Modular Counting+ Approximation algorithm:

Theorem

A, $B n \times n$ matrices over \mathbb{F}_{2} of twin-width d.

- Then $A B$ has twin-width $f(d)$.
- There is a $\mathcal{O}_{d}\left(n^{2} \log (n)\right)$-time algorithm taking A, B as input and returning $A B$.

Completely unpractical
Our contribution: an ad-hoc algorithm for matrix multiplication.

Twin-decompositions

(a) (b) (c) (d) e (f)

Twin-decompositions

Twin-decompositions

Twin-decompositions

Twin-decompositions

Twin-decompositions

Twin-decompositions

Remark

- If $\operatorname{tww}(G) \leq d$ then $|(\mathcal{T}, \mathcal{B})|=\mathcal{O}(n d)$.

Twin-decompositions

Remark

- If $\operatorname{tww}(G) \leq d$ then $|(\mathcal{T}, \mathcal{B})|=\mathcal{O}(n d)$.
- [BGKTW '21] One can choose \mathcal{T} with depth $\mathcal{O}_{d}(\log (n))$.

Twin-decompositions

Remark

- If $\operatorname{tww}(G) \leq d$ then $|(\mathcal{T}, \mathcal{B})|=\mathcal{O}(n d)$.
- [BGKTW '21] One can choose \mathcal{T} with depth $\mathcal{O}_{d}(\log (n))$.
- [PSZ '22] gain in query time; lose in space.

Matrix Multiplication

$$
\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right)=\left(\begin{array}{cc}
A B & 0 \\
0 & B A
\end{array}\right)
$$

allows to reduce to the problem of squaring a matrix.

Matrix Multiplication

Theorem

There exists a $\mathcal{O}\left(d^{2} 4^{d} n\right)$-time algorithm that, given a twin-decomposition $(\mathcal{T}, \mathcal{B})$ of width d of A, outputs a twin-decomposition of width $\mathcal{O}\left(d^{2} 2^{d}\right)$ of A^{2}.
\rightarrow Extends to a FPT-algorithm for matrix multiplication over \mathbb{F}_{2} with same complexity.

Matrix Multiplication

Theorem

There exists a $\mathcal{O}\left(d^{2} 4^{d} n\right)$-time algorithm that, given a twin-decomposition $(\mathcal{T}, \mathcal{B})$ of width d of A, outputs a twin-decomposition of width $\mathcal{O}\left(d^{2} 2^{d}\right)$ of A^{2}.
\rightarrow Extends to a FPT-algorithm for matrix multiplication over \mathbb{F}_{2} with same complexity.
\rightarrow Extends over \mathbb{F}_{q} for q : prime power.

Danke

First step: the shape of the tree

Second step: computation of labelled edges and labelling vertices

Last step: from orange to green edges

Last step: from orange to green edges

Last step: from orange to green edges

