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Introduction

Basic definitions

G = (V ,E): locally finite graph.
d: Shortest path metric.
Bk(v) ∶= {u ∈ V , d(u, v) ≤ k}.

Definition
The interval between two vertices u and v is the set I(u, v) of vertices
on shortest uv-paths.

I(u, v) ∶= {x ∈ V , d(u, x) + d(x, v) = d(u, v)}.

A set X ⊆ V is convex if for every u, v ∈ X, I(u, v) ⊆ X.
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Introduction

Systolic graphs

Definition
A subgraph H of G is isometric if for every u, v ∈ V (H),
dH (u, v) = dG(u, v).

Definition
A graph is systolic (or bridged) if it has no isometric cycle of length other
than 3.

Natural generalization of chordal graphs.
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Introduction

Combinatorial characterization of systolic graphs

Theorem (Chepoi, Soltan ’83; Farber, Jamison ’87)

The following conditions are equivalent:
G is systolic;
For every convex X ⊆ V and every k ≥ 1, Bk(X) is convex.

Haglund 2003; Wise 2003; Januszkiewicz, Swiatkowski, 2006: Systolic
graphs form a ”good“ combinatorial analogue of spaces with nonpositive
curvature.

Definition
A graph with convex balls (or CB-graph) is a graph such that every Bk(v)
is convex for every v ∈ V , k ≥ 1.
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Introduction

Some examples

Image source: Claudio Rocchini — Travail personnel, CC BY 2.5,
https://commons.wikimedia.org/w/index.php?curid=1431171
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Biautomaticity

From groups to graphs

Γ =< S >: finitely generated group. Assume S = S−1.

Definition
Cayley graph Cay(Γ, S) is the graph with vertex set Γ and adjacencies xy
for every x, y ∈ Γ such that y ∈ S ⋅ x.

Cay(ℤ2, S), with S = {a, b}
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Biautomaticity

From graphs to groups

A group action of Γ on a graph G is called geometric if it is cocompact and
properly discontinuous.

Definition
A group Γ acting geometrically by automorphisms on a CB-graph is called
a CB-group.
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Biautomaticity

Fellow traveler property

Definition
A path system  in G has the 2-sided fellow traveler property if there
exists a constant K > 0 such that for every ,  ′ ∈  :

∀i ≥ 0, d((i),  ′(i)) ≤ K max(d((0),  ′(0)), d((∞),  ′(∞))).

u u u′

v v′ v

≤ K
≤ K
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Biautomaticity

Biautomaticity

Γ =< S >: finitely generated group. Assume S = S−1.
A language L ⊆ S∗ surjects onto Γ if every g ∈ Γ can be written as a word
of L.

L1 ∶= ((a + b)∗ + (a + b−1)∗
+(a−1 + b)∗ + (a−1 + b−1)∗)

”shortest paths“

L2 ∶= (a∗b∗ + a∗(b−1)∗
+(a−1)∗b∗ + (a−1)∗(b−1)∗)
”horizontal then vertical“
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Biautomaticity

Biautomaticity

Definition
Γ =< S > is biautomatic if there exists a regular language L ⊆ S∗ that
surjects onto Γ and which enjoys the 2-sided fellow traveler property in
Cay(Γ, S).

L1 ∶= ((a + b)∗ + (a + b−1)∗
+(a−1 + b)∗ + (a−1 + b−1)∗)

”shortest paths“

L2 ∶= (a∗b∗ + a∗(b−1)∗
+(a−1)∗b∗ + (a−1)∗(b−1)∗)
”horizontal then vertical“
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Biautomaticity

Who is biautomatic?

Graphs with 2-convex balls

CB-graphs

Weakly systolic graphs

Weakly modular graphs

Modular graphsHelly graphs

Median graphsSystolic graphs

Chordal graphs

Groups with 2-convex balls

CB-groups

Weakly systolic groups

Weakly modular groups

Modular groupsHelly groups

Median groupsSystolic groups

Chordal groups

CB-groups

Weakly systolic groups

?

?

Biautomatic

Biautomatic

Biautomatic [NR ’98]Biautomatic [JŚ ’06]

Biautomatic [CCGHO ’20]
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Biautomaticity

Biautomaticity

Theorem
Every CB-group is biautomatic. In particular the word problem can be
solved in quadratic time over CB-groups.

Theorem (Świa̧tkowski, 06)

Let Γ be a group acting geometrically on a graph G, and  a path system
in G such that:

1  is locally recognized;
2 there exists v0 ∈ V (G) such that any two vertices of the orbit Γ ⋅ v0

are connected by a path from  ;
3  satisfies the 2-sided fellow traveler property.

Then Γ is biautomatic.

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acting on themDecember 4, 2021 12 / 16



Biautomaticity

Biautomaticity

Theorem
Every CB-group is biautomatic. In particular the word problem can be
solved in quadratic time over CB-groups.

Theorem (Świa̧tkowski, 06)

Let Γ be a group acting geometrically on a graph G, and  a path system
in G such that:

1  is locally recognized;
2 there exists v0 ∈ V (G) such that any two vertices of the orbit Γ ⋅ v0

are connected by a path from  ;
3  satisfies the 2-sided fellow traveler property.

Then Γ is biautomatic.

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acting on themDecember 4, 2021 12 / 16



Biautomaticity

Clique paths

v

C0 v

C1

C2

C3

u

C4 u
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Biautomaticity

Clique paths

If d(u, v) = k, let (u,v) ∶= (C0, C1,… , Ck) be the associated clique-path.

 ∶= {(u,v), (u, v) ∈ V (G)2}.

u

v v′

≤ K

u

v v′

Ck−1

Ck−2

⋯

C1

C ′k−1
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⋯

C ′1

u u′

v

≤ KCi

Ci−1

C ′i

C ′i−1

Ci+1
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Ci−1

C ′i+1

C ′i

C ′i−1
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Biautomaticity

Other results about CB-graphs

Theorem (Local-to-global)

CB-groups are exactly graphs G such that:
The triangle-pentagon complex X△,⬠(G) is simply connected, and
The balls of radius 3 are convex.

Theorem (Dismantlability)

Any BFS-order of the vertices of a CB-graph G is a dismantling order of its
square G2. In particular, every graph isomorphism f ∶ G → G fixes a
subgraph of G of diameter 2.

Theorem (metric triangles)

Every metric triangle of a CB-graph G is either equilateral, or can be
completed into an induced C5 of G.
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Biautomaticity

Thank You

Question: Are CB-groups more general than weakly-systolic groups?
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