Graphs with convex balls and groups acting on them

Jérémie Chalopin, Victor Chepoi, LIS, Marseille Ugo Giocanti, G-SCOP, Grenoble; ENS de Lyon

December 4, 2021

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December

Basic definitions

G = (V, E): locally finite graph. d: Shortest path metric. $B_k(v) := \{u \in V, d(u, v) \le k\}.$

Basic definitions

G = (V, E): locally finite graph. d: Shortest path metric.

 $B_k(v) := \{ u \in V, d(u, v) \le k \}.$

Definition

• The *interval* between two vertices *u* and *v* is the set *I*(*u*, *v*) of vertices on shortest *uv*-paths.

$$I(u, v) := \{ x \in V, d(u, x) + d(x, v) = d(u, v) \}.$$

2/16

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021

Basic definitions

G = (V, E): locally finite graph. d: Shortest path metric.

 $B_k(v) := \{ u \in V, d(u, v) \le k \}.$

Definition

• The *interval* between two vertices *u* and *v* is the set *I*(*u*, *v*) of vertices on shortest *uv*-paths.

$$I(u, v) := \{ x \in V, d(u, x) + d(x, v) = d(u, v) \}.$$

• A set $X \subseteq V$ is *convex* if for every $u, v \in X$, $I(u, v) \subseteq X$.

Introduction

Systolic graphs

・ロト ・ 四ト ・ ヨト ・ ヨト

Systolic graphs

Definition

A subgraph H of G is *isometric* if for every $u, v \in V(H)$, $d_H(u, v) = d_G(u, v)$.

э

3/16

Systolic graphs

Definition

A subgraph H of G is *isometric* if for every $u, v \in V(H)$, $d_H(u, v) = d_G(u, v)$.

Definition

A graph is *systolic* (or *bridged*) if it has no isometric cycle of length other than 3.

< 回 > < 三 > < 三 >

3/16

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021

Systolic graphs

Definition

A subgraph H of G is *isometric* if for every $u, v \in V(H)$, $d_H(u, v) = d_G(u, v)$.

Definition

A graph is *systolic* (or *bridged*) if it has no isometric cycle of length other than 3.

Natural generalization of chordal graphs.

Combinatorial characterization of systolic graphs

Theorem (Chepoi, Soltan '83; Farber, Jamison '87)

The following conditions are equivalent:

- G is systolic;
- For every convex $X \subseteq V$ and every $k \ge 1$, $B_k(X)$ is convex.

Combinatorial characterization of systolic graphs

Theorem (Chepoi, Soltan '83; Farber, Jamison '87)

The following conditions are equivalent:

- G is systolic;
- For every convex $X \subseteq V$ and every $k \ge 1$, $B_k(X)$ is convex.

Haglund 2003; Wise 2003; Januszkiewicz, Swiatkowski, 2006: Systolic graphs form a "good" combinatorial analogue of spaces with nonpositive curvature.

Combinatorial characterization of systolic graphs

Theorem (Chepoi, Soltan '83; Farber, Jamison '87)

The following conditions are equivalent:

- G is systolic;
- For every convex $X \subseteq V$ and every $k \ge 1$, $B_k(X)$ is convex.

Haglund 2003; Wise 2003; Januszkiewicz, Swiatkowski, 2006: Systolic graphs form a "good" combinatorial analogue of spaces with nonpositive curvature.

Definition

A graph with convex balls (or CB-graph) is a graph such that every $B_k(v)$ is convex for every $v \in V$, $k \ge 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

Some examples

・ロト ・ 四ト ・ ヨト ・ ヨト

- 2

5/16

Introduction

Some examples

Image source: Claudio Rocchini — Travail personnel, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1431171

From groups to graphs

 $\Gamma = \langle S \rangle$: finitely generated group. Assume $S = S^{-1}$.

< □ > < 同 > < 回 > < 回 > < 回 >

- 3

From groups to graphs

 $\Gamma = \langle S \rangle$: finitely generated group. Assume $S = S^{-1}$.

Definition

Cayley graph $Cay(\Gamma, S)$ is the graph with vertex set Γ and adjacencies xy for every $x, y \in \Gamma$ such that $y \in S \cdot x$.

$$\operatorname{Cay}(\mathbb{Z}^2, S)$$
, with $S = \{a, b\}$

From graphs to groups

A group action of Γ on a graph G is called *geometric* if it is cocompact and properly discontinuous.

From graphs to groups

A group action of Γ on a graph G is called *geometric* if it is cocompact and properly discontinuous.

Definition

A group Γ acting geometrically by automorphisms on a CB-graph is called a *CB-group*.

7/16

Fellow traveler property

Definition

A path system \mathcal{P} in G has the 2-sided fellow traveler property if there exists a constant K > 0 such that for every $\gamma, \gamma' \in \mathcal{P}$:

 $\forall i \ge 0, d(\gamma(i), \gamma'(i)) \le K \max(d(\gamma(0), \gamma'(0)), d(\gamma(\infty), \gamma'(\infty))).$

Fellow traveler property

Definition

A path system \mathcal{P} in G has the 2-sided fellow traveler property if there exists a constant K > 0 such that for every $\gamma, \gamma' \in \mathcal{P}$:

 $\forall i \ge 0, d(\gamma(i), \gamma'(i)) \le K \max(d(\gamma(0), \gamma'(0)), d(\gamma(\infty), \gamma'(\infty))).$

 $\Gamma = \langle S \rangle$: finitely generated group. Assume $S = S^{-1}$. A language $L \subseteq S^*$ surjects onto Γ if every $g \in \Gamma$ can be written as a word of L. $\Gamma = \langle S \rangle$: finitely generated group. Assume $S = S^{-1}$. A language $L \subseteq S^*$ surjects onto Γ if every $g \in \Gamma$ can be written as a word of L.

9/16

 $\Gamma = \langle S \rangle$: finitely generated group. Assume $S = S^{-1}$. A language $L \subseteq S^*$ surjects onto Γ if every $g \in \Gamma$ can be written as a word of L.

$$L_2 := \mathcal{L}(a^*b^* + a^*(b^{-1})^* \\ + (a^{-1})^*b^* + (a^{-1})^*(b^{-1})^*)$$
 "horizontal then vertical"

9/16

Definition

 $\Gamma = \langle S \rangle$ is *biautomatic* if there exists a regular language $L \subseteq S^*$ that surjects onto Γ and which enjoys the 2-sided fellow traveler property in $Cay(\Gamma, S)$.

Definition

 $\Gamma = \langle S \rangle$ is *biautomatic* if there exists a regular language $L \subseteq S^*$ that surjects onto Γ and which enjoys the 2-sided fellow traveler property in $Cay(\Gamma, S)$.

$$\begin{split} L_1 &:= \mathcal{L}((a+b)^* + (a+b^{-1})^* \\ &+ (a^{-1}+b)^* + (a^{-1}+b^{-1})^*) \\ & \text{``shortest paths''} \end{split}$$

Definition

 $\Gamma = \langle S \rangle$ is *biautomatic* if there exists a regular language $L \subseteq S^*$ that surjects onto Γ and which enjoys the 2-sided fellow traveler property in $Cay(\Gamma, S)$.

$$\begin{split} L_2 &:= \mathcal{L}(a^*b^* + a^*(b^{-1})^* \\ + (a^{-1})^*b^* + (a^{-1})^*(b^{-1})^*) \\ \text{"horizontal then vertical"} \end{split}$$

10/16

Who is biautomatic?

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 11/16

< ∃ >

Who is biautomatic?

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 11/16

< ∃ >

Who is biautomatic?

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 11/16

< ∃ >

Theorem

Every CB-group is biautomatic. In particular the word problem can be solved in quadratic time over CB-groups.

3 🕨 🤅 3

< 合型

Theorem

Every CB-group is biautomatic. In particular the word problem can be solved in quadratic time over CB-groups.

Theorem (Świątkowski, 06)

Let Γ be a group acting geometrically on a graph G, and \mathcal{P} a path system in G such that:

- $1 \ \mathcal{P}$ is locally recognized;
- 2 there exists $v_0 \in V(G)$ such that any two vertices of the orbit $\Gamma \cdot v_0$ are connected by a path from \mathcal{P} ;
- 3 *P* satisfies the 2-sided fellow traveler property.

Then Γ is biautomatic.

<ロ> <四> <四> <四> <四> <四> <四</p>

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 13/16

・ロト ・ 四ト ・ ヨト ・ ヨト

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 13/16

<≣⇒

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 13/16

<≣⇒

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 13/16

・ロト ・ 四ト ・ ヨト ・ ヨト

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 13/16

・ロト ・ 四ト ・ ヨト ・ ヨト

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 13/16

・ロト ・ 四ト ・ ヨト ・ ヨト

If d(u, v) = k, let $\gamma_{(u,v)} := (C_0, C_1, \dots, C_k)$ be the associated *clique-path*.

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 14/16

イロト 不得下 イヨト イヨト 二日

Clique paths

If d(u, v) = k, let $\gamma_{(u,v)} := (C_0, C_1, \dots, C_k)$ be the associated *clique-path*. $\mathcal{P} := \{\gamma_{(u,v)}, (u, v) \in V(G)^2\}.$

<20 ≥ 3

▲ 西部

Clique paths

If d(u, v) = k, let $\gamma_{(u,v)} := (C_0, C_1, \dots, C_k)$ be the associated *clique-path*. $\mathcal{P} := \{\gamma_{(u,v)}, (u, v) \in V(G)^2\}.$

Clique paths

If d(u, v) = k, let $\gamma_{(u,v)} := (C_0, C_1, \dots, C_k)$ be the associated *clique-path*. $\mathcal{P} := \{\gamma_{(u,v)}, (u, v) \in V(G)^2\}.$

3

→ ∃ →

Clique paths

If d(u, v) = k, let $\gamma_{(u,v)} := (C_0, C_1, \dots, C_k)$ be the associated *clique-path*. $\mathcal{P} := \{\gamma_{(u,v)}, (u, v) \in V(G)^2\}.$

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 14/16

→

▲ 西部

Clique paths

If d(u, v) = k, let $\gamma_{(u,v)} := (C_0, C_1, \dots, C_k)$ be the associated *clique-path*. $\mathcal{P} := \{\gamma_{(u,v)}, (u, v) \in V(G)^2\}.$

< 合型

→

Other results about CB-graphs

Theorem (Local-to-global)

CB-groups are exactly graphs G such that:

- The triangle-pentagon complex $X_{\wedge, \hat{\Omega}}(G)$ is simply connected, and
- The balls of radius 3 are convex.

프 에 제 프 에 드 프

Other results about CB-graphs

Theorem (Local-to-global)

CB-groups are exactly graphs G such that:

- The triangle-pentagon complex $X_{\triangle, \hat{\Omega}}(G)$ is simply connected, and
- The balls of radius 3 are convex.

Theorem (Dismantlability)

Any BFS-order of the vertices of a CB-graph G is a dismantling order of its square G^2 . In particular, every graph isomorphism $f : G \to G$ fixes a subgraph of G of diameter 2.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

15/16

Other results about CB-graphs

Theorem (Local-to-global)

CB-groups are exactly graphs G such that:

- The triangle-pentagon complex $X_{\triangle, \hat{\Omega}}(G)$ is simply connected, and
- The balls of radius 3 are convex.

Theorem (Dismantlability)

Any BFS-order of the vertices of a CB-graph G is a dismantling order of its square G^2 . In particular, every graph isomorphism $f : G \rightarrow G$ fixes a subgraph of G of diameter 2.

Theorem (metric triangles)

Every metric triangle of a CB-graph G is either equilateral, or can be completed into an induced C_5 of G.

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti

December 4, 2021 15 / 16

イロト 不得 トイヨト イヨト 二日

Question: Are CB-groups more general than weakly-systolic groups?

J. Chalopin, V. Chepoi, U. Giocanti Graphs with convex balls and groups acti December 4, 2021 16 / 16

→ ∃ →

< AP