Graphs with convex balls and groups acting on them

Jérémie Chalopin, Victor Chepoi, LIS, Marseille Ugo Giocanti, G-SCOP, Grenoble; ENS de Lyon

December 4, 2021

Basic definitions

$G=(V, E)$: locally finite graph.
d : Shortest path metric.
$B_{k}(v):=\{u \in V, d(u, v) \leq k\}$.

Basic definitions

$G=(V, E)$: locally finite graph.
d : Shortest path metric.
$B_{k}(v):=\{u \in V, d(u, v) \leq k\}$.

Definition

- The interval between two vertices u and v is the set $I(u, v)$ of vertices on shortest $u v$-paths.

$$
I(u, v):=\{x \in V, d(u, x)+d(x, v)=d(u, v)\} .
$$

Basic definitions

$G=(V, E)$: locally finite graph.
d : Shortest path metric.
$B_{k}(v):=\{u \in V, d(u, v) \leq k\}$.

Definition

- The interval between two vertices u and v is the set $I(u, v)$ of vertices on shortest $u v$-paths.

$$
I(u, v):=\{x \in V, d(u, x)+d(x, v)=d(u, v)\} .
$$

- A set $X \subseteq V$ is convex if for every $u, v \in X, I(u, v) \subseteq X$.

Systolic graphs

Systolic graphs

Definition

A subgraph H of G is isometric if for every $u, v \in V(H)$, $d_{H}(u, v)=d_{G}(u, v)$.

Systolic graphs

Definition

A subgraph H of G is isometric if for every $u, v \in V(H)$, $d_{H}(u, v)=d_{G}(u, v)$.

Definition

A graph is systolic (or bridged) if it has no isometric cycle of length other than 3.

Systolic graphs

Definition

A subgraph H of G is isometric if for every $u, v \in V(H)$, $d_{H}(u, v)=d_{G}(u, v)$.

Definition

A graph is systolic (or bridged) if it has no isometric cycle of length other than 3.

Natural generalization of chordal graphs.

Combinatorial characterization of systolic graphs

Theorem (Chepoi, Soltan '83; Farber, Jamison '87)

The following conditions are equivalent:

- G is systolic;
- For every convex $X \subseteq V$ and every $k \geq 1, B_{k}(X)$ is convex.

Combinatorial characterization of systolic graphs

Theorem (Chepoi, Soltan '83; Farber, Jamison '87)

The following conditions are equivalent:

- G is systolic;
- For every convex $X \subseteq V$ and every $k \geq 1, B_{k}(X)$ is convex.

Haglund 2003; Wise 2003; Januszkiewicz, Swiatkowski, 2006: Systolic graphs form a "good" combinatorial analogue of spaces with nonpositive curvature.

Combinatorial characterization of systolic graphs

Theorem (Chepoi, Soltan '83; Farber, Jamison '87)

The following conditions are equivalent:

- G is systolic;
- For every convex $X \subseteq V$ and every $k \geq 1, B_{k}(X)$ is convex.

Haglund 2003; Wise 2003; Januszkiewicz, Swiatkowski, 2006: Systolic graphs form a "good" combinatorial analogue of spaces with nonpositive curvature.

Definition

A graph with convex balls (or CB-graph) is a graph such that every $B_{k}(v)$ is convex for every $v \in V, k \geq 1$.

Some examples

Some examples

Image source: Claudio Rocchini - Travail personnel, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1431171

From groups to graphs

$\Gamma=\langle S\rangle$: finitely generated group. Assume $S=S^{-1}$.

From groups to graphs

$\Gamma=\left\langle S>\right.$: finitely generated group. Assume $S=S^{-1}$.

Definition

Cayley graph Cay (Γ, S) is the graph with vertex set Γ and adjacencies $x y$ for every $x, y \in \Gamma$ such that $y \in S \cdot x$.
$\operatorname{Cay}\left(\mathbb{Z}^{2}, S\right)$, with $S=\{a, b\}$

From graphs to groups

A group action of Γ on a graph G is called geometric if it is cocompact and properly discontinuous.

From graphs to groups

A group action of Γ on a graph G is called geometric if it is cocompact and properly discontinuous.

Definition

A group Γ acting geometrically by automorphisms on a CB-graph is called a CB-group.

Fellow traveler property

Definition

A path system \mathcal{P} in G has the 2-sided fellow traveler property if there exists a constant $K>0$ such that for every $\gamma, \gamma^{\prime} \in \mathcal{P}$:

$$
\forall i \geq 0, d\left(\gamma(i), \gamma^{\prime}(i)\right) \leq K \max \left(d\left(\gamma(0), \gamma^{\prime}(0)\right), d\left(\gamma(\infty), \gamma^{\prime}(\infty)\right)\right)
$$

Fellow traveler property

Definition

A path system \mathcal{P} in G has the 2-sided fellow traveler property if there exists a constant $K>0$ such that for every $\gamma, \gamma^{\prime} \in \mathcal{P}$:

$$
\forall i \geq 0, d\left(\gamma(i), \gamma^{\prime}(i)\right) \leq K \max \left(d\left(\gamma(0), \gamma^{\prime}(0)\right), d\left(\gamma(\infty), \gamma^{\prime}(\infty)\right)\right)
$$

Biautomaticity

$\Gamma=\left\langle S>\right.$: finitely generated group. Assume $S=S^{-1}$.
A language $L \subseteq S^{*}$ surjects onto Γ if every $g \in \Gamma$ can be written as a word of L.

Biautomaticity

$\Gamma=\left\langle S>\right.$: finitely generated group. Assume $S=S^{-1}$.
A language $L \subseteq S^{*}$ surjects onto Γ if every $g \in \Gamma$ can be written as a word of L.

$$
\begin{gathered}
L_{1}:=\mathcal{L}\left((a+b)^{*}+\left(a+b^{-1}\right)^{*}\right. \\
\left.+\left(a^{-1}+b\right)^{*}+\left(a^{-1}+b^{-1}\right)^{*}\right) \\
\text { "shortest paths" }
\end{gathered}
$$

Biautomaticity

$\Gamma=\left\langle S>\right.$: finitely generated group. Assume $S=S^{-1}$.
A language $L \subseteq S^{*}$ surjects onto Γ if every $g \in \Gamma$ can be written as a word of L.

$$
\begin{aligned}
& L_{2}:=\mathcal{L}\left(a^{*} b^{*}+a^{*}\left(b^{-1}\right)^{*}\right. \\
& \left.+\left(a^{-1}\right)^{*} b^{*}+\left(a^{-1}\right)^{*}\left(b^{-1}\right)^{*}\right) \\
& \text { "horizontal then vertical" }
\end{aligned}
$$

Biautomaticity

Definition

$\Gamma=<S>$ is biautomatic if there exists a regular language $L \subseteq S^{*}$ that surjects onto Γ and which enjoys the 2-sided fellow traveler property in Cay (Г, S).

Biautomaticity

Definition

$\Gamma=\langle S\rangle$ is biautomatic if there exists a regular language $L \subseteq S^{*}$ that surjects onto Γ and which enjoys the 2-sided fellow traveler property in Cay (Г, S).

$$
\begin{gathered}
L_{1}:=\mathcal{L}\left((a+b)^{*}+\left(a+b^{-1}\right)^{*}\right. \\
\left.+\left(a^{-1}+b\right)^{*}+\left(a^{-1}+b^{-1}\right)^{*}\right) \\
\text { "shortest paths" }
\end{gathered}
$$

Biautomaticity

Definition

$\Gamma=<S>$ is biautomatic if there exists a regular language $L \subseteq S^{*}$ that surjects onto Γ and which enjoys the 2-sided fellow traveler property in Cay (Г, S).

$$
\begin{aligned}
& L_{2}:=\mathcal{L}\left(a^{*} b^{*}+a^{*}\left(b^{-1}\right)^{*}\right. \\
& \left.+\left(a^{-1}\right)^{*} b^{*}+\left(a^{-1}\right)^{*}\left(b^{-1}\right)^{*}\right)
\end{aligned}
$$

'horizontal then vertical"

Who is biautomatic?

Who is biautomatic?

Who is biautomatic?

Biautomaticity

Theorem

Every CB-group is biautomatic. In particular the word problem can be solved in quadratic time over CB-groups.

Biautomaticity

Theorem

Every CB-group is biautomatic. In particular the word problem can be solved in quadratic time over CB-groups.

Theorem (Świạtkowski, 06)

Let Γ be a group acting geometrically on a graph G, and \mathcal{P} a path system in G such that:
$1 \mathcal{P}$ is locally recognized;
2 there exists $v_{0} \in V(G)$ such that any two vertices of the orbit $\Gamma \cdot v_{0}$ are connected by a path from \mathcal{P};
$3 \mathcal{P}$ satisfies the 2-sided fellow traveler property.
Then Γ is biautomatic.

Clique paths

Clique paths

Clique paths

Clique paths

Clique paths

Clique paths

Clique paths

If $d(u, v)=k$, let $\gamma_{(u, v)}:=\left(C_{0}, C_{1}, \ldots, C_{k}\right)$ be the associated clique-path.

Clique paths

If $d(u, v)=k$, let $\gamma_{(u, v)}:=\left(C_{0}, C_{1}, \ldots, C_{k}\right)$ be the associated clique-path. $\mathcal{P}:=\left\{\gamma_{(u, v)},(u, v) \in V(G)^{2}\right\}$.

Clique paths

If $d(u, v)=k$, let $\gamma_{(u, v)}:=\left(C_{0}, C_{1}, \ldots, C_{k}\right)$ be the associated clique-path. $\mathcal{P}:=\left\{\gamma_{(u, v)},(u, v) \in V(G)^{2}\right\}$.

Clique paths

If $d(u, v)=k$, let $\gamma_{(u, v)}:=\left(C_{0}, C_{1}, \ldots, C_{k}\right)$ be the associated clique-path. $\mathcal{P}:=\left\{\gamma_{(u, v)},(u, v) \in V(G)^{2}\right\}$.

Clique paths

If $d(u, v)=k$, let $\gamma_{(u, v)}:=\left(C_{0}, C_{1}, \ldots, C_{k}\right)$ be the associated clique-path. $\mathcal{P}:=\left\{\gamma_{(u, v)},(u, v) \in V(G)^{2}\right\}$.

Clique paths

If $d(u, v)=k$, let $\gamma_{(u, v)}:=\left(C_{0}, C_{1}, \ldots, C_{k}\right)$ be the associated clique-path. $\mathcal{P}:=\left\{\gamma_{(u, v)},(u, v) \in V(G)^{2}\right\}$.

Other results about CB-graphs

Theorem (Local-to-global)

CB-groups are exactly graphs G such that:

- The triangle-pentagon complex $X_{\triangle, \bullet}(G)$ is simply connected, and
- The balls of radius 3 are convex.

Theorem (Local-to-global)

CB-groups are exactly graphs G such that:

- The triangle-pentagon complex $X_{\triangle, \bullet}(G)$ is simply connected, and
- The balls of radius 3 are convex.

Theorem (Dismantlability)

Any BFS-order of the vertices of a CB-graph G is a dismantling order of its square G^{2}. In particular, every graph isomorphism $f: G \rightarrow G$ fixes a subgraph of G of diameter 2 .

Other results about CB-graphs

Theorem (Local-to-global)

CB-groups are exactly graphs G such that:

- The triangle-pentagon complex $X_{\triangle, \bullet}(G)$ is simply connected, and
- The balls of radius 3 are convex.

Theorem (Dismantlability)

Any BFS-order of the vertices of a CB-graph G is a dismantling order of its square G^{2}. In particular, every graph isomorphism $f: G \rightarrow G$ fixes a subgraph of G of diameter 2 .

Theorem (metric triangles)

Every metric triangle of a CB-graph G is either equilateral, or can be completed into an induced C_{5} of G.

Question: Are CB-groups more general than weakly-systolic groups?

