Fast generation of domino portraits

Hadrien Cambazard, John Horan, Eoin O'Mahony, Barry O'Sullivan

Cork Constraint Computation Center SFI grant number 05/IN/886

Outline

- The domino portrait problem
- The Integer linear programming approach of Robert Bosch
- A two-step approach
- flow-based formulation of the problem
- Applications

Domino portraits

[Knowlton, Representation of design 1983] [Knuth, The Stanford GraphBase,1993]
[E. Berlekamp and T. Rogers, The mathemagician and pied puzzler, 1999] [Bosh, constructing domino portraits, 2004]

$$
k=s^{\wedge} 2
$$

$55 \times \mathrm{k}$ dominos

$110 \times k$ cells

Domino k is denoted $d_{k}=\left[p_{k}^{1}, p_{k}^{2}\right]$
The grayscale value of cell (i, j) is denoted $g_{i, j}$
Domino d_{k} is placed on cells $\left(i_{k}^{1}, j_{k}^{1}\right)\left(i_{k}^{2}, j_{k}^{2}\right)$
$\mathrm{Pb}: \quad$ Minimize $\sum_{d_{k} \in D}\left(p_{k}^{1}-g_{i_{k}^{1}, j_{k}^{1}}\right)^{2}+\left(p_{k}^{2}-g_{i_{k}^{2}, j_{k}^{2}}\right)^{2}$
Use each domino exactly once

The integer linear programming model

[R. Bosch. Constructing domino portraits. Tribute to a Mathemagician, 2004]

- The model :
- Boolean variables to specify if a given domino is placed with a given orientation with its reference square in a given cell of the grid.
- Each domino has to be used once
- Each cell is covered by a unique domino
- Very large models
- $k=49$ gives 1.063 .300 variables and around 2 hours of computation

A two-step approach

I. Pattern generation: cover the grid with empty dominos (rectangles)

A two-step approach

- Pattern: an arrangement of rectangles that covers the picture.
- Once the pattern is known the remaining problem is polynomial.
- Claim : any random pattern provide a good upperbound

Generate a random pattern

- Randomly assign rectangles vertically of horizontally with simple propagation

- Contradiction detection : a connected region of with an odd numbers of cells
- Partial restart by wiping out part of the grid

Optimal assignment

- The assignment problem is represented as a bipartite graph
- The cost of assigning a domino to a rectangle is given by its best orientation
- The Hungarian algorithm computes a minimum weight bipartite matching

Optimal assignment

- Solving the assignment is polynomial
- Hungarian algorithm works in $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$ [Kuhn 55]
- k=l00 gives 5500 dominos. The Hungarian does not scale!
~ 10 minutes of computation

4

From $n^{\wedge} 3$ to constant time

- Take advantage of symmetries :
- Each domino is repeated \mathbf{k} times
- There are only 55 kinds of rectangles defining areas
- An area is a set of rectangles of same cost

From $n^{\wedge} 3$ to constant time

- Take advantage of symmetries :
- Each domino is repeated \mathbf{k} times
- There are only 55 kinds of rectangles defining areas
- An area is a set of
rectangles of same cost

From $n^{\wedge} 3$ to constant time

- Take advantage of symmetries :
- Each domino is repeated \mathbf{k} times
- There are only 55 kinds of rectangles defining areas
- An area is a set of rectangles of same cost

The min cost flow formulation

Optimal assignment

- There exists flow algorithm whose complexity does not depend on the capacities nor flow amount :
- The Enhanced Capacity Scaling algorithm $\mathrm{O}((\operatorname{mog}(\mathrm{n}))(\mathrm{m}+\mathrm{nlog}(\mathrm{n}))$
- The Successive Shortest Path is enough for our needs $O\left(n^{\wedge} 2 m U\right)$ where U is the maximum capacity

Optimal assignment: min cost flow vs hungarian

- The flow formulation provides a constant time answer to the assignment problem !

\mathbf{k}	Flow Time (s)	Hungarian Time (s)
9	0.23	0.47
25	0.15	6.87
49	0.15	50.17
121	0.17	734.69
2500	0.31	-
10000	0.63	-

First results

- Upper bounds obtained with a single random pattern

k	ILP		Two steps (100 runs)			Gap	
	Opt Cost	Time (s)	Avg Cost	Min Cost	Avg Time (s)	Avg Gap (\%)	Min Gap (\%)
1	1192	1.04	1260	1222	0.02	5.96	2.52
4	4844	13.8	5228	5139	0.04	7.99	6.09
9	11255	65.9	12183	12013	0.07	8.26	6.73
25	33673	325.62	36265	35998	0.12	7.71	6.90
49	69585	7030.29	74075	73639	0.13	6.45	5.83
121	171961	9797.55	181768	180991	0.16	5.72	5.25
225	376176	44895.86	386870	386326	0.17	2.84	2.69

- Very good upperbounds but a visually detectable gap to the optimal solution

Gap between ILP and random pattern + flow

Optimal solution

Upper bound (5.8 \%)

Searching among patterns

- We now know how to solve the problem very efficiently (constant time) once the pattern is known

How do we find the right pattern ?

- Main Idea : the pattern only matters where the grey values are varying.
- A change of the pattern that would not affect the size of the areas on the flow graph has no effect over the optimal assignment
- Our approach consists in slightly pertubating the pattern in a local search manner to affect the capacities of the areas and improve the flow.

A LNS algorithm

I. Identify the regions of the grid where the cost varies
2. Randomly select a point from those areas and remove M dominos around it
3. Enumerate all possible patterns (LNS step) that can fill the hole :

- Update incrementally the flow (sensitivity analysis of the flow)
- Store new solution if improvement

4. Return to 2 until a stopping criterion is met

Selecting the points of interest

Result of the FAST (Features from Accelerated Segment Test) algorithm on the "Girl with a Pearl Earring"

Final results

- High quality portraits (gap around 2\%)
- Orders of magnitude of speed up (seconds vs hours)

k	ILP		LNS patterns		Gap (\%)
	Opt Cost	Time (s)	Cost	Time (s)	
1	1192	1.04	1207	8.32	1.26
4	4844	13.8	4903	14	. 2
9	11255	65.9	11512	14.54	2.28
25	33673	325.62	34498	15.72	2.45
49	69585	7030.29	70977	17.66	
121	171961	9797.55	175669	27.34	2.16
225	376176	44895.86	380408	32.71	1.

Gap between ILP and LNS

Optimal solution ($\mathrm{k}=49$) ~7030s

LNS solution (k=49)
~18s

Applications

- Children love it !

Science discovery event 2007 in Cork

Applications

- People finally know what you are doing at work

Applications

- Teaching OR with fun :
- graph algorithms (Hungarian, Min cost flow and sensitivity analysis)
- search techniques (depth first search with simple propagation, LNS)
- algorithm from computer vision (FAST)

Conclusion

- An efficient and scalable approach based on a reformulation of the problem as a min cost flow problem
- Orders of magnitude of improvements compared to the integer linear approach
- Massive success with kids and great teaching tool
- http://4c.ucc.ie/~hcambaza/

Applications

- Packing with positioning cost ?

