
Notes on Constraint Programming

Hadrien Cambazard

16/10/2016

1 Introductive Example 2

2 Definitions and fundamentals 2
2.1 Constraint network, Solution . 2
2.2 Local consistencies as properties . 3
2.3 Local consistencies as algorithms . 5

3 Intensional and Global constraints 5
3.1 Some common constraints : linear, element, channeling . 5
3.2 Assignment and counting . 6
3.3 Scheduling, packing . 9

4 Search techniques, heuristics, restart, randomization, LDS 11

5 Exercices on modelling 11

1

1 Introductive Example

A toy problem of timetabling :
— Four meetings A, B, C, D of one hour each have to take place in the same room between 8h and 13h
— A and C must end at 10h and 11h respectively at the latest
— C must take place before B
— B must take place before D with exactly one or two hours of break inbetween

A problem is modelled by variables, domains and constraints :

(1.1) AllDifferent(xA, xB , xC , xD)
(1.2) xB + d+ 1 = xD,
(1.3) xC < xB ,
(1.4) xA ∈ {1, 2}, xC ∈ {1, 2, 3}, xB , xD ∈ {1, 2, 3, 4, 5}, d ∈ {1, 2}

(1)

2 Definitions and fundamentals

2.1 Constraint network, Solution

Definition n°1 - Constraint Network
A Constraint Network P is a triplet (X ,D, C), where :

— X is a set of variables {x1, . . . , xn}
— D is a domain on X , that is, a set {D(x1), . . . ,D(xn)}

— where D(xi) ⊂ Z is the finite set of values that xi can take
— C is a set of constraints {c1, . . . , cm} defining possible relations between variables

Definition n°2 - Constraint
A Constraint c is a pair (X (c),R(c)) where :

— X (c) is a sequence of variables. The length of X (c) = (xi1 , . . . , xik) is called the arity of c
— R(c) is a relation of arity k over Z, that is, a subset of Zk (a list of feasible tuples)

EXERCISE n°1: A constraint network for magic square

A magic square of order n is an arrangement of the integers 1 to n2 in a square, such that the rows,
columns, and diagonals all sum to the same value. A square remains ”essentially similar” if it is rotated
or transposed, or flipped so that the order of rows is reversed. Thus there exists 8 different magic squares
sharing one standard form.

A square is in standard form if the following two conditions apply :
— the element at position [1,1] (top left corner) is the smallest of the four corner elements ; and
— the element at position [1,2] (top and second from left cell) is smaller than the element in [2,1].

Give a constraint network to model a magic square of order n.

Definition n°3 - Solution
Given a constraint network P = (X ,D, C). An instantiation σ on a set Y = {x1, . . . , xk} of variables is

a mapping from variables to values :
— σ is said valid iff ∀xi ∈ Y, σ(xi) ∈ D(xi)
— σ violates a constraint c iff X (c) ⊆ Y and σ(X (c)) 6∈ R(c)
— σ is said consistent iff it is valid and it does not violate any constraint in C
— A solution to P is a consistent instantiation of X

2

EXERCISE n°2: Solutions to constraint networks - Micro-structure versus constraint graph

— Give a solution to the following constraint network (figure 1) :

Figure 1 – A constraint network represented by its micro-structure.

— Given a binary constraint network and its micro-structure, what is a solution from a graph point of
view ?

EXERCISE n°3: Binary and N-ary networks

— Define a binary extensional network equivalent to model (1) of the introduction.
— Define the n-ary extensional constraint associated to constraint (1.2) of model (1).

The Constraint Satisfaction Problem (CSP) is to find a solution to a given constraint network.

2.2 Local consistencies as properties

Definition n°4 - Arc Consistency
Let P = (X ,D, C) be a constraint network,

— A valid tuple σ of the constraint c (σ ∈ R(c)) is called a support of c
— i.e., A solution σ of the constraint network (X (c),D, {c})

— A value v ∈ D(x) is consistent with c iff it belongs to a support of c
— A domain D is Arc Consistent iff ∀c ∈ C, ∀x ∈ X (c), ∀v ∈ D(x), v is consistent with c

Iteratively removing non-consistent values of the constraints converges toward a unique fix-point : The
largest Arc Consistent subdomain of P (AC closure of P).

EXERCISE n°4: AC closure

What is the AC closure of the following constraint network :
X = {x, y, z}, D = {D(x) = {1, 2, 3, 4},D(y) = {2, 3, 4},D(z) = {2, 3}},
C ={c1 : Alldifferent(x, y, z), c2 : x+ 2y − z ≤ 4},
Give a support for (x, 1) in c1. Give a support of (x, 1) in c2 that is not consistent with c1.

EXERCISE n°5: AC closure

Figure 2 shows two contraint networks. Typically network 1 correspond to :
— X = {xA, xB , xC}, C = {c1, c2, c3}
— D = {D(xA) = D(xB) = D(xC) = {1, 2, 3}}
— X (c1) = {xA, xB},R(c1) = {(1, 2), (2, 3), (3, 1)}
— X (c2) = {xA, xC},R(c2) = {(2, 1), (3, 2), (3, 3)}

3

— X (c3) = {xB , xC},R(c3) = {(1, 2), (2, 1), (3, 2), (3, 3)}
Questions :
— Give a solution to each constraint network of figure 2.
— What is the AC closure of the two constraint networks ?
— What values are globally inconsistent ?

Figure 2 – Two constraint networks (courtesy to Romuald Debruyne).

Definition n°5 - Bound Consistency and Range Consistency
Let P = (X ,D, C) be constraint network

— A tuple σ (on Y) is bounds valid iff ∀xi ∈ Y, xi ≤ σ(xi) ≤ xi
— A bounds valid tuple σ of the constraint c (i.e ∈ R(c)) is a bounds support of c

— i.e., A solution σ of the constraint network (X (c),B, {c}) where ∀x, B(x) = [x, . . . , x]
— A value v ∈ D(x) is bounds consistent with c iff it belongs to a bounds support of c
— A domain D is Bounds Consistent iff ∀c ∈ C, ∀x ∈ X (c), x and x are bounds consistent with c
— A domain D is Range Consistent iff ∀c ∈ C, ∀x ∈ X (c), ∀v ∈ D(x), v is bounds consistent with c

EXERCISE n°6: decomposition in differences, BC and GAC (from [12])

Consider the network with variables x1, . . . , x6, domains D(x1) = D(x2) = {1, 2}, D(x3) = D(x4) =
{2, 3, 5, 6}, D(x5) = {5}, D(x6) = [3, . . . , 7] and a constraint alldifferent(x1, . . . , x6). Give the domains
of the variables after applying Bound-Consistency (BC) and Arc-Consistency (AC). Give also the domains
after applying Arc-consistency on a constraint network where the alldifferent(x1, . . . , x6) is replaced by
a clique of differences xi 6= xj , ∀i < j ≤ 6.

AC, BC, RC are properties of the domains.

Definition n°6 - Singleton Arc Consistency
A network P = (X ,D, C) is Singleton Arc Consistent (SAC) if and only if for all xi ∈ X , for all vi ∈ D(xi),

the subproblem P |xi=vi is not arc inconsistent.

4

2.3 Local consistencies as algorithms

3 Intensional and Global constraints

3.1 Some common constraints : linear, element, channeling

3.1.1 Linear inequation

For sake of simplicity we restrict the constraint to all ai and bi in N∗, all xi ≥ 0 and c ∈ N.

n1−1∑
i=1

aixi −
n∑

i=n1

bixi ≤ c |
n1−1∑
i=1

aixi −
n∑

i=n1

bixi ≥ c (2)

EXERCISE n°7:

— Give the AC closure for D(x1) = D(x2) = {0, 1, 2, 3, 4}, D(x3) = {2, 3, 4}, 3x1 − 2x2 + 4x3 ≤ 7.
— Give a GAC algorithm for the ≤ linear inequality (constraint (2)).

3.1.2 Linear equation

For sake of simplicity we restrict the constraint to all ai in N∗ and all xi ≥ 0 and c ∈ N..

n∑
i=1

aixi = c (3)

EXERCISE n°8:

Can you give a polynomial GAC algorithm for the linear equality constraint (3) ? What of BC ? What
filtering algorithm do you suggest ?

EXERCISE n°9:

Give the AC closure for D(x1) = {0, 1, 2}, D(x2) = {0, 1}, D(x3) = {0, 1}, 2x1 + 3x2 + 4x3 = 7. What
would be the result of your previous filtering algorithm (Exo (7)) on this example ?

3.1.3 Element

Element(y, t = [a1, . . . , an], x) | ElementV(y, t = [z1, . . . , zn], x) (4)

EXERCISE n°10:

Assuming that Element is enforcing AC, compare the two following CP models :
Model 1 : D(x1) = D(x2) = D(x3) = {0, 1} D(y) = [0, 100], C = {10x1 +3x2 +5x3 = y, x1 +x2 +x3 = 1}
Model 2 : D(x) = {0, 1, 2}, D(y) = [0, 100], C = {Element(y, [10, 3, 5], x)}

5

3.1.4 Counting occurrences

AtLeast(y, [x1, . . . , xm], a) | AtMost(y, [x1, . . . , xm], a) | Count(y, [x1, . . . , xm], a) (5)

EXERCISE n°11:

We must assign n clients to at most m depots that deliver goods to the clients. Each client must be served
by one single depot. A transportation cost cij is paid if client i is delivered by depot j. A depot can serve at
most wj clients. The problem is to decide which depot serves each client to minimize the total transportation
cost.

The constraint among counts the number of variables using values in a given set :

Among(y, [x1, . . . , xm], [a1, . . . , an]) (6)

3.1.5 Usefull constraints for redundant modelling

BoolChanneling : xi = j ⇔ bij = 1 Inverse : xi = j ⇔ yj = i (7)

3.2 Assignment and counting

3.2.1 Alldifferent (from [13, 8, 10])

Alldifferent(x1, . . . , xn) (8)

Hall’s Marriage Theorem [6] : If a group of men and women marry only if they have been introduced
to each other previously, then a complete set of marriages is possible if and only if every subset of men has
collectively been introduced to at least as many women, and vice versa.

Bound Consistency

Definition n°7 - Hall interval
Let x1, x2, . . . , xn be variables with respective finite domains D(x1), D(x2), . . . , D(xn). Given an interval

I of values, define KI = {xi|D(xi) ⊆ I}. I is a Hall interval if |I| = |KI |.

Theorem n°1
alldifferent(x1, . . . , xn) is BC if and only if |D(xi)| ≥ 1 (i = 1, . . . , n) and :

1. for each interval I : |KI | ≤ |I|,
2. for each Hall interval I : {xi, xi} ∩ I = ∅ for all xi 6∈ KI .

EXERCISE n°12: Bound consistency and Hall Intervals

x1 ∈ [3, 6], x2 ∈ [3, 4], x3 ∈ [2, 5], x4 ∈ [2, 4], x5 ∈ [3, 4], x6 ∈ [1, 6], Alldifferent(x1, . . . , x6).
— Give all Hall intervals and the state of the domains after enforcing BC.
— What filtering would you get if you decompose Alldifferent into a clique of binary constraints

(each achieving arc consistency) xi 6= xj , ∀(i, j) ∈ [1, 6]× [1, 6], i 6= j ?

EXERCISE n°13: Golomb rulers

The problem is to place n marks on a ruler so that the distance between each pair of marks is different
and the length of the ruler is minimized. The golomb ruler is said to be of order n. Give a CP model for that
problem. (the smallest open ruler is n = 28)

6

Arc Consistency

Definition n°8 - Tight set
Let x1, x2, . . . , xn be variables with respective finite domains D(x1), D(x2), . . . , D(xn). K ⊆ {x1, ..., xn}

is a tight set if |K| = |DK | (DK = ∪xi∈KD(xi)).

Theorem n°2
alldifferent(x1, . . . , xn) is GAC if and only if |D(xi)| ≥ 1 (i = 1, . . . , n) and D(xi) ∩DK = ∅ for each

Tight set K ⊆ {x1, . . . , xn} and each xi 6∈ KI .

Theorem n°3 (from [10])
Let G be the value graph of a sequence of variables X = {x1, x2, . . . , xn} with respective finite domains

D(x1), D(x2), . . . , D(xn). The constraint alldifferent(x1, . . . , xn) is GAC if and only if every edge in G
belongs to a matching in G covering X.

Theorem n°4 (from [2, 10])
Let G be a graph and M a maximum-size matching in G. An edge belongs to a maximum-size matching

in G if and only if it either belongs to M, or to an even M-alternating elementary chain starting at an M-free
vertex, or to an even M-alternating elementary cycle.

Note : an elementary chain is referred to as a path by some authors and an elementary cycle as a circuit.

Algorithm 1 GAC algorithm for Alldifferent(X = {x1, . . . , xn})
1: build the value graph G = (X, D(X), E)
2: compute maximum matching M in G
3: if (|M | < |X|) then return false

4: Define GM by orienting G (edges in M are oriented from X to D(X), other edges in the opposite direction)
5: mark all arcs in GM that are not in M as unused
6: compute SCCs in GM and mark all arcs in a SCC as used
7: perform breadth-first in GM search starting from M-free vertices, and mark all traversed arcs as used
8: for all arcs (xi, d) in GM marked as unused do
9: remove d from D(xi)

10: if D(xi) = ∅ then return false

3.2.2 Global Cardinality Constraint (from [11, 8])

For ease of simplicity we assume here that | ∪xi∈X D(xi)| = m

GCC(X = [x1, . . . , xn], [l1, . . . , lm], [u1, . . . , um]) (9)

EXERCISE n°14: GAC on GCC

x1 ∈ {2}, x2 ∈ {1, 2}, x3 ∈ {2, 3}, x4 ∈ {2, 3}, x5 ∈ {1, 2, 3, 4}, x6 ∈ {3, 4},
GCC(X = {x1, x2, x3, x4, x5, x6},[0,1,1,2],[3,2,1,3]).
— Give the domains after enforcing AC in the previous constraint network
— Give the state of the domains after propagation of a decomposition of the GCC into AtMost/AtLeast

constraints

Theorem n°5 (from [11])
Let G be the value network of a sequence of variables X = {x1, x2, . . . , xn} with respective finite

7

domains D(x1), D(x2), . . . , D(xn). The constraint GCC(X = [x1, . . . , xn], [l1, . . . , lm], [u1, . . . , um]) is GAC
if and only every arc in G belongs to a flow of value |X| in the value network.

Theorem n°6 (from [1, 11])
Let f be a maximum flow in graph G, Gf its associated residual graph, and e an arc in G. There exists

a maximum flow f
′

such that f
′
(e) > 0 if and only if f(e) > 0 or e belongs to a circuit of Gf .

EXERCISE n°15: Balanced Academic curriculum (BACP)

The BACP is to design a balanced academic curriculum by assigning periods to courses in a way that
the academic load of each period is balanced, i.e., as similar as possible.

An academic curriculum is defined by a set of courses C = {c1, . . . , cn} that have to be assigned in P
periods. Some courses are required to others so that R = {(i, j)|cj requires ci}. Each course ci is associated
to a number of credits or units si that represent the academic effort required to follow it. A minimum (resp
maximum) α1 (resp. β1) number of academic credits per period is required (resp. allowed). A minimum
(resp. maximum) α2 (resp. β2) number of courses is required (allowed). The goal is to minimise the maxi-
mum academic load for all periods.

The extended GCC (occurrences are now variables) :

GCC(X = [x1, . . . , xn], [o1, . . . , om]) (10)

3.2.3 NValue (from [3, 7])

NValue(X = [x1, . . . , xn], y) | AtMostNvalue([x1, . . . , xn], y) | AtLeastNvalue([x1, . . . , xn], y) (11)

Enforcing GAC on NValue or even AtMostNvalue is NP-Hard.

Figure 3 – Domains, intersection graph, interval graph (picture from [3]).

α(G) denotes the cardinality of a maximum independent set of the graph G.

Theorem n°7
AtMostNvalue([x1, . . . , xn], y) is BC on y iff |D(xi)| ≥ 1 (i = 1, . . . , n), α(GI) ≤ y and α(GI) ≤ y.

EXERCISE n°16:

Consider the following constraint network : AtMostNvalue([x1, . . . , x6], y) with D(x1) = [1, 6], D(x2) =
{2, 4}, D(x3) = {1, 2}, D(x4) = [1, 2, 3], D(x5) = {4, 5}, D(x6) = {4, 5}, D(y) = {1, 2}. Give the interval

8

graph, an independent set, enforce BC on y and suggest some filtering based on the graph viewpoint.

EXERCISE n°17: Guards

How many guards do you need to control the park of figure 4 ? A guard located at a cross-road can check

Figure 4 – The park and the possible observation points. Picture from [5]

all alleys intersecting that cross-road. We are looking for the minimum number of guards to ensure that all
alleys are beeing watched. Some position might require to build a small watch-tower (when the alley is very
long). The towers are of two different heights and the height required in position i is denoted hi ∈ {0, 1, 2}
(hi = 0 means that no towers is required in i, hi = 1 is a medium tower, hi = 2 is a big one) . We can have
at most 3 towers of medium height and at most 2 big towers.

Question 1. Give a linear model for the problem.

Question 2. Give a CP model (discuss alternatives way to model the problem).

EXERCISE n°18:

Given a n× n chessboard, a dominating set of queens is a set of queens attacking all the cells of the
board. The problem is to find a dominating set of queens of minimum cardinality. Give a CP model.

3.3 Scheduling, packing

3.3.1 BinPacking

BinPacking([x1, . . . , xn], [l1, . . . , lm], [w1, . . . , wn]) (12)

EXERCISE n°19: Warehouse location

We must assign n clients to at most m depots that deliver goods to the clients. A client i requires
a quantity di of goods. A transportation cost cij is paid if client i is delivered by depot j. A depot can
serve at most wj clients can deliver at most Cj units of goods. A fixed cost f is paid for each ope-
ned depot. The problem is to decide which depots to open and which depot serves each client so as
to minimize the transportation cost. Give a constraint model for this ”warehouse location” problem.

EXERCISE n°20:

Improve your previous model of the BACP.

9

3.3.2 Disjunctive (from [14])

Disjunctive([s1, . . . , sn], [e1, . . . , en], [p1, . . . , pn]) (13)

A disjunctive or Unary ressource : A set of non-interruptible tasks T (activities) which must not
overlap in time. A task (activity) is described by three variables : (si, ei, pi).

— si is the starting time of the task
— ei is the ending time
— pi is the processing time

The convention is to have si + pi = ei so that the task is not executed at time ei but runs in [si, ei − 1].

— the earliest possible starting time : esti = si
— the latest possible completion time : lcti = ei

For ease of simplicity we assume the processing time to be constant but the filtering can be applied
using pi if pi is variable. Earliest starting time, latest completion time and processing time are also
defined for sets of tasks Ω :

estΩ = minj∈Ω(estj) | lctΩ = maxj∈Ω(lctj) | pΩ =
∑
j∈Ω

pj

The filtering relies on estimations of the earliest completion time / latest starting time of a set Ω :

ectΩ = maxΩ′⊆Ω(estΩ′ + pΩ′) | lstΩ = minΩ′⊆Ω(lctΩ′ − pΩ′)

We focus on the update of D(si) but all filtering rules given are symetric and can be used to update D(ei)
(keep also in mind that BC is enforced on si + pi = ei)

1. Compulsory parts : Given a task i, if lcti− pi < esti + pi then the interval Ci = [lcti− pi, esti + pi[
is compulsory. No other tasks can begin or end in the compulsory part of i.

2. Overload checking is a necessary condition for the Disjunctive to be satisfiable :

∀Ω ⊆ T, estΩ + pΩ ≤ lctΩ

3. Edge finding is a filtering rule. Consider a set Ω ⊂ T and a task i 6∈ Ω :

ectΩ∪{i} + pΩ∪{i} > lctΩ =⇒ si ≥ ectΩ

4. Not-Last (resp. Not-First) is a filtering rule to detect that some task can not be scheduled last (resp.
first) in a given set. The task i can not be scheduled after Ω (i 6∈ Ω) if estΩ + pΩ > lcti − pi :

estΩ + pΩ > lcti − pi =⇒ ei ≤ maxj∈Ω(ej − pj)

5. Detectable precedence : a precedence j << i between two tasks is discovered from the bounds :

esti + pi > lctj − pj =⇒ j << i

The propagation rule is based on all the detected predecessors of i so that

si ≥ (ect{j|j<<i})

EXERCISE n°21:

10

Figure 5 – Example of a schedule with n = 3 patients and m = 3 exams. Patient P1 does E3 immediatly,
waits before E2 and waits again before E1.

n patients must each do m different examinations in a hospital. Each examination requires a specific
medical team and has a duration that depends on the patient : dij is the duration of exam j for patient i.
Examinations can be done in any order for a patient but each patient can not do two examinations at the
same time. The goal is to close the service as early as possible. Figure 5 shows an example of data-set with 3
patients, 3 exams and the correspdonding durations. It also shows an example of solution. Give a CP model.

EXERCISE n°22: TSP-TW

Give a CP model for the TSP-TW. A nurse must visit and serve n patients (and come back to the
hospital). Each patient must be served in a given time window [ai, bi] and has a service time (care time) of
ci (the start of the service must be in the time-window). The nurse can eventually arrive at the patient’s
place before ai but must wait ai to start the service. The distance (resp. the time) between two patients i
and j is denoted dij (resp tij). We are looking for the shortest tour (in distance) starting from the hospital
(indexed by i = 0), visiting all patients and coming back to the hospital. Give a CP model.

3.3.3 Cumulative

We extend the task with a extra attribute, the height : hi.

Cumulative([s1, . . . , sn], [e1, . . . , en], [p1, . . . , pn], [h1, . . . , hn], C) (14)

EXERCISE n°23:

m people must attend n classes (each class has a duration pj of 30, 60, 90 or 120 minutes) between 8h00
and 17h00. k rooms can be used (they are all big enough to accomodate any meeting). Each participant i
must follow 4 given and pre-defined classes : i1, i2, i3, i4. A lunch break has to take place between 12h and
13h. The problem is to design the planning ending as early as possible so we can all go to the beach.

4 Search techniques, heuristics, restart, randomization, LDS

5 Exercices on modelling

EXERCISE n°24: n-queens

11

Given a n × n chessboard, the problem is to place n-queens so that they don’t attack each other. Give
and discuss CP models.

EXERCISE n°25: Magic Series

A magic sequence of length n is a sequence of integers x0, . . . xn−1 between 0 and n − 1, such that for
all i in 0 to n − 1, the number i occurs exactly xi times in the sequence. Example : [1,2,1,0]. Give a magic
sequence for n = 5. Give a CP model to find magic sequences for a given n.

EXERCISE n°26: Redundant model for the TSP-TW

Extend your previous model for the TSP-TW with a redundant viewpoint that will strenghten the pro-
pagation of the lower bound.

EXERCISE n°27: Sport Scheduling

Consider n teams (n odd), n/2 periods and n− 1 weeks.
— Every team must play against every other team
— A team plays exactly one game per week
— A team can play at most twice in the same period

W1 W2 W3 W4 W5 W6 W7
P1 1 vs 2 1 vs 3 5 vs 8 4 vs 7 4 vs 8 2 vs 6 3 vs 5
P2 3 vs 4 2 vs 8 1 vs 4 6 vs 8 2 vs 5 1 vs 7 6 vs 7
P3 5 vs 6 4 vs 6 2 vs 7 1 vs 5 3 vs 7 3 vs 8 1 vs 8
P4 7 vs 8 5 vs 7 3 vs 6 2 vs 3 1 vs 6 4 vs 5 2 vs 4

Table 1 – Example of a solution of a sport scheduling problem for n = 8 teams.

EXERCISE n°28: Magic Squares

An order n magic square is a n by n matrix containing the numbers from 1 to n2, such that each row,
column and the two main diagonals equal the same sum. Give a CP model for this problem (pay attention
to symetries).

EXERCISE n°29: Social golfer

The problem is to design m groups of n golfers over p weeks, such that each golfer plays in each week
and no golfer plays in the same group as any other golfer twice. Give a CP model (pay attention to symetries).

Références

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows : Theory, Algorithms,
and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[2] Claude Berge. Two Theorems in Graph Theory. Proceedings of the National Academy of Sciences of
the United States of America, 43(9) :842–844, 1957.

12

[3] Christian Bessière, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. Filtering
algorithms for the nvalue constraint. Constraints, 11(4) :271–293, 2006.

[4] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting systematic search
by weighting constraints. In Ramon López de Mántaras and Lorenza Saitta, editors, ECAI, pages
146–150. IOS Press, 2004.

[5] Romuald Debruyne. Réseaux de contraintes à domaines discrets. École des Mines de Nantes, 2002-2003.

[6] P. Hall. On representatives of subsets. Journal of the London Mathematical Society, s1-10(1) :26–30,
1935.

[7] Nina Narodytska. Reformulation of Global Constraints. PhD thesis, University of New South Wales,
2011.

[8] Claude-Guy Quimper. Efficient Propagators for Global Constraints. PhD thesis, University of Waterloo,
2006.

[9] Philippe Refalo. Impact-based search strategies for constraint programming. In Mark Wallace, editor,
CP, volume 3258 of Lecture Notes in Computer Science, pages 557–571. Springer, 2004.

[10] Jean-Charles Régin. A filtering algorithm for constraints of difference in csps. In Barbara Hayes-Roth
and Richard E. Korf, editors, AAAI, pages 362–367. AAAI Press / The MIT Press, 1994.

[11] Jean-Charles Régin. Generalized arc consistency for global cardinality constraint. In William J. Clancey
and Daniel S. Weld, editors, AAAI/IAAI, Vol. 1, pages 209–215. AAAI Press / The MIT Press, 1996.

[12] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming (Foundations
of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

[13] Willem Jan van Hoeve. The alldifferent constraint : A survey. CoRR, cs.PL/0105015, 2001.

[14] Petr Viĺım. Global Constraints in Scheduling. PhD thesis, Charles University in Prague, Faculty of Ma-
thematics and Physics, Department of Theoretical Computer Science and Mathematical Logic, KTIML
MFF, Universita Karlova, Malostranské náměst́ı 2/25, 118 00 Praha 1, Czech Republic, August 2007.

13

