Search techniques in Constraint Programming

Hadrien Cambazard (from doctoral class of Emmanuel Hebrard, LAAS, Toulouse)

G-SCOP, LAAS-CNRS
Toulouse

Outline

(1) Backtrack Search

- Variable Ordering
- Value Ordering (Branching)
- Restarts \& Randomization
(2) Discrepancy Search techniques

Search Algorithms

- Tree Search
- Given a decision (a constraint) for example $x=v$, either:
\star there exists a solution where $x=v$
\star there exists a solution where $x \neq v$
\star there is no solution
- Typical decisions (fix a value, split a domain, enforce a precedence, ...)
- Exploring both branches gives a complete algorithm
\star In practice, it is often possible to detect inconsistencies after assigning only a few variables
\star Before each decision, there is a propagation step to enforce local consistencies

Variable Ordering

- The order in which variables are explored matters!
- During search, most of the time is spent in unsatisfiable sub-trees
- Detecting failure early (fail first)
- Start with variables that are most likely to "fail"
\star Smallest domain size (less freedom, smaller branching factor)
* Maximum degree (most constrained variable)
\star Minimum $\frac{\text { domain size }}{\text { degree }}$

Coloring

Lexicographic

Lexicographic

Lexicographic

Lexicographic

Maximum Degree

Maximum Degree

Maximum Degree

Maximum Degree

Minimum Domain

Minimum Domain

Minimum Domain

Minimum Domain

Minimum Domain / Degree

Weighted Degree Heuristic

- The weight of a constraint is initialised to 1
- When propagating, if a contradiction is detected on that constraint, its weight is increased by 1
- The weight of a variable is equal to the sum of the weights of its neighboring constraints

$$
\operatorname{weight}(x)=\sum_{c \text { s.t. } x \in \mathcal{X}(c)} \text { weight }(c)
$$

- Domain over weigthed degree:
- The variable that minimizes the ratio $\frac{\text { domain size }}{\text { weight }}$ is selected first

Impact

- The impact $I(x, v)$ of a pair (x, v) is initialised to 0
- The size of the search space of a network $\mathcal{P}=(\mathcal{X}, \mathcal{D}, \mathcal{C})$ is bounded by $\prod_{x \in \mathcal{X}}|\mathcal{D}(x)|$
- When the decision $x=v$ is succesful
- Let b be the size of the search space of $\mathcal{P}=(\mathcal{X}, \mathcal{D}, \mathcal{C})$ (before the decision)
- Let a be the size of the search space of $\mathcal{P}^{\prime}=\mathrm{AC}(\mathcal{X}, \mathcal{D}, \mathcal{C} \cup(x=v))$ (after the decision)
- The impact of this decision corresponds to the reduction of the search space: $\frac{b-a}{b}$
- The impact of (x, v) is the average impact computed for all decisions $x=v$.
- The weight of a variable x is $\sum_{v \in \mathcal{D}(x)} \frac{1}{T(x, v)}$, the variable with minimum weight is selected first

Value Ordering

- Often considered less important than variable ordering
- Most of the search effort is spent in unsatisfiable subtrees
- Value ordering does not really matter in an unsatisfiable subtree since it must be fully explored
- In satisfaction problems:
- Choosing a satisfiable subtree when branching (promise: choose the least constrained value)
- In optimisation problems:
- Choosing the assignment that is likely to give the best objective value in order to get good upper bounds quickly

Heavy Tail Behavior

- Given a collection of instances of a problem, we often observe a few exceptionally hard instances
- These instances are rare, but take exceptionally longer to solve
- Large impact on the mean runtime for a given set
- As opposed to normal distributions, the mean does not stabilize when the size of the sample grows
\star When the sample grows, the mean runtime is skewed up
\star Heavy tail behavior
- Not a characteristic of the instance, the same behavior behavior is observed if we run several times the same instance while varying some parameter of the solver
- For some combination instance / solver parameters, we get trapped into an exponential subtree

Heavy Tail Behavior

- Randomization:
- Add some randomized parameter in variable or value selection (for instance to break ties)
- Given the same random seed the solver will explore the same tree, however it will never explore two identical subproblems in the same way
- Restarting:
- After a given limit r, for instance in number of explored nodes: restart from scratch
- Randomization + restarts eliminates the huge variance in solver performance
- And therefore reduces the mean runtime when a heavy tail behavior could be observed
- Which limit r should we use?
- Geometric: $r_{i}=f^{i} b$

$$
\star b=100, f=2: 100,200,400,800, \ldots
$$

- Luby:

$$
\begin{aligned}
& \star \quad r_{i}=2^{i-1} b \text { if } i=2^{k}-1 \\
& \star \quad r_{i-2^{k-1}+1} b \text { if } 2^{k-1} \leq i \leq 2^{k}-1 \\
& \star \quad b=10: 10,10,20,10,10,20,40,10,10,20,10,10,20,40,80 \ldots
\end{aligned}
$$

Outline

(1) Backtrack Search
(2) Discrepancy Search techniques

Limits of heuristics

- Idea of Limited Discrepancy Search:
- A heuristic is never perfect
- But if we trust it, we want to search first as close as possible to the advised decisions.
- Idea of Depth Bounded Discrepency Search:
- Early choices are less informed
- A heuristic is generally less reliable at the top of the tree

Limited Discrepancy Search

Depth-bounded discrepancy search

