Search techniques in Constraint Programming

Hadrien Cambazard (from doctoral class of Emmanuel Hebrard, LAAS,
Toulouse)

G-SCOP, LAAS-CNRS
Toulouse

Outline

© Backtrack Search
@ Variable Ordering
@ Value Ordering (Branching)
@ Restarts & Randomization

)

19

Search Algorithms

@ Tree Search
» Given a decision (a constraint) for example x = v, either:

* there exists a solution where x = v
* there exists a solution where x # v
* there is no solution

» Typical decisions (fix a value, split a domain, enforce a precedence, ...)

» Exploring both branches gives a complete algorithm
* In practice, it is often possible to detect inconsistencies after assigning
only a few variables
* Before each decision, there is a propagation step to enforce local
consistencies

19

Variable Ordering

@ The order in which variables are explored matters!
» During search, most of the time is spent in unsatisfiable sub-trees
» Detecting failure early (fail first)
» Start with variables that are most likely to “fail”
* Smallest domain size (less freedom, smaller branching factor)
* Maximum degree (most constrained variable)

* Minimum dox;]aln size
egree
* ...

19

Coloring

{1,2,3,4,5,6} {1 2,3}

{1,2,3}
; /

{5,6} (X0 J+—(X1
£

{4,5) {1 2,3,4) @ {1,2,3}

19

Lexicographic

{1,2,3,4,5,6}

#

g —
fail fail fail fail fal xa x4 x4 x

e .
fail fail fail fail fa X4 x4 *

*

Fail fail ail Fail

19

Lexicographic

{1,2,3,5,6}

g
fail fail fail fail fa

—

X4 X4 X

*

e .
fail fail fail fail fa X4 x4 *

Fail fail ail Fail

19

Lexicographic

{1,2,3}

{1,2,3}

19

Lexicographic

{1,2,3}

Maximum Degree

{1,2,3,4,5,6}

19

Maximum Degree

{1,2,3,4,5,6}

19

Maximum Degree

{1,2,3,4,5,6} {1,2,3}

@ © ’

Maximum Degree

{1,2,3,4,5,6}

19

Minimum Domain

{1,2,3,4,5,6}

19

Minimum Domain

19

Minimum Domain

19

Minimum Domain

{1,2,3,5,6}

19

Minimum Domain / Degree

{1,2,3,4,5,6}

19

Minimum Domain / Degree

{1 2,3,4,5,6}

domain: 2
degree: 3

{1 2,3}
#
)(o
{1 2,3, 4} {1,2,3}

19

Minimum Domain / Degree

{1,2,3,5,6}

19

Minimum Domain / Degree

domain:
degree:

19

Minimum Domain / Degree

{1,2,3,5,6}

19

Minimum Domain / Degree

{1,2,3,4,6} {1,2,3}

10/19

Minimum Domain / Degree

{1,2,3,4,6} {1,2,3}
O ONY
{1,2,3}
+
10==
+
S ,2,3}

domain size:
degree: 3

domain size:
degree:

10/19

Weighted Degree Heuristic

@ The weight of a constraint is initialised to 1

@ When propagating, if a contradiction is detected on that constraint,
its weight is increased by 1

@ The weight of a variable is equal to the sum of the weights of its
neighboring constraints

weight(x) = Z weight(c)
¢ s.t. xeX(c)

@ Domain over weigthed degree:

» The variable that minimizes the ratio d“‘%;h:”e is selected first

11/19

Impact

@ The impact /(x, v) of a pair (x, v) is initialised to 0
@ The size of the search space of a network P = (X', D,C) is bounded

by [I,cx [P(x)|
@ When the decision x = v is succesful

>

Let b be the size of the search space of P = (X, D,C) (before the

decision)

Let a be the size of the search space of P’ =AC(X,D,CU (x = v))

(after the decision)

The impact of this decision corresponds to the reduction of the search
. b—a

space: 7

The impact of (x, v) is the average impact computed for all decisions

X = V.

@ The weight of a variable x is ZVeD(X) Tov) the variable with
minimum weight is selected first

1
X,V

12 /19

Value Ordering

@ Often considered less important than variable ordering

» Most of the search effort is spent in unsatisfiable subtrees

» Value ordering does not really matter in an unsatisfiable subtree since
it must be fully explored

@ In satisfaction problems:

» Choosing a satisfiable subtree when branching (promise: choose the
least constrained value)

@ In optimisation problems:

» Choosing the assignment that is likely to give the best objective value
in order to get good upper bounds quickly

13 /19

Heavy Tail Behavior

@ Given a collection of instances of a problem, we often observe a few
exceptionally hard instances
» These instances are rare, but take exceptionally longer to solve
» Large impact on the mean runtime for a given set
» As opposed to normal distributions, the mean does not stabilize when
the size of the sample grows
* When the sample grows, the mean runtime is skewed up
* Heavy tail behavior
@ Not a characteristic of the instance, the same behavior behavior is
observed if we run several times the same instance while varying some
parameter of the solver
» For some combination instance / solver parameters, we get trapped
into an exponential subtree

14 /19

Heavy Tail Behavior

@ Randomization:

» Add some randomized parameter in variable or value selection (for
instance to break ties)
» Given the same random seed the solver will explore the same tree,
however it will never explore two identical subproblems in the same way
@ Restarting:
» After a given limit r, for instance in number of explored nodes: restart
from scratch
@ Randomization + restarts eliminates the huge variance in solver
performance

» And therefore reduces the mean runtime when a heavy tail behavior
could be observed

15/19

@ Which limit r should we use?
» Geometric: r; = f'b
* b =100, f = 2: 100, 200, 400, 800, ...
> Luby:
* np=2"lpifi=2"-1
* r_g1 g bif 2T <i<2k-1
* p=10: 10,10,20,10,10,20,40,10,10,20,10,10,20,40,80 ...

16/19

Outline

© Discrepancy Search techniques

17 /19

Limits of heuristics

@ Idea of Limited Discrepancy Search:
» A heuristic is never perfect
» But if we trust it, we want to search first as close as possible to the
advised decisions.

@ Idea of Depth Bounded Discrepency Search:

» Early choices are less informed
» A heuristic is generally less reliable at the top of the tree

18 /19

Limited Discrepancy Search

limited discrepancy search Depth-bounded discrepancy search

SR R
SN AR

5

DN AN

12345678

19/19

