Multicut is FPT

Nicolas Bousquet

Joint work with: Jean Daligault, Stéphan Thomassé
1 Introduction
 • Parameterized complexity
 • Multicut

2 A polynomial instance

3 Reduction to the polynomial instance
 • Vertex Multicut
 • Reductions for one attachment vertex
 • Two attachment vertices components

4 Conclusion
A parameterized problem is \textit{FPT} (Fixed Parameter Tractable) iff there is an algorithm which runs in time $\text{Poly}(n) \cdot f(k)$ for an instance of size n and of parameter k.

Nicolas Bousquet

Multicut is FPT
Theorem

Vertex Cover parameterized by the size of the solution is FPT.
Example

Theorem

Vertex Cover parameterized by the size of the solution is FPT.

Proof:

- Pick an edge xy: x or y are in the Vertex Cover. Hence we can branch to decide which one is selected in the Vertex Cover. Decrease k by one and delete the edges adjacent to the chosen vertex.
Theorem

Vertex Cover parameterized by the size of the solution is FPT.

Proof:

- Pick an edge xy: x or y are in the Vertex Cover. Hence we can branch to decide which one is selected in the Vertex Cover. Decrease k by one and delete the edges adjacent to the choosen vertex.

- Binary tree of depth k: at most 2^k branches.
Courcelle’s Theorem

Theorem (Courcelle)
All the problems definable in the Monadic Second Order Logic parameterized by the treewidth are FPT.
Multicut

Definition

Let $G = (V, E)$ be a graph and R be a set of pairs of vertices called *requests*. A subset E' of E is a Multicut iff for each pair $xy \in R$ there is no path from x to y in $G' = (V, E \setminus E')$.

Definition

A pair of vertices of R is called a *request*. A vertex which is in a request is called a *terminal*.

Nicolas Bousquet

Multicut is FPT
Multicut

Definition

Let $G = (V, E)$ be a graph and R be a set of pairs of vertices called *requests*. A subset E' of E is a Multicut iff for each pair $xy \in R$ there is no path from x to y in $G' = (V, E\setminus E')$.

Definition

A pair of vertices of R is called a *request*. A vertex which is in a request is called a *terminal*.
Multicut problem

Input: A graph G, a set of requests R, an integer k.

Output: YES iff there exists a Multicut of (G, R) of size at most k.

Theorem (B., Daligault, Thomassé and Marx, Razgon)

Multicut parameterized by the size of the solution is FPT.
Multicut problem

Input: A graph G, a set of requests R, an integer k.

Output: YES iff there exists a Multicut of (G, R) of size at most k.

Theorem (B., Daligault, Thomassé and Marx, Razgon)

Multicut parameterized by the size of the solution is FPT.
Introduction
- Parameterized complexity
- Multicut

A polynomial instance

Reduction to the polynomial instance
- Vertex Multicut
- Reductions for one attachment vertex
- Two attachment vertices components

Conclusion
A graph H is a subdivision of a graph G iff H can be obtained by a subdivision of the edges of G.
Subdivided Multicut

Notation

We denote by E_i the set of edges of H associated to an edge e_i of G.

Theorem

Subdivided Multicut can be decided in polynomial time.
Subdivided Multicut

Notation
We denote by E_i the set of edges of H associated to an edge e_i of G.

Subdivided Multicut

Input: A graph H which is a subdivision of a graph G with k edges. A set of requests with endpoints which do not belong to the same E_i.

Output: YES iff there is a multicut which selects exactly one edge in each E_i.

Theorem
Subdivided Multicut can be decided in polynomial time.
Subdivided Multicut

Notation
We denote by E_i the set of edges of H associated to an edge e_i of G.

Theorem
Subdivided Multicut can be decided in polynomial time.
Proof:

- Number the edges of each E_i.
Proof:

- Number the edges of each E_i.
- Create a variable x_i for each E_i: the value of x_i refer to the edge selected by the Multicut.
Proof:

- Number the edges of each E_i.
- Create a variable x_i for each E_i : the value of x_i refer to the edge selected by the Multicut.
- Encode the requests with 2-SAT constraints:
 \[x_1 \leq 3 \Rightarrow x_2 \leq 1. \]
Transformation into a boolean instance

- Create boolean instances \(x_i \geq k \) for each pair \((i, k)\).
Transformation into a boolean instance

Objective

Transformation into a boolean instance.

- Create boolean instances “$x_i \geq k$” for each pair (i, k).
- Encode the requests in the same way: $x_1 \leq 3 \Rightarrow x_2 \leq 1$.
Objective

Transformation into a boolean instance.

- Create boolean instances \(x_i \geq k \) for each pair \((i, k)\).
- Encode the requests in the same way: \(x_1 \leq 3 \Rightarrow x_2 \leq 1 \).
- Encode the constraints of the order:
 - \(x_i \geq k \Rightarrow x_i \geq k - 1 \).
 - \(x_i \leq k \Rightarrow x_i \leq k + 1 \).
1. Introduction
 - Parameterized complexity
 - Multicut

2. A polynomial instance

3. Reduction to the polynomial instance
 - Vertex Multicut
 - Reductions for one attachment vertex
 - Two attachment vertices components

4. Conclusion

Nicolas Bousquet

Multicut is FPT
Iterative Compression

Main idea

Compute a solution of an instance using a solution of a smaller instance.
Iterative Compression

Main idea
Compute a solution of an instance using a solution of a smaller instance.

Theorem
Let P be a problem parameterized by the number of vertices k in the solution. If the problem given a solution of size $k + 1$ is FPT, then the problem is FPT.
Iterative Compression

Main idea
Compute a solution of an instance using a solution of a smaller instance.

Theorem
Let P be a problem parameterized by the number of vertices k in the solution. If the problem given a solution of size $k + 1$ is FPT, then the problem is FPT.

Proof: By induction on the size of the graph.
- Solve the problem on a graph of size 1: ok.
- Solve the problem on the graph restricted to $V \setminus v$: the solution on $V \setminus v$ plus v is a solution of size $k + 1$.
Iterative compression

Theorem

If Multicut given a Vertex Multicut of size at most $k + 1$ can be solved in $f(k) \cdot n^c$ then Multicut can be solved in $f(k) \cdot n^{c+1}$.
Theorem

If Multicut given a Vertex Multicut of size at most $k + 1$ can be
solved in $f(k) \cdot n^c$ then Multicut can be solved in $f(k) \cdot n^{c+1}$.

Proof by induction on the size of the graph:

1. Solve the problem on the graph except one vertex.
2. One endpoint of each edge and the new vertex is a vertex
 multicut of size $k + 1$.
3. Solve the problem Multicut given a vertex multicut of size
 $k + 1$.

Total time: $f(k) \cdot (n - 1)^{c+1} + f(k) \cdot n^c \leq f(k) \cdot n^{c+1}$.

We can assume that the vertices of the Vertex Multicut are separated by the Multicut.
We can assume that the vertices of the Vertex Multicut are separated by the Multicut.

We can assume that the components have one or two attachment vertices.
Let G be a connected graph and x be a vertex called root.

Definition

A *cut* S is a subset of vertices containing x.

The *border* Δ of a cut S is the set of edges with one endpoint in S.

We denote by δ its size.
Let G be a connected graph and x be a vertex called root.

Definition

A *cut* S is a subset of vertices containing x. The *border* Δ of a cut S is the set of edges with one endpoint in S. We denote by δ its size.

Left cut

A *left cut* S such that if $T \subset S$ then $\delta(T) > \delta(S)$.

Nicolas Bousquet

Multicut is FPT
Left cuts

Let G be a connected graph and x be a vertex called root.

Definition

A *cut* S is a subset of vertices containing x.

The *border* Δ of a cut S is the set of edges with one endpoint in S.

We denote by δ its size.

Left cut

A *left cut* S such that if $T \subsetneq S$ then $\delta(T) > \delta(S)$.
Indivisible left cuts

Definition

A cut is *indivisible* S iff $G \setminus S$ is connected.

Theorem

Let y be a vertex. There is a bounded number (in k) of indivisible left cuts of size at most k which separate x from y.
Active sets

An active set \mathcal{L} of edges a set such that if there is a solution of the Multicut problem, there is a solution which use only edges of \mathcal{L}.

Theorem

Let C be a component attached on x. There is an active set $\mathcal{L}(C)$ which have a bounded size.
Active sets

An active set \mathcal{L} of edges is a set such that if there is a solution of the Multicut problem, there is a solution which uses only edges of \mathcal{L}.

Theorem

Let C be a component attached on x. There is an active set $\mathcal{L}(C)$ which have a bounded size.

Theorem

Let C_1, \ldots, C_p be p disjoint components attached on x. Let $U_i = \bigcup_{k=1}^{i} C_i$. Then each U_i has a bounded active set \mathcal{L}_i and $\mathcal{L}_j \cap U_i \subseteq \mathcal{L}_i$ if $i \leq j$.
Let C be a xy connected component. A backbone is a path from x to y in C in which only one edge of the Multicut is deleted.

We can assume that:

- Each component has a backbone.
- At most $2\lambda - 1$ edges are deleted (where λ is the xy-connectivity).
- Each vertex of the backbone is a vertex cutset.
Dilworth’s Theorem

Partial Order
A *partial order* is an acyclic transitive oriented graph.
A *chain* is a total order.

Antichain
An antichain of a partial order P is a subset of P with pairwise incomparable elements.
Dilworth’s Theorem

Partial Order

A *partial order* is an acyclic transitive oriented graph. A *chain* is a total order.

Antichain

An antichain of a partial order P is a subset of P with pairwise incomparable elements.

Dilworth’s Theorem

A partial order P can be covered by n chains iff the maximum size of an antichain is n.

Nicolas Bousquet Multicut is FPT
Partial Order
A *partial order* is an acyclic transitive oriented graph. A *chain* is a total order.

Antichain
An antichain of a partial order P is a subset of P with pairwise incomparable elements.

Dilworth’s Theorem
A partial order P can be covered by n chains iff the maximum size of an antichain is n.

Nicolas Bousquet
Multicut is FPT
Our goal

We want to reduce to the polynomial instance.
Our goal

We want to reduce to the polynomial instance.

Theorem

We can assume that there is no components C_i.

Nicolas Bousquet

Multicut is FPT
Application of Dilworth’s Theorem

If the chosen edge in the backbone is v_iv_{i+1}, then:

- The edges before v_iv_{i+1} can be contracted (hence L_i becomes a cherry).
Application of Dilworth’s Theorem

If the chosen edge in the backbone is $v_i v_{i+1}$, then:

- The edges before $v_i v_{i+1}$ can be contracted (hence L_i becomes a cherry).
- If $i \leq j$ then $L_i \subseteq L_j$.
Application of Dilworth’s Theorem

If the chosen edge in the backbone is $v_i v_{i+1}$, then:

- The edges before $v_i v_{i+1}$ can be contracted (hence L_i becomes a cherry).
- If $i \leq j$ then $L_i \subseteq L_j$.

Theorem

Let K_1, \ldots, K_p be p disjoint components attached on x. Let $L_i = \bigcup_{k=1}^{i} K_i$. Then each L_i has a bounded active set \mathcal{L}_i and $\mathcal{L}_j \cap L_i \subseteq \mathcal{L}_i$ if $i \leq j$.

Nicolas Bousquet

Multicut is FPT
Application of Dilworth’s Theorem

The sets \mathcal{L}_i satisfy $\mathcal{L}_j \cap L_i \subseteq \mathcal{L}_i$.

The order \leq

Let $F_i \subseteq \mathcal{L}_i$ and $F_j \subseteq \mathcal{L}_j$ with $j \geq i$.

$F_i \preceq F_j$ iff $F_j \cap L_{i+1} \subseteq F_i$.
Application of Dilworth’s Theorem

The sets \mathcal{L}_i satisfy $\mathcal{L}_j \cap L_i \subseteq \mathcal{L}_i$.

The order \preceq

Let $F_i \subseteq \mathcal{L}_i$ and $F_j \subseteq \mathcal{L}_j$ with $j \geq i$.

$F_i \preceq F_j$ iff $F_j \cap L_{i+1} \subseteq F_i$.

Theorem

The order \preceq can be covered by a bounded number of chains.
Application of Dilworth’s Theorem

Proof: Let us prove by induction on k that the maximum size of an antichain is bounded.

Dilworth’s Theorem

A partial order P can be covered by n chains iff the maximum size of an antichain is n.

Nicolas Bousquet

Multicut is FPT
Application of Dilworth’s Theorem

Proof: Let us prove by induction on k that the maximum size of an antichain is bounded.

Dilworth’s Theorem

A partial order P can be covered by n chains iff the maximum size of an antichain is n.

Assume that the antichain for cuts of size $k + 1$ is unbounded. Let F_i be the elements of such an antichain. Enumerate the $F_i \subseteq \mathcal{L}_{t_i}$ of the antichain such that if $i < j$ then $t_i \leq t_j$.

- Since F_1 is not comparable with F_i, $F_i \cap \mathcal{L}_{t_{i+1}} \subset F_1$.

Nicolas Bousquet Multicut is FPT
Application of Dilworth’s Theorem

Proof: Let us prove by induction on k that the maximum size of an antichain is bounded.

Dilworth’s Theorem

A partial order P can be covered by n chains iff the maximum size of an antichain is n.

Assume that the antichain for cuts of size $k + 1$ is unbounded. Let F_i be the elements of such an antichain. Enumerate the $F_i \subseteq L_{t_i}$ of the antichain such that if $i < j$ then $t_i \leq t_j$.

- Since F_1 is not comparable with F_i, $F_i \cap L_{t_1+1} \subsetneq F_1$.
- Hence F_i has a vertex in L_{t_1+1}.
Application of Dilworth’s Theorem

Proof: Let us prove by induction on \(k \) that the maximum size of an antichain is bounded.

Dilworth’s Theorem

A partial order \(P \) can be covered by \(n \) chains iff the maximum size of an antichain is \(n \).

Assume that the antichain for cuts of size \(k + 1 \) is unbounded. Let \(F_i \) be the elements of such an antichain. Enumerate the \(F_i \subseteq \mathcal{L}_{t_i} \) of the antichain such that if \(i < j \) then \(t_i \leq t_j \).

- Since \(F_1 \) is not comparable with \(F_i \), \(F_i \cap \mathcal{L}_{t_1+1} \subsetneq F_1 \).
- Hence \(F_i \) has a vertex in \(\mathcal{L}_{t_1+1} \).
- Since \(\mathcal{L}_{t_1+1} \) has a bounded size, an arbitrarily large number of \(F_i \) share the same vertex.
- Apply the induction hypothesis on this set (the sets have size \(k \) since they share an edge).
Projection of the requests

Consider a chain of P and a request from $y \in C_k$ passing through x then :

- When $i < k$, the request is cut.
- When $i \geq k$, the request is cut iff it is cut by $F_i \cap L_k$.
- When the request becomes uncut, it is still uncut when i increases : indeed if $j > i$, $F_j \cap L_i \subseteq F_i$.
Projection of the requests

If the request is cut before v_i and uncut after v_{i+1}, the request can be projected on v_{i+1}.
Projection of the requests

If the request is cut before v_i and uncut after v_{i+1}, the request can be projected on v_{i+1}.

Theorem

We can assume that no component is attached on the vertices v_i.
1 Introduction
 - Parameterized complexity
 - Multicut

2 A polynomial instance

3 Reduction to the polynomial instance
 - Vertex Multicut
 - Reductions for one attachment vertex
 - Two attachment vertices components

4 Conclusion
Comparison with Marx and Razgon’s proof

Our positive points:
- We have a branching algorithm.
- Our proof is self-contained.

Their positive points:
- Their complexity is better: $O(2^{k^3})$.
- Their proof is written for Vertex-Multicut.
Multiflow

Input : A graph G, a set of requests R, an integer k.

Output : YES iff there are k edge-disjoint paths between pairs of vertices of R.

Open problem

Is the Multiflow problem FPT parameterized by the size of the solution?
Multiflow

Input: A graph G, a set of requests R, an integer k.

Output: YES iff there are k edge-disjoint paths between pairs of vertices of R.

Open problem

Is the Multiflow problem FPT parameterized by the size of the solution?
Polynomial kernels

Definition

A problem parameterized by k has a polynomial kernel iff there is an algorithm running in polynomial time which transforms an instance (n, k) into an instance (n', k') such that:

- $n' \leq \text{Poly}(k)$ and $k' \leq k$.
- The new instance is positive iff the original instance is positive.
Polynomial kernels

Definition

A problem parameterized by \(k \) has a polynomial kernel iff there is an algorithm running in polynomial time which transforms an instance \((n, k)\) into an instance \((n', k')\) such that:

- \(n' \leq \text{Poly}(k) \) and \(k' \leq k \).
- The new instance is positive iff the original instance is positive.

Open problem

Does the Multicut problem have a polynomial Kernel?
Another approach for Multicut

Open problem

Is it possible to encode a request by a bounded (in k) number of paths and to compute them in FPT-time?

$u = p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5 \quad p_6 \quad p_7 = v$
Another approach for Multicut

Open problem
Is it possible to encode a request by a bounded (in k) number of paths and to compute them in FPT-time?

\[u = p_1 \quad \quad p_2 \quad p_3 \quad p_4 \quad p_5 \quad p_6 \quad p_7 = v \]

Hitting path problem

Input: A graph G, a set of paths \mathcal{P}, an integer k.

Output: A set of k edges which intersects all the paths.

Open problem
Is Hitting path parameterized by the size of the solution FPT?
Thanks for your attention

Questions?