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Enumeration : a typical example

Input: Graph G
Output : The list of all inclusion-wise maximal stable sets of G

1 2

5

{1,3,5},{1,4},{2,5},{3.6}
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Enumeration?
[o] le]e}

Focus on easy problems

Input: Graph G

. . . . € P (greed
Output : one inclusion-wise maximal stable set. (g Y)

Not to be confused with :
Input: Graph G NP-complete
Output : a stable set of size
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Enumeration?
[e]e] e}

Enumerating in graphs : useful cases

® Graph databases : answer to a query
® Graph model is not exact : some solutions are best based on
qualitative criteria, we have to examine them one by one

e |dentify all problematic (or interesting !) patterns in a network

Application fields: bioinformatics (phy-

logenetic trees), chemistry (molecule e
structure), complex system modeling, S e
databases... [em, ems dem A

Diagram of a stereoisomer

LComparison and Enumeration of Chemical Graphs, T. Akutsu, H.
Nagamochi, Comp. and Struct. Biotechnology Journal
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https://www.sciencedirect.com/science/article/pii/S2001037014600325
https://www.sciencedirect.com/science/article/pii/S2001037014600325

Enumeration?
[e]e]e] }

Complexity for enumeration problems

In most cases : exponential number of solutions to output
(ex: 3"/3 max. stable sets)
= Good complexity measure?
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Complexity for enumeration problems

In most cases : exponential number of solutions to output
(ex: 3"/3 max. stable sets)
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@ Output-polynomial

Input of size n, N solutions to output.

first k th last
start solution  solution solution end
I - ]

T 1
N J
e

poly(n+ N)
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Enumeration?
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Complexity for enumeration problems

In most cases : exponential number of solutions to output
(ex: 3"/3 max. stable sets)
= Good complexity measure?

@ Output-polynomial
poly space vs.

® Incremental polynomial .
exponential space

© Polynomial delay

Input of size n, N solutions to output.

first k th last
start solution solution . solution end
| .. :
poly(n)  poly(n) poly(n) poly(n)
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Enumerate... but what ?
[ Jele}

Interesting objects to enumerate

@ Inclusion-wise minimal transversal of a hypergraph

® Inclusion-wise minimal dominating sets

© Spanning trees

O "Structured patterns" : inclusion-wise max. stable sets or
cliques ...

@ Inclusion-wise minimal "I1-fixings" of a graph
— Completions, deletion, induced subgraphs of a graph ...

. satisfying a given property 11
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Enumerate... but what ?
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Minimal fixings

3 variants

We want to satisfy a given property I'1
Example : II = C4-free
(contains no induced ()
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Minimal fixings
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Fixing by Fixing by
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Minimal fixings

3 variants

We want to satisfy a given property I'1
Example : II = C4-free
(contains no induced ()

Fixing by Fixing by Fixing by
adding edges deleting edges deleting vertices
Min. II-completion | Min. II-deletion Max. II-induced

subgraph

+ 3 others + 3 others

7/26



Enumerate... but what ?
[e]e] ]

Chordal completion

Chordal completion of a graph G : a completion of G that is
chordal (no chordless cycle of length > 4).

A chordal completion of G is also called a triangulation of G or

sometimes a fill-in.
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Algorithmic methods to
enumerate
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Methods
0e00000000

General principle of an enumeration algorithm

® Metagraph of solutions : traversal of this metagraph

Example with .
maximal stable sets
Solution metagraph ’ * :
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Methods
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Three classical methods :

Goal : get polynomial delay
+ poly space for 1 et 2 (and sometimes 3)

©® Flashlight search or Binary partition
[Read, Tarjan '75]

® Reverse search
[Avis, Fukuda '96]

© Proximity Search

[Conte, Uno '19]
[Conte, Grossi, Marino, Uno, Versari, '21]
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Methods
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Reverse search

Solution space
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Reverse search

Solution metagraph
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Methods
[e]e]e]ele] lelele]e]

Reverse search

To have Reverse search run in poly delay and space :

Generate in poly time and space the children of a solution
(each solution must have a single father)

g
5
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Reverse Search

1 2

135 ALL stable sets
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Methods
0000000800

Reverse Search for Maximal Stable Sets

{1,4} {2,5} {3,6}

5

shy if SN {v,..., vit =58 nN{wv,..., vi} and S is the
lexicographically smallest among all solutions containing

P is the father of S if P —'> S and there is no arc to S indexed > i
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Three classical methods :
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+ poly space for 1 et 2 (and sometimes 3)
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Proximity Search

Designed for enumerating inclusion-wise maximal (or min.)
solutions to a problem.
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Enumerate chordal fixings
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Chordal fixings
[e] lelelele]ele)

Chordal graph : no chordless cycle of length > 4.

Simplicial vertex

Any chordal graph has a simplicial vertex : its neighborhood is a
clique.

= Perfect elimination ordering : remove simplicial vertices one
by one.
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Chordal fixings
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Chordal graph : no chordless cycle of length > 4.

Simplicial vertex
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= Perfect elimination ordering : remove simplicial vertices one
by one.

10

3 clique

10695874312
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Chordal fixings
[e]e] lelele]e]e)

Proximity between solutions

Goal : enumerate all induced subgraphs of G that are chordal
(fixing by deleting vertices)

10
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Neighbors in the solution metagraph
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Neighbors in the solution metagraph

S’ = NEIGHB(S, v, K)
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Chordal fixings
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Neighbors in the solution metagraph : example
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Chordal fixings
[e]e]e]e] leele)

Neighbors in the solution metagraph : example

10
S’ = NEIGHB(S, 8,{1,7})

2 8

101736498
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Chordal fixings : recap

We have all the ingredients for Proximity Search to work :
@ Proximity between two solutions S and S* is defined
@® Neighbors(S) is computable in polytime
© Lemma proving that we can always find a neighbor with
higher proximity with a target solution, thanks to the perfect
elimination ordering (not shown here)
— Enumeration of chordal fixings by inclusion-wise min. deletion
of vertices in polynomial delay
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Chordal fixings
00000080

Other type of fixings : Chordal completions

— Enumerating minimal triangulations of a graph 7
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Other type of fixings : Chordal completions

— Enumerating minimal triangulations of a graph 7

Theorem [Brosse, Limouzy, Mary, 20217]

There exists a polynomial delay polynomial space algorithm to
enumerate all inclusion-wise minimal chordal completion of a graph
G given in input.

— Proximity Search with careful arguments (to get polynomial
space in particular)
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x Yy z Yy

FLIP

Removing edge xy — Common neighb. turned into clique 2526



Thank you
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