Arbitrary weights on outerplanar graphs $_{\rm OO}$

Online algorithm for the Canadian Traveler Problem on outerplanar graphs

Aurélie Lagoutte G-SCOP, Grenoble INP / Université Grenoble Alpes

Joint work with Beaudou, Bergé, Chernyshev, Dailly, Gerard, Limouzy, Pastor

Séminaire OC G-SCOP - Feb 13, 2025, Grenoble

At most k blocked edges.

At most k blocked edges.

 \Rightarrow competitive ratio $\frac{2k+1+\varepsilon}{1+\varepsilon} = 2k+1+o(1)$

Lower bound 2k + 1 even for planar graphs of treewidth 2.

Competitive ratio 2k + 1 in the general case :

• REPOSITION strategy :

Competitive ratio 2k + 1 in the general case :

• REPOSITION strategy : blocked edge revealed

Competitive ratio 2k + 1 in the general case :

- REPOSITION strategy :
 - blocked edge revealed
 - \rightarrow go back to *s* and compute a new shortest *st*-path.

Competitive ratio 2k + 1 in the general case :

- REPOSITION strategy :
 - blocked edge revealed
 - \rightarrow go back to *s* and compute a new shortest *st*-path.
- COMPARISON strategy :

Competitive ratio 2k + 1 in the general case :

- REPOSITION strategy :
 - blocked edge revealed
 - \rightarrow go back to *s* and compute a new shortest *st*-path.
- COMPARISON strategy : trade-off between REPOSITION and taking a shortest path to *t* from current position.

Competitive ratio 2k + 1 in the general case :

- REPOSITION strategy :
 - blocked edge revealed
 - \rightarrow go back to s and compute a new shortest st-path.
- COMPARISON strategy : trade-off between REPOSITION and taking a shortest path to *t* from current position.

PSPACE-complete :

given a number r, an instance (G, w, s, t), decide if there is a strategy of competitive ratio $\leq r$.

Outerplanar : can be drawn in the plane with all vertices on the outer face.

 $\ensuremath{\textbf{Outerplanar}}$: can be drawn in the plane with all vertices on the outer face.

Outerplanar : can be drawn in the plane with all vertices on the outer face.

Outerplanar : can be drawn in the plane with all vertices on the outer face.

Outerplanar : can be drawn in the plane with all vertices on the outer face.

Unit-weighted : w(e) = 1 $\forall e \in E$.

Outerplanar : can be drawn in the plane with all vertices on the outer face.

Unit-weighted : w(e) = 1 $\forall e \in E$. \rightarrow optimal ratio 9

Lost Cow Problem

Observation

Observation

Observation

Observation

Observation

Competitive ratio 9

Theorem [BBCDGLLP24+]

There is a strategy with competitive ratio 9 for the *k*-Canadian Traveler Problem on all unit-weighted outerplanar graphs.

Competitive ratio 9

Theorem [BBCDGLLP24+]

There is a strategy with competitive ratio 9 for the *k*-Canadian Traveler Problem on all unit-weighted outerplanar graphs.

Horizontal chord

Horizontal chord

shortest sv-path go through $u \to v$

shortest su-path go through $v \to u$

Cas 2

Proof with 3 steps

Proof with 3 steps

 \rightarrow Strategy with ratio 9.

Arbitrary weights

Theorem [BBCDGLL<u>P24+]</u>

There is no strategy with ratio better than $\Omega(\frac{\log k}{\log \log k})$ for the *k*-Canadian Traveler Problem on all outerplanar graphs.

Arbitrary weights

Theorem [BBCDGLLP24+]

There is no strategy with ratio better than $\Omega(\frac{\log k}{\log \log k})$ for the *k*-Canadian Traveler Problem on all outerplanar graphs.

Sketch of proof Build H_i on which :

- we cannot achieve ratio better than $r_i = i + 1 \varepsilon$.
- there are less than $((i+1)!)^2$ blocked edges
- the distance traversed by the traveler is at least (i + 1)!

Build H_i from H_{i-1}

Build H_i from H_{i-1}

With $N_i = i(i+1)$, and $S_i = (i+1)!$ \Rightarrow Cannot achieve ratio $i + 1 - \varepsilon$.
Is there a strategy with O(log k) ratio on weighted outerplanar graphs ? Known : 2k + 1 but also 2^{3/4} k + O(1)

- Is there a strategy with O(log k) ratio on weighted outerplanar graphs ? Known : 2k + 1 but also 2^{3/4}/₄k + O(1)
 - In which class lies the gap between constant and unbounded ratio ? *p*-outerplanar graphs ?

- Is there a strategy with O(log k) ratio on weighted outerplanar graphs ? Known : 2k + 1 but also $2^{\frac{3}{4}}k + O(1)$
- In which class lies the gap between constant and unbounded ratio ? *p*-outerplanar graphs ?
- Another class with constant ratio on unit-weighted but not constant on arbitrary weights ?

Open questions

- Is there a strategy with O(log k) ratio on weighted outerplanar graphs ? Known : 2k + 1 but also 2^{3/4} k + O(1)
- In which class lies the gap between constant and unbounded ratio ? *p*-outerplanar graphs ?
- Another class with constant ratio on unit-weighted but not constant on arbitrary weights ?
- Constant competitive ratio when bounded-size edge (s, t)-cuts ? Known : $\sqrt{2}k + O(1)$

Conclusion

Open questions

- Is there a strategy with O(log k) ratio on weighted outerplanar graphs ? Known : 2k + 1 but also 2^{3/4} k + O(1)
- In which class lies the gap between constant and unbounded ratio ? *p*-outerplanar graphs ?
- Another class with constant ratio on unit-weighted but not constant on arbitrary weights ?
- Constant competitive ratio when bounded-size edge (s, t)-cuts ? Known : $\sqrt{2}k + O(1)$

Conclusion

Open questions

- Is there a strategy with O(log k) ratio on weighted outerplanar graphs ? Known : 2k + 1 but also 2³/₄k + O(1)
- In which class lies the gap between constant and unbounded ratio ? *p*-outerplanar graphs ?
- Another class with constant ratio on unit-weighted but not constant on arbitrary weights ?
- Constant competitive ratio when bounded-size edge (s, t)-cuts ? Known : $\sqrt{2}k + O(1)$

Thank you for your attention !

Conclusion