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Clique vs Independent Set Problem

Goal (Yannakakis 1991)
Find a CS-separator : a family of cuts that can separate all the
pairs Clique-Stable set.

Non-det communication complexity↔ min. size of a CS-Separator.

Main question (Yannakakis 1991)
Do perfect graphs admit polynomial-size CS-Separator?

Upper Bound: there exists a CS-separator of size O(nlog n).
Lower bound in perfect graphs? Lower bound in general?
Does there exist for all graph G on n vertices a CS-separator
of size poly(n)? Or for which classes of graphs does it exist?
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Does there exist for all graph G on n vertices a CS-separator
of size poly(n)?

What about random graphs?
Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size O(n7) asymptotically
almost surely.

Lower Bound:

(Huang, Sudakov 2012): we need Ω(n 6
5 ) cuts for some graphs.

(Amano, Shigeta 2013): we need Ω(n2−ε) for some graphs.
(Göös 2015): we need nΩ(log0.128 n) cuts for some graphs.

For which classes of graphs does there exist a polynomial
CS-Separator?
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Motivation

Stable Set polytope
STAB(G) = conv(χS ∈ Rn | S ⊆ V is a stable set of G)
where χS denotes the characteristic vector of S ⊆ V .
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We like polytopes with a small number of facets.

P: polytope in R2 we want to optimize on (8 facets)
Q: polytope in R3 which projects to P (6 facets)
⇒ Easier to optimize on Q and project the solution!
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Extended formulation

Extension complexity of P
Minimum number of facets of a
polytope Q that projects onto P.

In perfect graphs:
we can describe STAB(G) with clique inequalities.

0 ≤ xv ≤ 1 ∀v ∈ V∑
v∈K xv ≤ 1 ∀ clique K

Extension complexity of STAB(G) ≥ min. size of a CS-Separator
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Reminder: definition of a CS-Separator
A set of cuts such that for every clique K and stable set S disjoint
from K , there is a cut that separates K from S.
Its size is the number of cuts.

In which classes of graphs do we have a polynomial CS-separator?

An easy example: if the clique number ω is bounded, say by 3:

For every subset T of size ≤ 3, take the cut (T ,V \ T )
⇒ CS-separator of size O(n3).
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The following classes of graphs admit poly-size CS-Separator:

1 chordal graphs (linear number of max. cliques)
2 comparability graphs (Yannakakis 1991)
3 C4-free graphs (Conseq. of Alekseev 1991)
4 P5-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Even stronger: 1© 2© and 4© have polynomial extension complexity.
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Tools and results about the CS-Separation

Comparability graphs
LP to compute maximum
weighted stable set.

When α or ω is bounded,
chordal graphs, C4-free, ....
Polynomially many maximal
cliques or stable sets.

P5-free graphs
In-depth study of potential
maximal cliques.

H-free graphs when H is split
Can define cuts with a con-
stant nb of neighborhoods.

(Pk ,Pk)-free graphs
Strong Erdős-Hajnal property.

Perfect graphs with no BSP
Decomposition by 2-joins.

k-windmill-free
Easy neighborhood property.

Homogeneous set
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Split-free

Comparability graphs [Yannakakis 1991]
Every comparability graph has a CS-separator of size O(n2).

Split-free [Bousquet, L., Thomassé]
Let H be a split graph. Then every H-free graph has a CS-separator
of size O(ncH ).
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Let H be a split graph and t ≈ 64|V (H)|2.

Key Lemma (using VC-dimension)
Let G be a H-free graph, K be a clique of G and S be a stable set
disjoint from K . Then one of the following holds:

∃S ′ ⊆ S s. t. |S ′| = t and S ′ dominates K , or
∃K ′ ⊆ K s. t. |K ′| = t and K ′ antidominates S.

Union of t neighborhoods contains K
and is disjoint from S.

For every set of size ≤ t:
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(Pk , Pk)-free graphs

CS-Sep. in (Pk ,Pk)-free graphs [Bousquet, L., Thomassé]
Fix k. Every (Pk ,Pk)-free graph has a O(nck ) CS-Separator.

Strong Erdős-Hajnal prop. - (Pk ,Pk)-free graphs
Fix k. Every (Pk ,Pk)-free graph has a linear-size biclique or com-
plement biclique (A,B).
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Sketch of proof

Theorem (Rödl 1986, Fox, Sudakov 2008)
∀k, every graph G satisfies one of the following:

G induces all graphs on k vertices.
G contains a sparse induced subgraph of linear size.
G contains a dense induced subgraph of linear size.

G : (Pk ,Pk)-free on n vertices.

First item does not hold.
Extract a sparse induced subgraph of linear size.
Extract a connected induced subgraph of linear size, with
maximum degree ≤ ε · n.
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Sketch of proof (continued)
Connected Pk -free subgraph G ′ on n′ vertices, max degree ≤ ε · n′.

Lemma
For all k, if G is a connected graph where:

There is no vertex of degree ≥ εk · n, or
There does not exist an antibiclique of size ≥ ck · n.

Then for every vertex v , there exists a Pk starting at v ,
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Tools and results about the CS-Separation

Comparability graphs
LP to compute maximum
weighted stable set.

When α or ω is bounded,
chordal graphs, C4-free, ....
Polynomially many maximal
cliques or stable sets.

P5-free graphs
In-depth study of potential
maximal cliques.

H-free graphs when H is split
Can define cuts with a con-
stant nb of neighborhoods.

(Pk ,Pk)-free graphs
Strong Erdős-Hajnal property.

Perfect graphs with no BSP
Decomposition by 2-joins.

k-windmill-free
Easy neighborhood property.

Homogeneous set
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Main step in the proof of the Strong Perfect Graph Theorem:
Decomposition [Chudnovsky, Robertson, Seymour, Thomas 2002]

If a graph is Berge, then for G or G , one of the following holds :
It is a basic graph: bipartite, line graph of bip., or double split.
There is a 2-join.
There is a balanced skew partition.

A1

B1

C1

A2

B2

C2

A1

A2

B1 B2

2-Join Skew Partition

Theorem [L., Trunck]
Let G be a perfect graph with no balanced skew partition, then there
exists a CS-separator for G of size O(n2).
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Strong Erdős-Hajnal property [L., Trunck]
Every perfect graph with no balanced skew partition admits a bi-
clique or complement biclique of size at least n/148.

A B

G

|A| ≥ n
148 |B| ≥ n

148

A B

G

|A| ≥ n
148 |B| ≥ n

148

Not hereditary class ⇒ cannot directly deduce the poly CS-sep.

But there exist perfect graphs where the Strong Erdős-Hajnal
property does not hold [Fox, Pach 2009] ⇒ Evidence of some
special structure.
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Let G be a Berge graph with no balanced skew partition, then there
exists a CS-separator for G of size O(n2).

Proof by induction:

For basic graphs: direct proof.
For a graph G with a 2-join :

From G , we build two "half" graphs G1 and G2, each
corresponding to a side of the 2-join + a gadget.
Check that G1 and G2 are still Berge with no balanced skew
partition [Chudnovsky, Trotignon, Trunck, Vušković 2012]
Get CS-separators for G1 and G2 by induction hypothesis
Transform them into a CS-separator for G .
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Tools and results about the CS-Separation

Comparability graphs
LP to compute maximum
weighted stable set.

When α or ω is bounded,
chordal graphs, C4-free, ....
Polynomially many maximal
cliques or stable sets.

P5-free graphs
In-depth study of potential
maximal cliques.

H-free graphs when H is split
Can define cuts with a con-
stant nb of neighborhoods.

(Pk ,Pk)-free graphs
Strong Erdős-Hajnal property.

Perfect graphs with no BSP
Decomposition by 2-joins.

k-windmill-free
Easy neighborhood property.

Homogeneous set
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Another tool
Generalization of "having a simplicial vertex".
Def: k-easy-neighborhood property in a class C
∀G ∈ C, ∃v ∈ V (G) s.t. G [N(v)] admits a O(|N(v)|k) CS-sep.

If C is hereditary and the k-easy-neighborhood property holds, then
every G ∈ C has a O(nk+1) CS-Separator.
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Windmill-free graphs

A 4-windmill

Let G be a k-windmill-free graph.
For every vertex v , the graph G ′ = G [N(v)] is kK2-free.
⇒ G ′ has O(|V (G ′)|2k−2) maximal stable sets (Alekseev 1991).
⇒ G ′ has a CS-Separator, hence v has an easy neighborhood.

Fix k. Every k-windmill-free graph has a O(n2k−1) CS-Separator.
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Tools and results about the CS-Separation

Comparability graphs
LP to compute maximum
weighted stable set.

When α or ω is bounded,
chordal graphs, C4-free, ....
Polynomially many maximal
cliques or stable sets.

P5-free graphs
In-depth study of potential
maximal cliques.

H-free graphs when H is split
Can define cuts with a con-
stant nb of neighborhoods.

(Pk ,Pk)-free graphs
Strong Erdős-Hajnal property.

Perfect graphs with no BSP
Decomposition by 2-joins.

k-windmill-free
Easy neighborhood property.

Homogeneous set
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Relationship with other
problems
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Erdős-Hajnal property
Can we always find a large clique or a large stable set?

Ramsey Theory
Every graph has a clique or a stable set of logarithmic size.

⇒ Logarithmic order is best possible (Erdős 1947).

Definition: The Erdős-Hajnal property
A class C of graphs has the Erdős-Hajnal property if there exists
β > 0 such that:
every G ∈ C has a clique or a stable set of size at least |V (G)|β.

The Erdős-Hajnal Conjecture
Every strict hereditary class C has the Erdős-Hajnal property.
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The Erdős-Hajnal Conjecture
Every strict hereditary class C has the Erdős-Hajnal property.
True when C is the class of:

perfect graphs
H-free graphs, when H has at most 4 vertices
bull-free graphs (Chudnovsky, Safra 2008)

Next interesting cases: P5-free or C5-free graphs.

Towards P5-free graphs?
(P5,P5)-free graphs (Fouquet 1993)
(P5,P6)-free graphs (Chudnovsky, Zwols 2012)
(P5,P7)-free graphs (Chudnovsky, Seymour 2012)
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Erdős-Hajnal prop. - (Pk ,Pk)-free [Bousquet, L., Thomassé]

There exists βk > 0 such that every (Pk ,Pk)-free graph G has a
clique or a stable set of size |V (G)|βk .

Strong Erdős-Hajnal prop. - (Pk ,Pk)-free [Bousquet, L., Thomassé]

For every k, every graph G with no Pk nor Pk has a linear-size
biclique or antibiclique (A,B).

A B

G

|A| ≥ ck.n |B| ≥ ck.n
or

A B

G

|A| ≥ ck.n |B| ≥ ck.n
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Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (1991)
For every graph G , χ(G) ≤ bp(G) + 1.

bp(G)= min. nb of complete bipartite graphs to partition E (G).

True when G = Kn (Graham-Pollack theorem, 1972)
Disproved in 2012 by Huang and Sudakov: χ(G) ≥ bp(G)6/5

for some graphs.

"Polynomial Alon-Saks-Seymour conjecture"
For every graph G , χ(G) ≤ poly(bp(G)).

⇔
Poly CS-Separation for every graph
Every graph G admits a CS-Separator of size poly(|V (G)|).

Disproved by Göös, 2015.
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Perspectives

Polynomial CS-Separation in perfect graphs?

Extending results on CS-Separation to extension complexity?
Find polynomial CS-Separators in some more classes of
graphs?

Explore relationship between different properties of classes:
CS-Separation
χ-boundedness
Erdős-Hajnal property
computing α is polynomial-time solvable
...

Thank you for your attention!
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