Clique-Stable set Separation

Aurélie Lagoutte

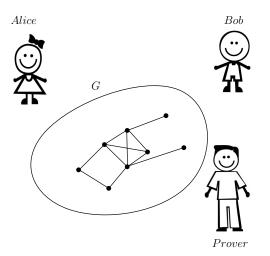
LIP, ENS Lyon

Princeton Discrete Mathematics Seminar - Oct.15, 2015

Joint work with N. Bousquet, S. Thomassé and T. Trunck

Introduction	Results
00000	

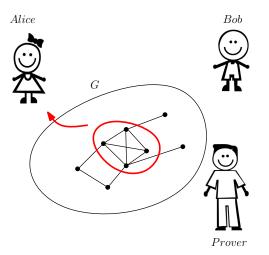
Clique vs Independent Set Problem



Introduction	Results
00000	000000000

Conclusion 0

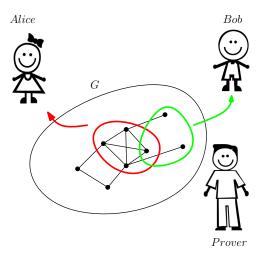
Clique vs Independent Set Problem



Introduction	Results
00000	

Conclusion 0

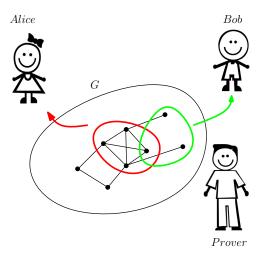
Clique vs Independent Set Problem



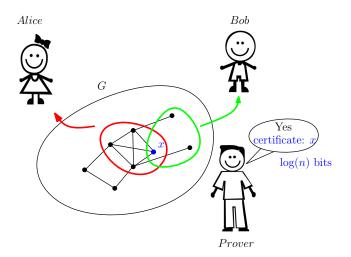
Introduction	Results
••••	00000000

Conclusion 0

Clique vs Independent Set Problem

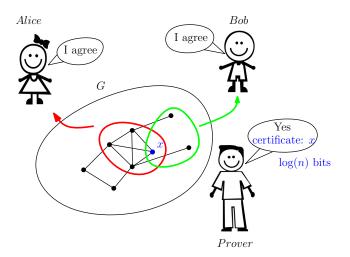


Clique vs Independent Set Problem



Conclusion 0

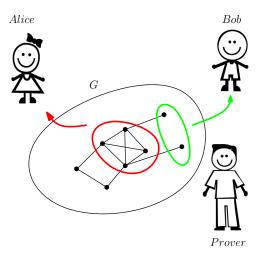
Clique vs Independent Set Problem



Introduction	Results
••••	00000000

Conclusion 0

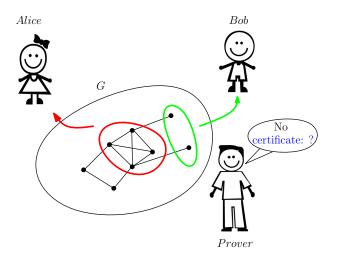
Clique vs Independent Set Problem



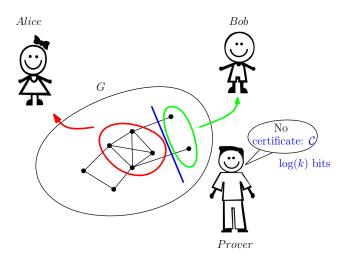
Introduction	Results
••••	0000000000000000

Conclusion 0

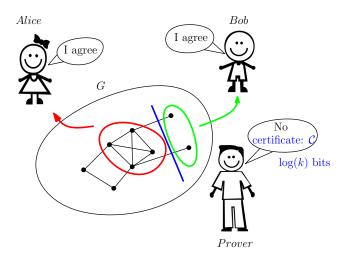
Clique vs Independent Set Problem



Clique vs Independent Set Problem



Clique vs Independent Set Problem



Goal (Yannakakis 1991)

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Goal (Yannakakis 1991)

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?

Goal (Yannakakis 1991)

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?

Upper Bound: there exists a CS-separator of size $\mathcal{O}(n^{\log n})$.

Goal (Yannakakis 1991)

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?

Upper Bound: there exists a CS-separator of size $\mathcal{O}(n^{\log n})$. Lower bound in perfect graphs?

Goal (Yannakakis 1991)

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?

Upper Bound: there exists a CS-separator of size $O(n^{\log n})$. Lower bound in perfect graphs? Lower bound in general?

Goal (Yannakakis 1991)

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?

Upper Bound: there exists a CS-separator of size $O(n^{\log n})$. Lower bound in perfect graphs? Lower bound in general? Does there exist for all graph G on n vertices a CS-separator of size poly(n)? Or for which classes of graphs does it exist?

Does there exist for all graph G on n vertices a CS-separator of size poly(n)?

Relationship with other problems

Does there exist for all graph G on n vertices a CS-separator of size poly(n)?

What about random graphs?

Does there exist for all graph G on n vertices a CS-separator of size poly(n)?

What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

Does there exist for all graph G on n vertices a CS-separator of size poly(n)?

What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

Lower Bound:

• (Huang, Sudakov 2012): we need $\Omega(n^{\frac{6}{5}})$ cuts for some graphs.

Does there exist for all graph G on n vertices a CS-separator of size poly(n)?

What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega(n^{\frac{6}{5}})$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega(n^{2-\varepsilon})$ for some graphs.

Does there exist for all graph G on n vertices a CS-separator of size poly(n)? No!

What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega(n^{\frac{6}{5}})$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega(n^{2-\varepsilon})$ for some graphs.
- (Göös 2015): we need $n^{\Omega(\log^{0.128} n)}$ cuts for some graphs.

Does there exist for all graph G on n vertices a CS-separator of size poly(n)? No!

What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega(n^{\frac{6}{5}})$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega(n^{2-\varepsilon})$ for some graphs.
- (Göös 2015): we need $n^{\Omega(\log^{0.128} n)}$ cuts for some graphs.

Does there exist for all graph G on n vertices a CS-separator of size poly(n)? No!

What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}(n^7)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega(n^{\frac{6}{5}})$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega(n^{2-\varepsilon})$ for some graphs.
- (Göös 2015): we need $n^{\Omega(\log^{0.128} n)}$ cuts for some graphs.

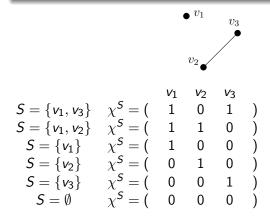
For which classes of graphs does there exist a polynomial CS-Separator?

		0000	0
Introduction	Results	Relationship with other problems	Conclusion

Motivation

$$STAB(G) = \operatorname{conv}(\chi^S \in \mathbb{R}^n \mid S \subseteq V \text{ is a stable set of } G)$$

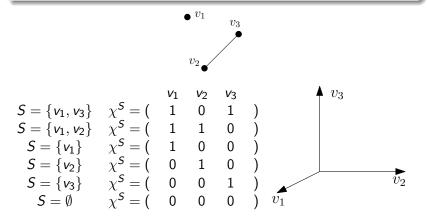
where χ^S denotes the characteristic vector of $S \subseteq V$.



Introduction 000000	Results	Relationship with other problems	Conclusion O
Motivation			

$$STAB(G) = \operatorname{conv}(\chi^S \in \mathbb{R}^n \mid S \subseteq V \text{ is a stable set of } G)$$

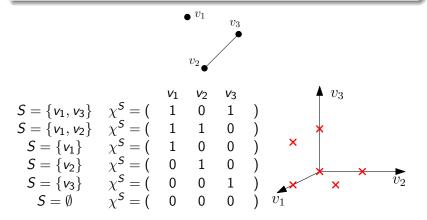
where χ^S denotes the characteristic vector of $S \subseteq V$.



Introduction 000000	Results	Relationship with other problems	Conclusion O
Motivation			

$$STAB(G) = \operatorname{conv}(\chi^S \in \mathbb{R}^n \mid S \subseteq V \text{ is a stable set of } G)$$

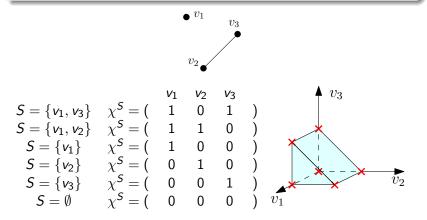
where χ^S denotes the characteristic vector of $S \subseteq V$.



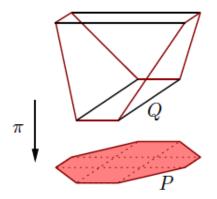
Introduction 000000	Results	Relationship with other problems	Conclusion O
Motivation			

$$STAB(G) = \operatorname{conv}(\chi^S \in \mathbb{R}^n \mid S \subseteq V \text{ is a stable set of } G)$$

where χ^S denotes the characteristic vector of $S \subseteq V$.



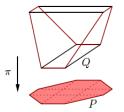
We like polytopes with a small number of facets.



P: polytope in \mathbb{R}^2 we want to optimize on (8 facets) *Q*: polytope in \mathbb{R}^3 which projects to *P* (6 facets) \Rightarrow Easier to optimize on *Q* and project the solution! Introduction

Relationship with other problems

Extended formulation

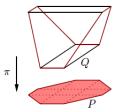


Extension complexity of P

Minimum number of facets of a polytope Q that projects onto P.

Relationship with other problems 0000

Extended formulation



Extension complexity of P

Minimum number of facets of a polytope Q that projects onto P.

In perfect graphs:

we can describe STAB(G) with clique inequalities.

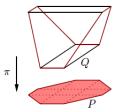
$$0 \le x_v \le 1 \quad \forall v \in V$$

 $\sum_{v \in K} x_v \le 1 \quad \forall ext{ clique } K$

Extension complexity of $STAB(G) \ge \min$. size of a CS-Separator

Relationship with other problems 0000

Extended formulation



Extension complexity of P

Minimum number of facets of a polytope Q that projects onto P.

In perfect graphs:

we can describe STAB(G) with clique inequalities.

$$0 \le x_v \le 1 \quad \forall v \in V$$

 $\sum_{v \in K} x_v \le 1 \quad \forall ext{ clique } K$

Extension complexity of $STAB(G) \ge \min$. size of a CS-Separator

Results

Relationship with other problems

Reminder: definition of a CS-Separator

A set of cuts such that for every clique K and stable set S disjoint from K, there is a cut that separates K from S. Its **size** is the number of cuts.

In which classes of graphs do we have a polynomial CS-separator?

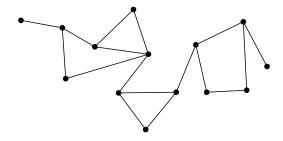
Results

Relationship with other problems

Reminder: definition of a CS-Separator

A set of cuts such that for every clique K and stable set S disjoint from K, there is a cut that separates K from S. Its **size** is the number of cuts.

In which classes of graphs do we have a polynomial CS-separator? An easy example: if the clique number ω is bounded, say by 3:



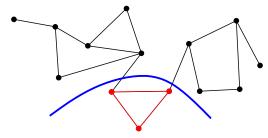
Results

Relationship with other problems

Reminder: definition of a **CS-Separator**

A set of cuts such that for every clique K and stable set S disjoint from K, there is a cut that separates K from S. Its **size** is the number of cuts.

In which classes of graphs do we have a polynomial CS-separator? An easy example: if the clique number ω is bounded, say by 3:



For every subset T of size ≤ 3 , take the cut $(T, V \setminus T)$ \Rightarrow CS-separator of size $\mathcal{O}(n^3)$.

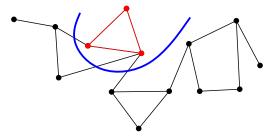
Results

Relationship with other problems

Reminder: definition of a **CS-Separator**

A set of cuts such that for every clique K and stable set S disjoint from K, there is a cut that separates K from S. Its **size** is the number of cuts.

In which classes of graphs do we have a polynomial CS-separator? An easy example: if the clique number ω is bounded, say by 3:



For every subset T of size ≤ 3 , take the cut $(T, V \setminus T)$ \Rightarrow CS-separator of size $\mathcal{O}(n^3)$.

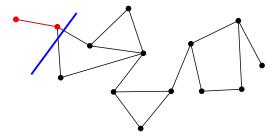
Results

Relationship with other problems

Reminder: definition of a **CS-Separator**

A set of cuts such that for every clique K and stable set S disjoint from K, there is a cut that separates K from S. Its **size** is the number of cuts.

In which classes of graphs do we have a polynomial CS-separator? An easy example: if the clique number ω is bounded, say by 3:



For every subset T of size ≤ 3 , take the cut $(T, V \setminus T)$ \Rightarrow CS-separator of size $\mathcal{O}(n^3)$.

Introduction	Results	Relationship with other problems	Conclusion
	000000000000000000000000000000000000000		

The following classes of graphs admit poly-size CS-Separator:

Introduction	Results	Relationship with other problems	Conclusion
	000000000000000000000000000000000000000		

The following classes of graphs admit poly-size CS-Separator:

- Chordal graphs (linear number of max. cliques)
- comparability graphs (Yannakakis 1991)
- C₄-free graphs (Conseq. of Alekseev 1991)
- P₅-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Introduction	Results	Relationship with other problems	Conclusion
	000000000000000000000000000000000000000		

The following classes of graphs admit poly-size CS-Separator:

- Chordal graphs (linear number of max. cliques)
- comparability graphs (Yannakakis 1991)
- C₄-free graphs (Conseq. of Alekseev 1991)
- P₅-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Even stronger: (1) (2) and (4) have polynomial extension complexity.

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

When α or ω is bounded, chordal graphs, C_4 -free,

Polynomially many maximal cliques or stable sets.

P_5 -free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

stant nb of neighborhoods.

 $(P_k, \overline{P_k})$ -free graphs

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

k-windmill-free

Easy neighborhood property.

Homogeneous set

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

When α or ω is bounded, chordal graphs, C_4 -free,

Polynomially many maximal cliques or stable sets.

P_5 -free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

$\overline{(P_k, \overline{P_k})}$ -free graphs

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

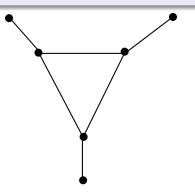
k-windmill-free

Easy neighborhood property.

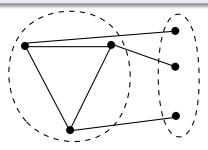
Homogeneous set

Every comparability graph has a CS-separator of size $O(n^2)$.

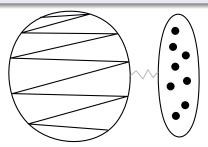
Every comparability graph has a CS-separator of size $\mathcal{O}(n^2)$.



Every comparability graph has a CS-separator of size $O(n^2)$.



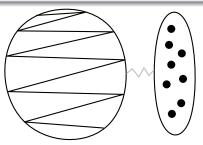
Every comparability graph has a CS-separator of size $O(n^2)$.



Introduction	Results	Relationship with other problems	Conclusion
000000	○○○○●○○○○○○○○○○○○○○		O
Split-free			

Split graph

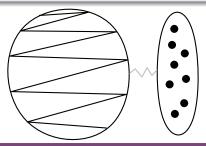
A graph (V, E) is *split* if V can be partitioned into a clique and a stable set.



Introduction	Results	Relationship with other problems	Conclusion
000000	○○○○○○○○○○○○○○○○○○○○		O
Split-free			

Split graph

A graph (V, E) is *split* if V can be partitioned into a clique and a stable set.



Split-free [Bousquet, L., Thomassé]

Let *H* be a split graph. Then every *H*-free graph has a CS-separator of size $\mathcal{O}(n^{c_H})$.

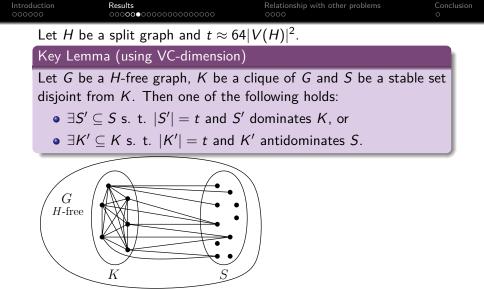
Introduction 000000 Results

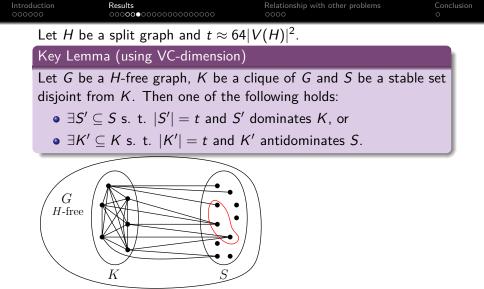
Relationship with other problems

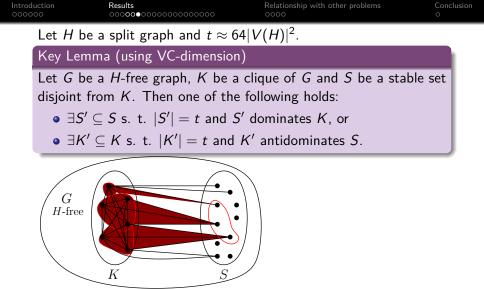
Conclusion 0

Let H be a split graph and $t \approx 64|V(H)|^2$.

Introduction Results Relationship with other problems Conclusion Let H be a split graph and $t \approx 64|V(H)|^2$. Key Lemma (using VC-dimension) Let G be a H-free graph, K be a clique of G and S be a stable set disjoint from K. Then one of the following holds: • $\exists S' \subseteq S$ s. t. |S'| = t and S' dominates K, or • $\exists K' \subseteq K$ s. t. |K'| = t and K' antidominates S.

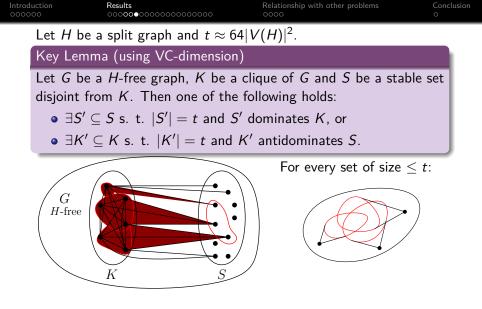




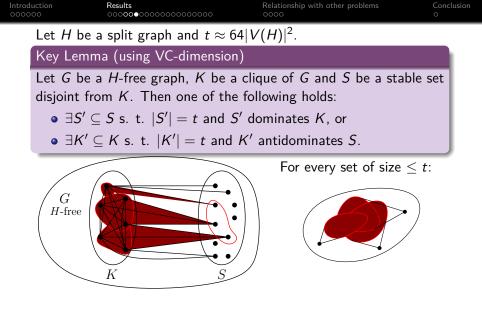




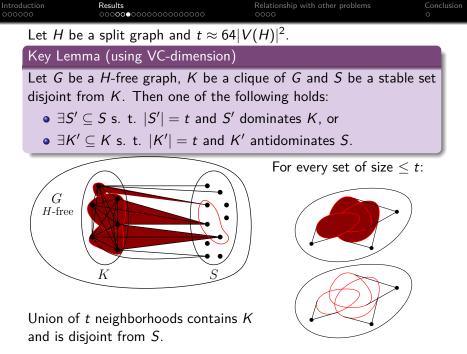
Union of t neighborhoods contains K and is disjoint from S.

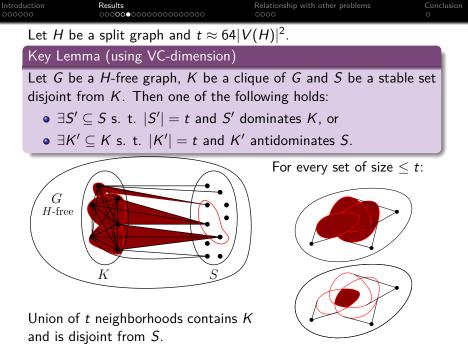


Union of t neighborhoods contains K and is disjoint from S.



Union of t neighborhoods contains K and is disjoint from S.





Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

When α or ω is bounded, chordal graphs, C_4 -free,

Polynomially many maximal cliques or stable sets.

P_5 -free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

$(P_k, \overline{P_k})$ -free graphs

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

k-windmill-free

Easy neighborhood property.

Homogeneous set

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

When α or ω is bounded, chordal graphs, C_4 -free,

Polynomially many maximal cliques or stable sets.

P_5 -free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

$(P_k, \overline{P_k})$ -free graphs

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

k-windmill-free

Easy neighborhood property.

Homogeneous set

Introduction 000000 Results

Relationship with other problems

$(P_k, \overline{P_k})$ -free graphs

CS-Sep. in $(P_k, \overline{P_k})$ -free graphs [Bousquet, L., Thomassé]

Fix k. Every $(P_k, \overline{P_k})$ -free graph has a $\mathcal{O}(n^{c_k})$ CS-Separator.

Introduction 000000 Results

Relationship with other problems

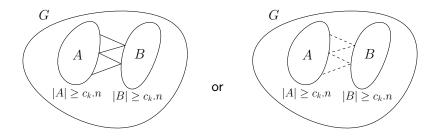
$(P_k, \overline{P_k})$ -free graphs

CS-Sep. in $(P_k, \overline{P_k})$ -free graphs [Bousquet, L., Thomassé]

Fix k. Every $(P_k, \overline{P_k})$ -free graph has a $\mathcal{O}(n^{c_k})$ CS-Separator.

Strong Erdős-Hajnal prop. - $(P_k, \overline{P_k})$ -free graphs

Fix k. Every $(P_k, \overline{P_k})$ -free graph has a linear-size biclique or complement biclique (A, B).



Theorem (Rödl 1986, Fox, Sudakov 2008)

 $\forall k$, every graph G satisfies one of the following:

- G induces all graphs on k vertices.
- G contains a sparse induced subgraph of linear size.
- G contains a dense induced subgraph of linear size.

Theorem (Rödl 1986, Fox, Sudakov 2008)

 $\forall k$, every graph G satisfies one of the following:

- G induces all graphs on k vertices.
- G contains a sparse induced subgraph of linear size.
- G contains a dense induced subgraph of linear size.
- G: $(P_k, \overline{P_k})$ -free on *n* vertices.

Theorem (Rödl 1986, Fox, Sudakov 2008)

 $\forall k$, every graph G satisfies one of the following:

- G induces all graphs on k vertices.
- G contains a sparse induced subgraph of linear size.
- G contains a dense induced subgraph of linear size.
- G: $(P_k, \overline{P_k})$ -free on *n* vertices.
 - First item does not hold.

Theorem (Rödl 1986, Fox, Sudakov 2008)

- $\forall k$, every graph G satisfies one of the following:
 - G induces all graphs on k vertices.
 - G contains a sparse induced subgraph of linear size.
 - G contains a dense induced subgraph of linear size.
- G: $(P_k, \overline{P_k})$ -free on *n* vertices.
 - First item does not hold.
 - Extract a sparse induced subgraph of linear size.

Theorem (Rödl 1986, Fox, Sudakov 2008)

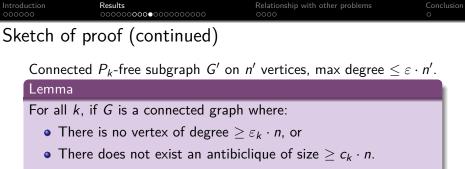
- $\forall k$, every graph G satisfies one of the following:
 - G induces all graphs on k vertices.
 - G contains a sparse induced subgraph of linear size.
 - G contains a dense induced subgraph of linear size.

G: $(P_k, \overline{P_k})$ -free on *n* vertices.

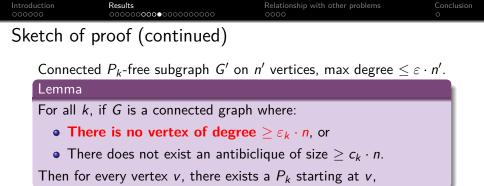
- First item does not hold.
- Extract a sparse induced subgraph of linear size.
- Extract a connected induced subgraph of linear size, with maximum degree $\leq \varepsilon \cdot n$.

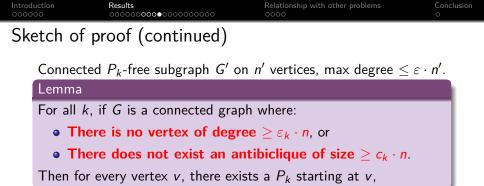
Sketch of proof (continued)

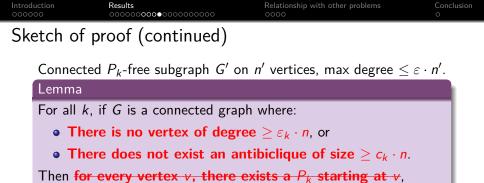
Connected P_k -free subgraph G' on n' vertices, max degree $\leq \varepsilon \cdot n'$.

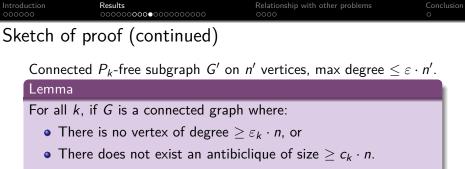


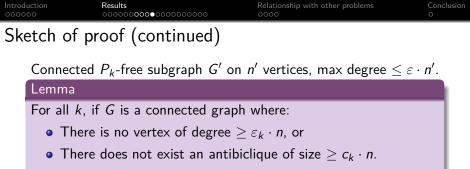
Then for every vertex v, there exists a P_k starting at v,



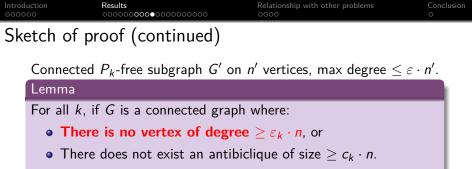


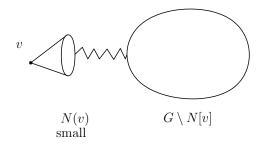






v



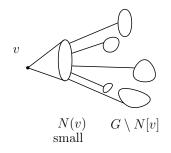


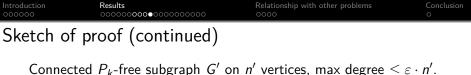
Connected P_k -free subgraph G' on n' vertices, max degree $\leq \varepsilon \cdot n'$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_k \cdot n$, or
- There does not exist an antibiclique of size $\geq c_k \cdot n$.



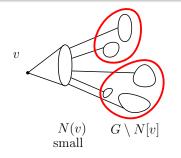


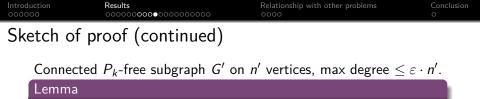
Connected P_k -free subgraph G' on n' vertices, max degree $< \varepsilon \cdot n'$.

Lemma

For all k, if G is a connected graph where:

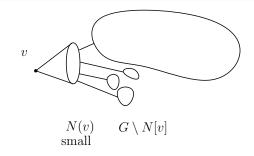
- There is no vertex of degree $\geq \varepsilon_k \cdot n$, or
- There does not exist an antibiclique of size $\geq c_k \cdot n$.

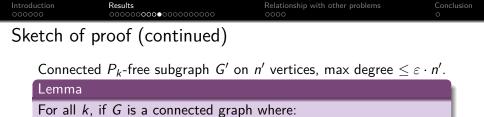




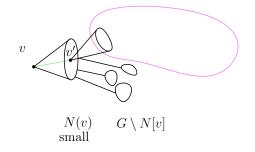
For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_k \cdot n$, or
- There does not exist an antibiclique of size $\geq c_k \cdot n$.





- There is no vertex of degree $\geq \varepsilon_k \cdot n$, or
- There does not exist an antibiclique of size $\geq c_k \cdot n$.

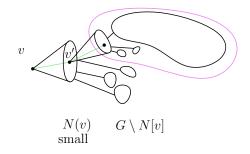


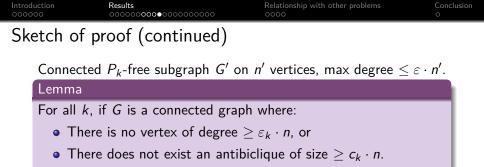
Connected P_k -free subgraph G' on n' vertices, max degree $\leq \varepsilon \cdot n'$.

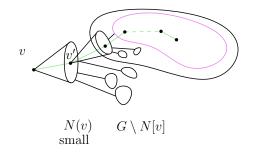
Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_k \cdot n$, or
- There does not exist an antibiclique of size $\geq c_k \cdot n$.







Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

When α or ω is bounded, chordal graphs, C_4 -free,

Polynomially many maximal cliques or stable sets.

P_5 -free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

$(P_k, \overline{P_k})$ -free graphs

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

k-windmill-free

Easy neighborhood property.

Homogeneous set

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

When α or ω is bounded, chordal graphs, C_4 -free,

Polynomially many maximal cliques or stable sets.

P_5 -free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

 $(P_k, \overline{P_k})$ -free graphs

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

<u>k-w</u>indmill-free

Easy neighborhood property.

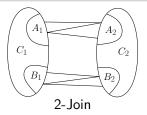
Homogeneous set

Main step in the proof of the Strong Perfect Graph Theorem:

Decomposition [Chudnovsky, Robertson, Seymour, Thomas 2002]

If a graph is Berge, then for G or \overline{G} , one of the following holds :

- It is a basic graph: bipartite, line graph of bip., or double split.
- There is a 2-join.
- There is a balanced skew partition.



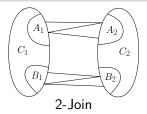
Skew Partition

Main step in the proof of the Strong Perfect Graph Theorem:

Decomposition [Chudnovsky, Robertson, Seymour, Thomas 2002]

If a graph is Berge, then for G or \overline{G} , one of the following holds :

- It is a basic graph: bipartite, line graph of bip., or double split.
- There is a 2-join.
- There is a balanced skew partition.



Skew Partition

Theorem [L., Trunck]

Let G be a perfect graph with no balanced skew partition, then there exists a CS-separator for G of size $O(n^2)$.

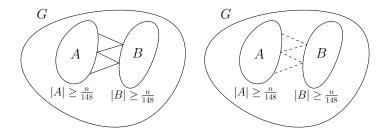
Results

Relationship with other problems

Conclusion 0

Strong Erdős-Hajnal property [L., Trunck]

Every perfect graph with no balanced skew partition admits a biclique or complement biclique of size at least n/148.



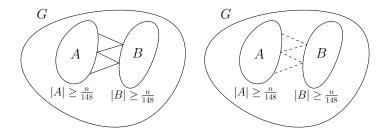
Results

Relationship with other problems

Conclusion 0

Strong Erdős-Hajnal property [L., Trunck]

Every perfect graph with no balanced skew partition admits a biclique or complement biclique of size at least n/148.



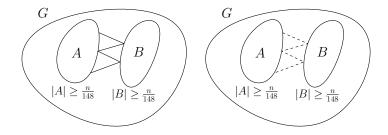
Results

Relationship with other problems

Conclusion 0

Strong Erdős-Hajnal property [L., Trunck]

Every perfect graph with no balanced skew partition admits a biclique or complement biclique of size at least n/148.



Not hereditary class \Rightarrow cannot directly deduce the poly CS-sep.

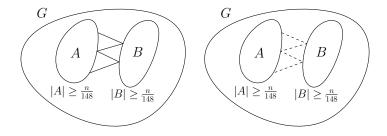
Results

Relationship with other problems

Conclusion 0

Strong Erdős-Hajnal property [L., Trunck]

Every perfect graph with no balanced skew partition admits a biclique or complement biclique of size at least n/148.



Not hereditary class \Rightarrow cannot directly deduce the poly CS-sep.

But there exist perfect graphs where the Strong Erdős-Hajnal property does not hold [Fox, Pach 2009] \Rightarrow Evidence of some special structure.

Relationship with other problems

Conclusion 0

Let *G* be a Berge graph with no balanced skew partition, then there exists a CS-separator for *G* of size $O(n^2)$.

Relationship with other problems

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $O(n^2)$.

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $O(n^2)$.

Proof by induction:

• For basic graphs: direct proof.

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $O(n^2)$.

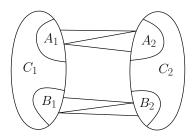
- For basic graphs: direct proof.
- For a graph G with a 2-join :

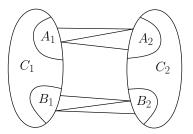
- For basic graphs: direct proof.
- For a graph G with a 2-join :
 - From G, we build two "half" graphs G₁ and G₂, each corresponding to a side of the 2-join + a gadget.

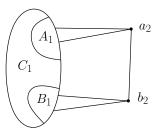
- For basic graphs: direct proof.
- For a graph G with a 2-join :
 - From G, we build two "half" graphs G_1 and G_2 , each corresponding to a side of the 2-join + a gadget.
 - Check that G_1 and G_2 are still Berge with no balanced skew partition [Chudnovsky, Trotignon, Trunck, Vušković 2012]

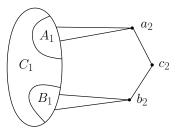
- For basic graphs: direct proof.
- For a graph G with a 2-join :
 - From G, we build two "half" graphs G_1 and G_2 , each corresponding to a side of the 2-join + a gadget.
 - Check that G₁ and G₂ are still Berge with no balanced skew partition [Chudnovsky, Trotignon, Trunck, Vušković 2012]
 - Get CS-separators for G_1 and G_2 by induction hypothesis

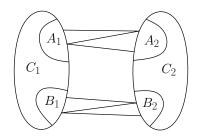
- For basic graphs: direct proof.
- For a graph G with a 2-join :
 - From G, we build two "half" graphs G_1 and G_2 , each corresponding to a side of the 2-join + a gadget.
 - Check that G_1 and G_2 are still Berge with no balanced skew partition [Chudnovsky, Trotignon, Trunck, Vušković 2012]
 - Get CS-separators for G_1 and G_2 by induction hypothesis
 - Transform them into a CS-separator for G.

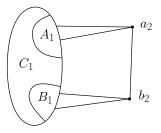


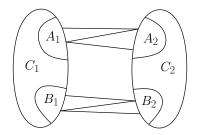


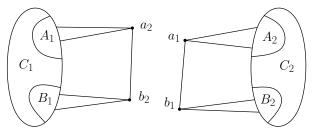


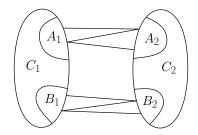


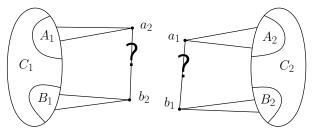


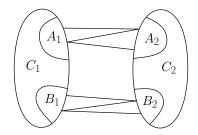


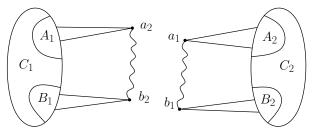


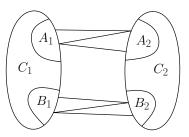


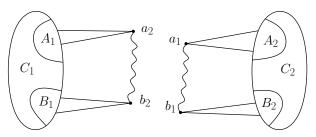












Introduction 000000	Results ○○○○○○○○○○○○○○○○○○	Relationship with other problems 0000	Conclusion 0
Red= What is put on the left (clique side) Green= What is put on the right (stable set s.)	A_1 C_1 B_1	A_2 C_2 B_2	
		A_2 C_2 B_2	

Introduction 000000	Results ○○○○○○○○○○○○○○○○○○○○	Relationship with other problems	Conclusion O
Red= What is put on the left (clique side) Green= What is put on the right (stable set s.)		A_2 C_2 B_2	
		a_1 A_2 C_2 b_1 B_2	

Introduction 000000	Results	Relationship with other problems	Conclusion 0
Red= What is put on the left (clique side) Green= What is put on the right (stable set s.)		A_2 C_2 B_2	
	A_1 a_2 a_2 a_3 b_2 b_1	A_2 C_2 B_2	

	oduction 0000	Results ○○○○○○○○○○○○○○	Relationship with other problems	Conclusion 0
W or (c Gi W or	ed= /hat is put n the left :lique side) reen= /hat is put n the right table set s.)	A_1 C_1 B_1	A_2 C_2 B_2	
		A_1 a_2 a_2 b_2 b_1	A_2 C_2 B_2	

Introduction 000000	Results	Relationship with other problems	Conclusion O
Red= What is put on the left (clique side) Green= What is put on the right (stable set s.)		A_2 C_2 B_2	
	A_1 C_1 B_1 b_2 b_1	A_2 C_2 B_2	

Introduction 000000	Results	Relationship with other problems	Conclusion O
Red= What is put on the left (clique side) Green= What is put on the right (stable set s.)		A_2 C_2 B_2	
		a_1 A_2 C_2 b_1 B_2	

Comparability graphs

LP to compute maximum weighted stable set.

When α or ω is bounded, chordal graphs, C_4 -free,

Polynomially many maximal cliques or stable sets.

P_5 -free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

 $(P_k, \overline{P_k})$ -free graphs

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

k-windmill-free

Easy neighborhood property.

Comparability graphs

LP to compute maximum weighted stable set.

When α or ω is bounded, chordal graphs, C_4 -free,

Polynomially many maximal cliques or stable sets.

P_5 -free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

 $(P_k, \overline{P_k})$ -free graphs

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

k-windmill-free

Easy neighborhood property.

Generalization of "having a simplicial vertex".

Def: k-easy-neighborhood property in a class C

 $\forall G \in \mathcal{C}, \exists v \in V(G) \text{ s.t. } G[N(v)] \text{ admits a } \mathcal{O}(|N(v)|^k) \text{ CS-sep.}$

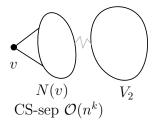
If C is hereditary and the k-easy-neighborhood property holds, then every $G \in \mathcal{C}$ has a $\mathcal{O}(n^{k+1})$ CS-Separator.

Generalization of "having a simplicial vertex".

Def: k-easy-neighborhood property in a class C

 $\forall G \in \mathcal{C}, \exists v \in V(G) \text{ s.t. } G[N(v)] \text{ admits a } \mathcal{O}(|N(v)|^k) \text{ CS-sep.}$

If C is hereditary and the k-easy-neighborhood property holds, then every $G \in \mathcal{C}$ has a $\mathcal{O}(n^{k+1})$ CS-Separator.

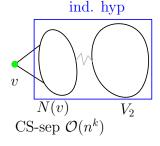


Generalization of "having a simplicial vertex".

Def: k-easy-neighborhood property in a class C

 $\forall G \in C, \exists v \in V(G) \text{ s.t. } G[N(v)] \text{ admits a } \mathcal{O}(|N(v)|^k) \text{ CS-sep.}$

If C is hereditary and the *k*-easy-neighborhood property holds, then every $G \in C$ has a $O(n^{k+1})$ CS-Separator.



v in stable set side

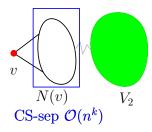
Cuts every (K, S) with $v \in S$

Generalization of "having a simplicial vertex".

Def: k-easy-neighborhood property in a class C

 $\forall G \in \mathcal{C}, \exists v \in V(G) \text{ s.t. } G[N(v)] \text{ admits a } \mathcal{O}(|N(v)|^k) \text{ CS-sep.}$

If C is hereditary and the k-easy-neighborhood property holds, then every $G \in \mathcal{C}$ has a $\mathcal{O}(n^{k+1})$ CS-Separator.

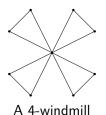


v in clique side V_2 in stable set side Cuts every (K, S) with $v \in K$

Relationship with other problems $_{\rm OOOO}$

Conclusion 0

Windmill-free graphs



Relationship with other problems $_{\rm OOOO}$

Conclusion 0

Windmill-free graphs

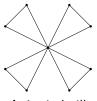
A 4-windmill

Let G be a k-windmill-free graph.

Relationship with other problems $_{\rm OOOO}$

Conclusion 0

Windmill-free graphs



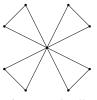
A 4-windmill

Let G be a k-windmill-free graph. For every vertex v, the graph G' = G[N(v)] is kK_2 -free.

Relationship with other problems $_{\rm OOOO}$

Conclusion 0

Windmill-free graphs



A 4-windmill

Let G be a k-windmill-free graph. For every vertex v, the graph G' = G[N(v)] is kK_2 -free. $\Rightarrow G'$ has $\mathcal{O}(|V(G')|^{2k-2})$ maximal stable sets (Alekseev 1991).

Relationship with other problems $_{\rm OOOO}$

Conclusion 0

Windmill-free graphs

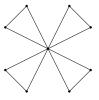
A 4-windmill

Let *G* be a *k*-windmill-free graph. For every vertex *v*, the graph G' = G[N(v)] is kK_2 -free. $\Rightarrow G'$ has $\mathcal{O}(|V(G')|^{2k-2})$ maximal stable sets (Alekseev 1991). $\Rightarrow G'$ has a CS-Separator, hence *v* has an *easy neighborhood*.

Relationship with other problems $_{\rm OOOO}$

Conclusion 0

Windmill-free graphs



A 4-windmill

Let G be a k-windmill-free graph. For every vertex v, the graph G' = G[N(v)] is kK_2 -free. $\Rightarrow G'$ has $\mathcal{O}(|V(G')|^{2k-2})$ maximal stable sets (Alekseev 1991). $\Rightarrow G'$ has a CS-Separator, hence v has an *easy neighborhood*. Fix k. Every k-windmill-free graph has a $\mathcal{O}(n^{2k-1})$ CS-Separator.

Comparability graphs

LP to compute maximum weighted stable set.

When α or ω is bounded, chordal graphs, C_4 -free,

Polynomially many maximal cliques or stable sets.

P_5 -free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

 $(P_k, \overline{P_k})$ -free graphs

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

k-windmill-free

Easy neighborhood property.

Comparability graphs

LP to compute maximum weighted stable set.

When α or ω is bounded, chordal graphs, C_4 -free,

Polynomially many maximal cliques or stable sets.

P_5 -free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

 $(P_k, \overline{P_k})$ -free graphs

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

k-windmill-free

Easy neighborhood property.

Comparability graphs

LP to compute maximum weighted stable set.

When α or ω is bounded, chordal graphs, C_4 -free,

Polynomially many maximal cliques or stable sets.

P_5 -free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

 $(P_k, \overline{P_k})$ -free graphs

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

k-windmill-free

Easy neighborhood property.

Relationship with other problems

Introduction	Results	Relationship with other problems	Conclusion
000000	000000000000000000000000000000000000	●000	O
Erdős-Hajna Can we always fin	al property nd a <i>large</i> clique or a <i>large</i> sta	ble set?	

Ramsey Theory

Every graph has a clique or a stable set of logarithmic size.

 \Rightarrow Logarithmic order is best possible (Erdős 1947).

Ramsey Theory

Every graph has a clique or a stable set of logarithmic size.

 \Rightarrow Logarithmic order is best possible (Erdős 1947).

Definition: The Erdős-Hajnal property

A class ${\mathcal C}$ of graphs has the Erdős-Hajnal property if there exists $\beta>0$ such that:

every $G \in \mathcal{C}$ has a clique or a stable set of size at least $|V(G)|^{\beta}$.

Ramsey Theory

Every graph has a clique or a stable set of logarithmic size.

 \Rightarrow Logarithmic order is best possible (Erdős 1947).

Definition: The Erdős-Hajnal property

A class ${\mathcal C}$ of graphs has the Erdős-Hajnal property if there exists $\beta>0$ such that:

every $G \in \mathcal{C}$ has a clique or a stable set of size at least $|V(G)|^{\beta}$.

The Erdős-Hajnal Conjecture

Every strict hereditary class C has the Erdős-Hajnal property.

Relationship with other problems $0 \bullet 00$

The Erdős-Hajnal Conjecture

Every strict hereditary class C has the Erdős-Hajnal property.

True when C is the class of:

Relationship with other problems $0 \bullet 00$

The Erdős-Hajnal Conjecture

Every strict hereditary class C has the Erdős-Hajnal property.

True when C is the class of:

• perfect graphs

Relationship with other problems $0 \bullet 00$

The Erdős-Hajnal Conjecture

Every strict hereditary class $\mathcal C$ has the Erdős-Hajnal property.

True when \mathcal{C} is the class of:

- perfect graphs
- *H*-free graphs, when *H* has at most 4 vertices

Relationship with other problems $0 \bullet 00$

The Erdős-Hajnal Conjecture

Every strict hereditary class $\mathcal C$ has the Erdős-Hajnal property.

True when C is the class of:

- perfect graphs
- H-free graphs, when H has at most 4 vertices
- bull-free graphs (Chudnovsky, Safra 2008)

Relationship with other problems $0 \bullet 00$

The Erdős-Hajnal Conjecture

Every strict hereditary class $\mathcal C$ has the Erdős-Hajnal property.

True when C is the class of:

- perfect graphs
- H-free graphs, when H has at most 4 vertices
- bull-free graphs (Chudnovsky, Safra 2008)

Relationship with other problems $0 \bullet 00$

The Erdős-Hajnal Conjecture

Every strict hereditary class $\mathcal C$ has the Erdős-Hajnal property.

True when \mathcal{C} is the class of:

- perfect graphs
- H-free graphs, when H has at most 4 vertices
- bull-free graphs (Chudnovsky, Safra 2008)

Next interesting cases: P_5 -free or C_5 -free graphs.

Relationship with other problems $0 \bullet 00$

The Erdős-Hajnal Conjecture

Every strict hereditary class $\mathcal C$ has the Erdős-Hajnal property.

True when C is the class of:

- perfect graphs
- H-free graphs, when H has at most 4 vertices
- bull-free graphs (Chudnovsky, Safra 2008)

Next interesting cases: P_5 -free or C_5 -free graphs.

Towards *P*₅-free graphs?

Relationship with other problems $0 \bullet 00$

The Erdős-Hajnal Conjecture

Every strict hereditary class $\mathcal C$ has the Erdős-Hajnal property.

True when C is the class of:

- perfect graphs
- H-free graphs, when H has at most 4 vertices
- bull-free graphs (Chudnovsky, Safra 2008)

Next interesting cases: P_5 -free or C_5 -free graphs.

Towards P_5 -free graphs?

- $(P_5, \overline{P_5})$ -free graphs (Fouquet 1993)
- $(P_5, \overline{P_6})$ -free graphs (Chudnovsky, Zwols 2012)
- $(P_5, \overline{P_7})$ -free graphs (Chudnovsky, Seymour 2012)

Relationship with other problems 0000

Erdős-Hajnal prop. - $(P_k, \overline{P_k})$ -free [Bousquet, L., Thomassé]

There exists $\beta_k > 0$ such that every $(P_k, \overline{P_k})$ -free graph G has a clique or a stable set of size $|V(G)|^{\beta_k}$.

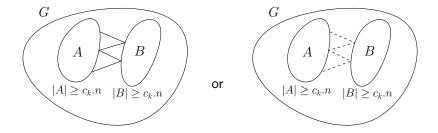
Relationship with other problems 0000

Erdős-Hajnal prop. - $(P_k, \overline{P_k})$ -free [Bousquet, L., Thomassé]

There exists $\beta_k > 0$ such that every $(P_k, \overline{P_k})$ -free graph G has a clique or a stable set of size $|V(G)|^{\beta_k}$.

Strong Erdős-Hajnal prop. - $(P_k, \overline{P_k})$ -free [Bousquet, L., Thomassé]

For every k, every graph G with no P_k nor $\overline{P_k}$ has a linear-size biclique or antibiclique (A, B).



Introduction	Results	Relationship with other problems	Conclusion
000000	000000000000000000000000000000000000	○○○●	O
Alon-Saks-Seymour conjecture			

Alon-Saks-Seymour conjecture (1991)

For every graph G, $\chi(G) \leq bp(G) + 1$.

bp(G) = min. nb of complete bipartite graphs to partition E(G).

Introduction	Results	Relationship with other problems	Conclusion
000000	000000000000000000000000000000000000	○○○●	O
Alon-Saks-Seymour conjecture			

Alon-Saks-Seymour conjecture (1991)

For every graph G, $\chi(G) \leq bp(G) + 1$.

bp(G) = min. nb of complete bipartite graphs to partition E(G).

• True when $G = K_n$ (Graham-Pollack theorem, 1972)

 Introduction
 Results
 Relationship with other problems
 Conclusion

 Alon-Saks-Seymour conjecture
 Conclusion
 Conclusion

Alon-Saks-Seymour conjecture (1991)

For every graph G, $\chi(G) \leq bp(G) + 1$.

bp(G) = min. nb of complete bipartite graphs to partition E(G).

- True when $G = K_n$ (Graham-Pollack theorem, 1972)
- Disproved in 2012 by Huang and Sudakov: χ(G) ≥ bp(G)^{6/5} for some graphs.

 Introduction
 Results
 Relationship with other problems
 Conclusion

 Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (1991)

For every graph G, $\chi(G) \leq bp(G) + 1$.

bp(G) = min. nb of complete bipartite graphs to partition E(G).

- True when $G = K_n$ (Graham-Pollack theorem, 1972)
- Disproved in 2012 by Huang and Sudakov: χ(G) ≥ bp(G)^{6/5} for some graphs.

"Polynomial Alon-Saks-Seymour conjecture"

For every graph G, $\chi(G) \leq \text{poly}(bp(G))$.

Alon-Saks-Seymour conjecture (1991)

For every graph G, $\chi(G) \leq bp(G) + 1$.

bp(G) = min. nb of complete bipartite graphs to partition E(G).

- True when $G = K_n$ (Graham-Pollack theorem, 1972)
- Disproved in 2012 by Huang and Sudakov: χ(G) ≥ bp(G)^{6/5} for some graphs.

"Polynomial Alon-Saks-Seymour conjecture"

For every graph G, $\chi(G) \leq \text{poly}(bp(G))$.

\Leftrightarrow

Poly CS-Separation for every graph

Every graph G admits a CS-Separator of size poly(|V(G)|).

Alon-Saks-Seymour conjecture (1991)

For every graph G, $\chi(G) \leq bp(G) + 1$.

bp(G) = min. nb of complete bipartite graphs to partition E(G).

- True when $G = K_n$ (Graham-Pollack theorem, 1972)
- Disproved in 2012 by Huang and Sudakov: χ(G) ≥ bp(G)^{6/5} for some graphs.

"Polynomial Alon-Saks-Seymour conjecture"

For every graph G, $\chi(G) \leq \text{poly}(bp(G))$.

\Leftrightarrow

Poly CS-Separation for every graph

Every graph G admits a CS-Separator of size poly(|V(G)|).

Disproved by Göös, 2015.

Perspectives

• Polynomial CS-Separation in perfect graphs?

Introduction	Results	Relationship with other problems	Conclusion
000000	0000000000000000000000		•
Perspecti	ves		

- Polynomial CS-Separation in perfect graphs?
- Extending results on CS-Separation to extension complexity?

Introduction	Results	Relationship with other problems	Conclusion
000000	0000000000000000000000		•
Perspectiv	/es		

- Polynomial CS-Separation in perfect graphs?
- Extending results on CS-Separation to extension complexity?
- Find polynomial CS-Separators in some more classes of graphs?

Introduction	Results	Relationship with other problems	Conclusion
000000	0000000000000000000000		•
Perspectiv	/es		

- Polynomial CS-Separation in perfect graphs?
- Extending results on CS-Separation to extension complexity?
- Find polynomial CS-Separators in some more classes of graphs?

- Polynomial CS-Separation in perfect graphs?
- Extending results on CS-Separation to extension complexity?
- Find polynomial CS-Separators in some more classes of graphs?

Explore relationship between different properties of classes:

- CS-Separation
- χ-boundedness
- Erdős-Hajnal property
- \bullet computing α is polynomial-time solvable
- ...

- Polynomial CS-Separation in perfect graphs?
- Extending results on CS-Separation to extension complexity?
- Find polynomial CS-Separators in some more classes of graphs?

Explore relationship between different properties of classes:

- CS-Separation
- χ-boundedness
- Erdős-Hajnal property
- computing α is polynomial-time solvable
- ...

Thank you for your attention!