Clique-Stable set Separation

Aurélie Lagoutte

LIP, ENS Lyon
Princeton Discrete Mathematics Seminar - Oct.15, 2015

Joint work with N. Bousquet, S. Thomassé and T. Trunck

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Goal (Yannakakis 1991)

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Clique vs Independent Set Problem

Goal (Yannakakis 1991)

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)
Do perfect graphs admit polynomial-size CS-Separator?

Clique vs Independent Set Problem

Goal (Yannakakis 1991)

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)
Do perfect graphs admit polynomial-size CS-Separator?
Upper Bound: there exists a CS-separator of size $\mathcal{O}\left(n^{\log n}\right)$.

Clique vs Independent Set Problem

Goal (Yannakakis 1991)

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?
Upper Bound: there exists a CS-separator of size $\mathcal{O}\left(n^{\log n}\right)$.
Lower bound in perfect graphs?

Clique vs Independent Set Problem

Goal (Yannakakis 1991)

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?
Upper Bound: there exists a CS-separator of size $\mathcal{O}\left(n^{\log n}\right)$. Lower bound in perfect graphs? Lower bound in general?

Clique vs Independent Set Problem

Goal (Yannakakis 1991)

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Non-det communication complexity \leftrightarrow min. size of a CS-Separator.

Main question (Yannakakis 1991)

Do perfect graphs admit polynomial-size CS-Separator?
Upper Bound: there exists a CS-separator of size $\mathcal{O}\left(n^{\log n}\right)$. Lower bound in perfect graphs? Lower bound in general? Does there exist for all graph G on n vertices a CS-separator of size poly (n) ? Or for which classes of graphs does it exist?

Does there exist for all graph G on n vertices a CS-separator of size poly (n) ?

Does there exist for all graph G on n vertices a CS-separator of size poly (n)?
What about random graphs?

Does there exist for all graph G on n vertices a CS-separator of size poly (n) ?
What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}\left(n^{7}\right)$ asymptotically almost surely.

Does there exist for all graph G on n vertices a CS-separator of size poly (n) ?
What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}\left(n^{7}\right)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega\left(n^{\frac{6}{5}}\right)$ cuts for some graphs.

Does there exist for all graph G on n vertices a CS-separator of size poly (n) ?
What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}\left(n^{7}\right)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega\left(n^{\frac{6}{5}}\right)$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega\left(n^{2-\varepsilon}\right)$ for some graphs.

Does there exist for all graph G on n vertices a CS-separator of size poly (n)? No!
What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}\left(n^{7}\right)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega\left(n^{\frac{6}{5}}\right)$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega\left(n^{2-\varepsilon}\right)$ for some graphs.
- (Göös 2015): we need $n^{\Omega\left(\log ^{0.128} n\right)}$ cuts for some graphs.

Does there exist for all graph G on n vertices a CS-separator of size poly (n)? No!
What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}\left(n^{7}\right)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega\left(n^{\frac{6}{5}}\right)$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega\left(n^{2-\varepsilon}\right)$ for some graphs.
- (Göös 2015): we need $n^{\Omega\left(\log ^{0.128} n\right)}$ cuts for some graphs.

Does there exist for all graph G on n vertices a CS-separator of size poly(n)? No!
What about random graphs?

Theorem [Bousquet, L., Thomassé]

Random graphs admit a CS-Separator of size $\mathcal{O}\left(n^{7}\right)$ asymptotically almost surely.

Lower Bound:

- (Huang, Sudakov 2012): we need $\Omega\left(n^{\frac{6}{5}}\right)$ cuts for some graphs.
- (Amano, Shigeta 2013): we need $\Omega\left(n^{2-\varepsilon}\right)$ for some graphs.
- (Göös 2015): we need $n^{\Omega\left(\log ^{0.128} n\right)}$ cuts for some graphs.

For which classes of graphs does there exist a polynomial CS-Separator?

Motivation

Stable Set polytope

$\operatorname{STAB}(G)=\operatorname{conv}\left(\chi^{S} \in \mathbb{R}^{n} \mid S \subseteq V\right.$ is a stable set of $\left.G\right)$ where χ^{S} denotes the characteristic vector of $S \subseteq V$.

Motivation

Stable Set polytope

$\operatorname{STAB}(G)=\operatorname{conv}\left(\chi^{S} \in \mathbb{R}^{n} \mid S \subseteq V\right.$ is a stable set of $\left.G\right)$ where χ^{S} denotes the characteristic vector of $S \subseteq V$.

Motivation

Stable Set polytope

$\operatorname{STAB}(G)=\operatorname{conv}\left(\chi^{S} \in \mathbb{R}^{n} \mid S \subseteq V\right.$ is a stable set of $\left.G\right)$ where χ^{S} denotes the characteristic vector of $S \subseteq V$.

Motivation

Stable Set polytope

$\operatorname{STAB}(G)=\operatorname{conv}\left(\chi^{S} \in \mathbb{R}^{n} \mid S \subseteq V\right.$ is a stable set of $\left.G\right)$ where χ^{S} denotes the characteristic vector of $S \subseteq V$.

We like polytopes with a small number of facets.

P : polytope in \mathbb{R}^{2} we want to optimize on (8 facets) Q : polytope in \mathbb{R}^{3} which projects to P (6 facets)
\Rightarrow Easier to optimize on Q and project the solution!

Extended formulation

Extension complexity of P
 Minimum number of facets of a polytope Q that projects onto P.

Extended formulation

Extension complexity of P
 Minimum number of facets of a polytope Q that projects onto P.

In perfect graphs:
we can describe $\operatorname{STAB}(G)$ with clique inequalities.

$$
\begin{array}{cl}
0 \leq x_{v} \leq 1 & \forall v \in V \\
\sum_{v \in K} x_{v} \leq 1 & \forall \text { clique } K
\end{array}
$$

Extension complexity of $\operatorname{STAB}(G) \geq \mathrm{min}$. size of a CS-Separator

Extended formulation

Extension complexity of P
 Minimum number of facets of a polytope Q that projects onto P.

In perfect graphs:
we can describe $\operatorname{STAB}(G)$ with clique inequalities.

$$
\begin{array}{cl}
0 \leq x_{v} \leq 1 & \forall v \in V \\
\sum_{v \in K} x_{v} \leq 1 & \forall \text { clique } K
\end{array}
$$

Extension complexity of $\operatorname{STAB}(G) \geq \mathrm{min}$. size of a CS-Separator

Reminder: definition of a CS-Separator

A set of cuts such that for every clique K and stable set S disjoint from K, there is a cut that separates K from S. Its size is the number of cuts.

In which classes of graphs do we have a polynomial CS-separator?

Reminder: definition of a CS-Separator

A set of cuts such that for every clique K and stable set S disjoint from K, there is a cut that separates K from S. Its size is the number of cuts.

In which classes of graphs do we have a polynomial CS-separator? An easy example: if the clique number ω is bounded, say by 3 :

Reminder: definition of a CS-Separator

A set of cuts such that for every clique K and stable set S disjoint from K, there is a cut that separates K from S.
Its size is the number of cuts.
In which classes of graphs do we have a polynomial CS-separator? An easy example: if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3, take the cut $(T, V \backslash T)$ \Rightarrow CS-separator of size $\mathcal{O}\left(n^{3}\right)$.

Reminder: definition of a CS-Separator

A set of cuts such that for every clique K and stable set S disjoint from K, there is a cut that separates K from S.
Its size is the number of cuts.
In which classes of graphs do we have a polynomial CS-separator? An easy example: if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3, take the cut $(T, V \backslash T)$ \Rightarrow CS-separator of size $\mathcal{O}\left(n^{3}\right)$.

Reminder: definition of a CS-Separator

A set of cuts such that for every clique K and stable set S disjoint from K, there is a cut that separates K from S.
Its size is the number of cuts.
In which classes of graphs do we have a polynomial CS-separator? An easy example: if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3, take the cut $(T, V \backslash T)$ \Rightarrow CS-separator of size $\mathcal{O}\left(n^{3}\right)$.

The following classes of graphs admit poly-size CS-Separator:

The following classes of graphs admit poly-size CS-Separator:
(1) chordal graphs (linear number of max. cliques)
(2) comparability graphs (Yannakakis 1991)
(3) C_{4}-free graphs (Conseq. of Alekseev 1991)
(1) P_{5}-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

The following classes of graphs admit poly-size CS-Separator:
(1) chordal graphs (linear number of max. cliques)
(2) comparability graphs (Yannakakis 1991)
(3) C_{4}-free graphs (Conseq. of Alekseev 1991)
(9) P_{5}-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Even stronger: (1) (2) and (4) have polynomial extension complexity.

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

> When α or ω is bounded, chordal graphs, C_{4}-free,

Polynomially many maximal cliques or stable sets.

P_{5}-free graphs

In-depth study of potential maximal cliques.

Can define cuts with a con

Strong Erdős-Hajnal property

Homogeneous set

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

> When α or ω is bounded, chordal graphs, C_{4}-free,

Polynomially many maximal cliques or stable sets.

P_{5}-free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

Perfect graphs with no BSP
 Decomposition by 2-joins
 Easy neighborhood property

Split-free

Comparability graphs [Yannakakis 1991]
Every comparability graph has a CS-separator of size $\mathcal{O}\left(n^{2}\right)$.

Split-free

Comparability graphs [Yannakakis 1991]

Every comparability graph has a CS-separator of size $\mathcal{O}\left(n^{2}\right)$.

Split-free

Comparability graphs [Yannakakis 1991]

Every comparability graph has a CS-separator of size $\mathcal{O}\left(n^{2}\right)$.

Split-free

Comparability graphs [Yannakakis 1991]

Every comparability graph has a CS-separator of size $\mathcal{O}\left(n^{2}\right)$.

Split-free

Split graph

A graph (V, E) is split if V can be partitioned into a clique and a stable set.

Split-free

Split graph

A graph (V, E) is split if V can be partitioned into a clique and a stable set.

Split-free [Bousquet, L., Thomassé]
Let H be a split graph. Then every H-free graph has a CS-separator of size $\mathcal{O}\left(n^{C_{H}}\right)$.

Let H be a split graph and $t \approx 64|V(H)|^{2}$.

Let H be a split graph and $t \approx 64|V(H)|^{2}$.
Key Lemma (using VC-dimension)
Let G be a H-free graph, K be a clique of G and S be a stable set disjoint from K. Then one of the following holds:

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K, or
- $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S.

Let H be a split graph and $t \approx 64|V(H)|^{2}$.

Key Lemma (using VC-dimension)

Let G be a H-free graph, K be a clique of G and S be a stable set disjoint from K. Then one of the following holds:

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K, or
- $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S.

Let H be a split graph and $t \approx 64|V(H)|^{2}$.

Key Lemma (using VC-dimension)

Let G be a H-free graph, K be a clique of G and S be a stable set disjoint from K. Then one of the following holds:

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K, or
- $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S.

Let H be a split graph and $t \approx 64|V(H)|^{2}$.

Key Lemma (using VC-dimension)

Let G be a H-free graph, K be a clique of G and S be a stable set disjoint from K. Then one of the following holds:

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K, or
- $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S.

Let H be a split graph and $t \approx 64|V(H)|^{2}$.

Key Lemma (using VC-dimension)

Let G be a H-free graph, K be a clique of G and S be a stable set disjoint from K. Then one of the following holds:

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K, or
- $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S.

Union of t neighborhoods contains K and is disjoint from S.

Let H be a split graph and $t \approx 64|V(H)|^{2}$.

Key Lemma (using VC-dimension)

Let G be a H-free graph, K be a clique of G and S be a stable set disjoint from K. Then one of the following holds:

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K, or
- $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S.

For every set of size $\leq t$:

Union of t neighborhoods contains K and is disjoint from S.

Let H be a split graph and $t \approx 64|V(H)|^{2}$.

Key Lemma (using VC-dimension)

Let G be a H-free graph, K be a clique of G and S be a stable set disjoint from K. Then one of the following holds:

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K, or
- $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S.

For every set of size $\leq t$:

Union of t neighborhoods contains K and is disjoint from S.

Let H be a split graph and $t \approx 64|V(H)|^{2}$.

Key Lemma (using VC-dimension)

Let G be a H-free graph, K be a clique of G and S be a stable set disjoint from K. Then one of the following holds:

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K, or
- $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S.

For every set of size $\leq t$:

Let H be a split graph and $t \approx 64|V(H)|^{2}$.

Key Lemma (using VC-dimension)

Let G be a H-free graph, K be a clique of G and S be a stable set disjoint from K. Then one of the following holds:

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K, or
- $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S.

Union of t neighborhoods contains K and is disjoint from S.

For every set of size $\leq t$:

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

> When α or ω is bounded, chordal graphs, C_{4}-free,

Polynomially many maximal cliques or stable sets.

P_{5}-free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

\square
Decomposition by 2:oins

Homogeneous set

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

> When α or ω is bounded, chordal graphs, C_{4}-free,

Polynomially many maximal cliques or stable sets.

P_{5}-free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

$$
\left(P_{k}, \overline{P_{k}}\right) \text {-free graphs }
$$

Strong Erdős-Hajnal property.

Homogeneous set

$\left(P_{k}, \overline{P_{k}}\right)$-free graphs

CS-Sep. in $\left(P_{k}, \overline{P_{k}}\right)$-free graphs [Bousquet, L., Thomassé]
Fix k. Every $\left(P_{k}, \overline{P_{k}}\right)$-free graph has a $\mathcal{O}\left(n^{c_{k}}\right)$ CS-Separator.

$\left(P_{k}, \overline{P_{k}}\right)$-free graphs

CS-Sep. in $\left(P_{k}, \overline{P_{k}}\right)$-free graphs [Bousquet, L., Thomassé]
Fix k. Every $\left(P_{k}, \overline{P_{k}}\right)$-free graph has a $\mathcal{O}\left(n^{c_{k}}\right) \mathrm{CS}$-Separator.
Strong Erdős-Hajnal prop. - $\left(P_{k}, \overline{P_{k}}\right)$-free graphs
Fix k. Every $\left(P_{k}, \overline{P_{k}}\right)$-free graph has a linear-size biclique or complement biclique (A, B).

Sketch of proof

Theorem (Rödl 1986, Fox, Sudakov 2008)
$\forall k$, every graph G satisfies one of the following:

- G induces all graphs on k vertices.
- G contains a sparse induced subgraph of linear size.
- G contains a dense induced subgraph of linear size.

Sketch of proof

Theorem (Rödl 1986, Fox, Sudakov 2008)
$\forall k$, every graph G satisfies one of the following:

- G induces all graphs on k vertices.
- G contains a sparse induced subgraph of linear size.
- G contains a dense induced subgraph of linear size.
$G:\left(P_{k}, \overline{P_{k}}\right)$-free on n vertices.

Sketch of proof

Theorem (Rödl 1986, Fox, Sudakov 2008)

$\forall k$, every graph G satisfies one of the following:

- G induces all graphs on k vertices.
- G contains a sparse induced subgraph of linear size.
- G contains a dense induced subgraph of linear size.
$G:\left(P_{k}, \overline{P_{k}}\right)$-free on n vertices.
- First item does not hold.

Sketch of proof

Theorem (Rödl 1986, Fox, Sudakov 2008)

$\forall k$, every graph G satisfies one of the following:

- G induces all graphs on k vertices.
- G contains a sparse induced subgraph of linear size.
- G contains a dense induced subgraph of linear size.
$G:\left(P_{k}, \overline{P_{k}}\right)$-free on n vertices.
- First item does not hold.
- Extract a sparse induced subgraph of linear size.

Sketch of proof

Theorem (Rödl 1986, Fox, Sudakov 2008)

$\forall k$, every graph G satisfies one of the following:

- G induces all graphs on k vertices.
- G contains a sparse induced subgraph of linear size.
- G contains a dense induced subgraph of linear size.
$G:\left(P_{k}, \overline{P_{k}}\right)$-free on n vertices.
- First item does not hold.
- Extract a sparse induced subgraph of linear size.
- Extract a connected induced subgraph of linear size, with maximum degree $\leq \varepsilon \cdot n$.

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

$$
\begin{aligned}
N(v) \\
\text { small }
\end{aligned} \quad G \backslash N[v]
$$

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

$$
\begin{aligned}
N(v) \\
\text { small }
\end{aligned} \quad G \backslash N[v]
$$

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

$$
\begin{aligned}
N(v) \\
\text { small }
\end{aligned} \quad G \backslash N[v]
$$

Sketch of proof (continued)

Connected P_{k}-free subgraph G^{\prime} on n^{\prime} vertices, max degree $\leq \varepsilon \cdot n^{\prime}$.

Lemma

For all k, if G is a connected graph where:

- There is no vertex of degree $\geq \varepsilon_{k} \cdot n$, or
- There does not exist an antibiclique of size $\geq c_{k} \cdot n$.

Then for every vertex v, there exists a P_{k} starting at v,

$$
\begin{aligned}
N(v) \\
\text { small }
\end{aligned} \quad G \backslash N[v]
$$

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

> When α or ω is bounded, chordal graphs, C_{4}-free,

Polynomially many maximal cliques or stable sets.

P_{5}-free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

$$
\left(P_{k}, \overline{P_{k}}\right) \text {-free graphs }
$$

Strong Erdős-Hajnal property.

Homogeneous set

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

> When α or ω is bounded, chordal graphs, C_{4}-free,

Polynomially many maximal cliques or stable sets.

P_{5}-free graphs

In-depth study of potential maximal cliques.
H-free graphs when H is split
Can define cuts with a constant nb of neighborhoods.

$$
\left(P_{k}, \overline{P_{k}}\right) \text {-free graphs }
$$

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

Homogeneous set

Main step in the proof of the Strong Perfect Graph Theorem:

Decomposition [Chudnovsky, Robertson, Seymour, Thomas 2002]

If a graph is Berge, then for G or \bar{G}, one of the following holds :

- It is a basic graph: bipartite, line graph of bip., or double split.
- There is a 2-join.
- There is a balanced skew partition.

Skew Partition

Main step in the proof of the Strong Perfect Graph Theorem:

Decomposition [Chudnovsky, Robertson, Seymour, Thomas 2002]

If a graph is Berge, then for G or \bar{G}, one of the following holds :

- It is a basic graph: bipartite, line graph of bip., or double split.
- There is a 2-join.
- There is a balanced skew partition.

Skew Partition

Theorem [L., Trunck]

Let G be a perfect graph with no balanced skew partition, then there exists a CS-separator for G of size $\mathcal{O}\left(n^{2}\right)$.

Strong Erdős-Hajnal property [L., Trunck]

Every perfect graph with no balanced skew partition admits a biclique or complement biclique of size at least $n / 148$.

Strong Erdős-Hajnal property [L., Trunck]

Every perfect graph with no balanced skew partition admits a biclique or complement biclique of size at least $n / 148$.

Strong Erdős-Hajnal property [L., Trunck]

Every perfect graph with no balanced skew partition admits a biclique or complement biclique of size at least $n / 148$.

Not hereditary class \Rightarrow cannot directly deduce the poly CS-sep.

Strong Erdős-Hajnal property [L., Trunck]

Every perfect graph with no balanced skew partition admits a biclique or complement biclique of size at least $n / 148$.

Not hereditary class \Rightarrow cannot directly deduce the poly CS-sep.
But there exist perfect graphs where the Strong Erdős-Hajnal property does not hold [Fox, Pach 2009] \Rightarrow Evidence of some special structure.

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $\mathcal{O}\left(n^{2}\right)$.

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $\mathcal{O}\left(n^{2}\right)$.

Proof by induction:

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $\mathcal{O}\left(n^{2}\right)$.

Proof by induction:

- For basic graphs: direct proof.

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $\mathcal{O}\left(n^{2}\right)$.

Proof by induction:

- For basic graphs: direct proof.
- For a graph G with a 2-join :

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $\mathcal{O}\left(n^{2}\right)$.

Proof by induction:

- For basic graphs: direct proof.
- For a graph G with a 2-join :
- From G, we build two "half" graphs G_{1} and G_{2}, each corresponding to a side of the 2 -join + a gadget.

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $\mathcal{O}\left(n^{2}\right)$.

Proof by induction:

- For basic graphs: direct proof.
- For a graph G with a 2-join :
- From G, we build two "half" graphs G_{1} and G_{2}, each corresponding to a side of the 2 -join + a gadget.
- Check that G_{1} and G_{2} are still Berge with no balanced skew partition [Chudnovsky, Trotignon, Trunck, Vušković 2012]

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $\mathcal{O}\left(n^{2}\right)$.

Proof by induction:

- For basic graphs: direct proof.
- For a graph G with a 2-join :
- From G, we build two "half" graphs G_{1} and G_{2}, each corresponding to a side of the 2 -join + a gadget.
- Check that G_{1} and G_{2} are still Berge with no balanced skew partition [Chudnovsky, Trotignon, Trunck, Vušković 2012]
- Get CS-separators for G_{1} and G_{2} by induction hypothesis

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $\mathcal{O}\left(n^{2}\right)$.

Proof by induction:

- For basic graphs: direct proof.
- For a graph G with a 2-join :
- From G, we build two "half" graphs G_{1} and G_{2}, each corresponding to a side of the 2 -join + a gadget.
- Check that G_{1} and G_{2} are still Berge with no balanced skew partition [Chudnovsky, Trotignon, Trunck, Vušković 2012]
- Get CS-separators for G_{1} and G_{2} by induction hypothesis
- Transform them into a CS-separator for G.

Red=

What is put on the left (clique side) Green= What is put on the right (stable set s.)

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

> When α or ω is bounded, chordal graphs, C_{4}-free,

Polynomially many maximal cliques or stable sets.

P_{5}-free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

$$
\left(P_{k}, \overline{P_{k}}\right) \text {-free graphs }
$$

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

> When α or ω is bounded, chordal graphs, C_{4}-free,

Polynomially many maximal cliques or stable sets.

P_{5}-free graphs

In-depth study of potential maximal cliques.
H-free graphs when H is split
Can define cuts with a constant nb of neighborhoods.

$$
\left(P_{k}, \overline{P_{k}}\right) \text {-free graphs }
$$

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

k-windmill-free

Easy neighborhood property.

Another tool

Generalization of "having a simplicial vertex". Def: k-easy-neighborhood property in a class \mathcal{C}
$\forall G \in \mathcal{C}, \exists v \in V(G)$ s.t. $G[N(v)]$ admits a $\mathcal{O}\left(|N(v)|^{k}\right)$ CS-sep.
If \mathcal{C} is hereditary and the k-easy-neighborhood property holds, then every $G \in \mathcal{C}$ has a $\mathcal{O}\left(n^{k+1}\right) \mathrm{CS}$-Separator.

Another tool

Generalization of "having a simplicial vertex".

Def: k-easy-neighborhood property in a class \mathcal{C}

$$
\forall G \in \mathcal{C}, \exists v \in V(G) \text { s.t. } G[N(v)] \text { admits a } \mathcal{O}\left(|N(v)|^{k}\right) \text { CS-sep. }
$$

If \mathcal{C} is hereditary and the k-easy-neighborhood property holds, then every $G \in \mathcal{C}$ has a $\mathcal{O}\left(n^{k+1}\right) \mathrm{CS}$-Separator.

Another tool

Generalization of "having a simplicial vertex".

Def: k-easy-neighborhood property in a class \mathcal{C}

$$
\forall G \in \mathcal{C}, \exists v \in V(G) \text { s.t. } G[N(v)] \text { admits a } \mathcal{O}\left(|N(v)|^{k}\right) \text { CS-sep. }
$$

If \mathcal{C} is hereditary and the k-easy-neighborhood property holds, then every $G \in \mathcal{C}$ has a $\mathcal{O}\left(n^{k+1}\right) \mathrm{CS}$-Separator.

Another tool

Generalization of "having a simplicial vertex".

Def: k-easy-neighborhood property in a class \mathcal{C}

$$
\forall G \in \mathcal{C}, \exists v \in V(G) \text { s.t. } G[N(v)] \text { admits a } \mathcal{O}\left(|N(v)|^{k}\right) \text { CS-sep. }
$$

If \mathcal{C} is hereditary and the k-easy-neighborhood property holds, then every $G \in \mathcal{C}$ has a $\mathcal{O}\left(n^{k+1}\right) \mathrm{CS}$-Separator.

v in clique side
V_{2} in stable set side
Cuts every (K, S) with $v \in K$

Windmill-free graphs

A 4-windmill

Windmill-free graphs

A 4-windmill
Let G be a k-windmill-free graph.

Windmill-free graphs

A 4-windmill

Let G be a k-windmill-free graph.
For every vertex v, the graph $G^{\prime}=G[N(v)]$ is $k K_{2}$-free.

Windmill-free graphs

A 4-windmill

Let G be a k-windmill-free graph.
For every vertex v, the graph $G^{\prime}=G[N(v)]$ is $k K_{2}$-free.
$\Rightarrow G^{\prime}$ has $\mathcal{O}\left(\left|V\left(G^{\prime}\right)\right|^{2 k-2}\right)$ maximal stable sets (Alekseev 1991).

Windmill-free graphs

A 4-windmill

Let G be a k-windmill-free graph.
For every vertex v, the graph $G^{\prime}=G[N(v)]$ is $k K_{2}$-free.
$\Rightarrow G^{\prime}$ has $\mathcal{O}\left(\left|V\left(G^{\prime}\right)\right|^{2 k-2}\right.$) maximal stable sets (Alekseev 1991).
$\Rightarrow G^{\prime}$ has a CS-Separator, hence v has an easy neighborhood.

Windmill-free graphs

A 4-windmill

Let G be a k-windmill-free graph.
For every vertex v, the graph $G^{\prime}=G[N(v)]$ is $k K_{2}$-free.
$\Rightarrow G^{\prime}$ has $\mathcal{O}\left(\left|V\left(G^{\prime}\right)\right|^{2 k-2}\right)$ maximal stable sets (Alekseev 1991).
$\Rightarrow G^{\prime}$ has a CS-Separator, hence v has an easy neighborhood.
Fix k. Every k-windmill-free graph has a $\mathcal{O}\left(n^{2 k-1}\right)$ CS-Separator.

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

> When α or ω is bounded, chordal graphs, C_{4}-free,

Polynomially many maximal cliques or stable sets.
P_{5}-free graphs
In-depth study of potential maximal cliques.
H-free graphs when H is split
Can define cuts with a constant nb of neighborhoods.

$$
\left(P_{k}, \overline{P_{k}}\right) \text {-free graphs }
$$

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.
k-windmil-free
Easy neighborhood property

Homogeneous set

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

> When α or ω is bounded, chordal graphs, C_{4}-free,

Polynomially many maximal cliques or stable sets.

P_{5}-free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

$$
\left(P_{k}, \overline{P_{k}}\right) \text {-free graphs }
$$

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

k-windmill-free

Easy neighborhood property.

Tools and results about the CS-Separation

Comparability graphs

LP to compute maximum weighted stable set.

> When α or ω is bounded, chordal graphs, C_{4}-free,

Polynomially many maximal cliques or stable sets.

P_{5}-free graphs

In-depth study of potential maximal cliques.

H-free graphs when H is split

Can define cuts with a constant nb of neighborhoods.

$$
\left(P_{k}, \overline{P_{k}}\right) \text {-free graphs }
$$

Strong Erdős-Hajnal property.

Perfect graphs with no BSP

Decomposition by 2-joins.

k-windmill-free

Easy neighborhood property.

Homogeneous set

Relationship with other problems

Erdős-Hajnal property

Can we always find a large clique or a large stable set?

Ramsey Theory

Every graph has a clique or a stable set of logarithmic size.
\Rightarrow Logarithmic order is best possible (Erdős 1947).

Erdős-Hajnal property

Can we always find a large clique or a large stable set?

Ramsey Theory

Every graph has a clique or a stable set of logarithmic size.
\Rightarrow Logarithmic order is best possible (Erdős 1947).
Definition: The Erdős-Hajnal property
A class \mathcal{C} of graphs has the Erdős-Hajnal property if there exists
$\beta>0$ such that:
every $G \in \mathcal{C}$ has a clique or a stable set of size at least $|V(G)|^{\beta}$.

Erdős-Hajnal property

Can we always find a large clique or a large stable set?

Ramsey Theory

Every graph has a clique or a stable set of logarithmic size.
\Rightarrow Logarithmic order is best possible (Erdős 1947).
Definition: The Erdős-Hajnal property
A class \mathcal{C} of graphs has the Erdős-Hajnal property if there exists
$\beta>0$ such that:
every $G \in \mathcal{C}$ has a clique or a stable set of size at least $|V(G)|^{\beta}$.

The Erdős-Hajnal Conjecture

Every strict hereditary class \mathcal{C} has the Erdős-Hajnal property.

The Erdős-Hajnal Conjecture
Every strict hereditary class \mathcal{C} has the Erdős-Hajnal property.
True when \mathcal{C} is the class of:

The Erdős-Hajnal Conjecture
Every strict hereditary class \mathcal{C} has the Erdős-Hajnal property.
True when \mathcal{C} is the class of:

- perfect graphs

The Erdős-Hajnal Conjecture

Every strict hereditary class \mathcal{C} has the Erdős-Hajnal property.
True when \mathcal{C} is the class of:

- perfect graphs
- H-free graphs, when H has at most 4 vertices

The Erdős-Hajnal Conjecture

Every strict hereditary class \mathcal{C} has the Erdős-Hajnal property.
True when \mathcal{C} is the class of:

- perfect graphs
- H-free graphs, when H has at most 4 vertices
- bull-free graphs (Chudnovsky, Safra 2008)

The Erdős-Hajnal Conjecture

Every strict hereditary class \mathcal{C} has the Erdős-Hajnal property.
True when \mathcal{C} is the class of:

- perfect graphs
- H-free graphs, when H has at most 4 vertices
- bull-free graphs (Chudnovsky, Safra 2008)

The Erdős-Hajnal Conjecture

Every strict hereditary class \mathcal{C} has the Erdős-Hajnal property.
True when \mathcal{C} is the class of:

- perfect graphs
- H-free graphs, when H has at most 4 vertices
- bull-free graphs (Chudnovsky, Safra 2008)

Next interesting cases: P_{5}-free or C_{5}-free graphs.

The Erdős-Hajnal Conjecture

Every strict hereditary class \mathcal{C} has the Erdős-Hajnal property.
True when \mathcal{C} is the class of:

- perfect graphs
- H-free graphs, when H has at most 4 vertices
- bull-free graphs (Chudnovsky, Safra 2008)

Next interesting cases: P_{5}-free or C_{5}-free graphs.
Towards P_{5}-free graphs?

The Erdős-Hajnal Conjecture

Every strict hereditary class \mathcal{C} has the Erdős-Hajnal property.
True when \mathcal{C} is the class of:

- perfect graphs
- H-free graphs, when H has at most 4 vertices
- bull-free graphs (Chudnovsky, Safra 2008)

Next interesting cases: P_{5}-free or C_{5}-free graphs.
Towards P_{5}-free graphs?

- $\left(P_{5}, \overline{P_{5}}\right)$-free graphs (Fouquet 1993)
- ($P_{5}, \overline{P_{6}}$)-free graphs (Chudnovsky, Zwols 2012)
- ($P_{5}, \overline{P_{7}}$)-free graphs (Chudnovsky, Seymour 2012)

Erdős-Hajnal prop. - $\left(P_{k}, \overline{P_{k}}\right)$-free [Bousquet, L., Thomassé]

There exists $\beta_{k}>0$ such that every $\left(P_{k}, \overline{P_{k}}\right)$-free graph G has a clique or a stable set of size $|V(G)|^{\beta_{k}}$.

Erdős-Hajnal prop. - $\left(P_{k}, \overline{P_{k}}\right)$-free [Bousquet, L., Thomassé]

There exists $\beta_{k}>0$ such that every $\left(P_{k}, \overline{P_{k}}\right)$-free graph G has a clique or a stable set of size $|V(G)|^{\beta_{k}}$.

Strong Erdős-Hajnal prop. - $\left(P_{k}, \overline{P_{k}}\right)$-free [Bousquet, L., Thomassé]
For every k, every graph G with no P_{k} nor $\overline{P_{k}}$ has a linear-size biclique or antibiclique (A, B).

Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (1991)

For every graph $G, \chi(G) \leq b p(G)+1$.
$\mathrm{bp}(G)=\mathrm{min} . \mathrm{nb}$ of complete bipartite graphs to partition $E(G)$.

Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (1991)

For every graph $G, \chi(G) \leq b p(G)+1$.
$\mathrm{bp}(G)=\min . \mathrm{nb}$ of complete bipartite graphs to partition $E(G)$.

- True when $G=K_{n}$ (Graham-Pollack theorem, 1972)

Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (1991)

For every graph $G, \chi(G) \leq b p(G)+1$.
$\mathrm{bp}(G)=\mathrm{min} . \mathrm{nb}$ of complete bipartite graphs to partition $E(G)$.

- True when $G=K_{n}$ (Graham-Pollack theorem, 1972)
- Disproved in 2012 by Huang and Sudakov: $\chi(G) \geq b p(G)^{6 / 5}$ for some graphs.

Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (1991)

For every graph $G, \chi(G) \leq b p(G)+1$.
$\mathrm{bp}(G)=\min . \mathrm{nb}$ of complete bipartite graphs to partition $E(G)$.

- True when $G=K_{n}$ (Graham-Pollack theorem, 1972)
- Disproved in 2012 by Huang and Sudakov: $\chi(G) \geq b p(G)^{6 / 5}$ for some graphs.

"Polynomial Alon-Saks-Seymour conjecture"

For every graph $G, \chi(G) \leq \operatorname{poly}(b p(G))$.

Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (1991)

For every graph $G, \chi(G) \leq b p(G)+1$.
$\mathrm{bp}(G)=\min . \mathrm{nb}$ of complete bipartite graphs to partition $E(G)$.

- True when $G=K_{n}$ (Graham-Pollack theorem, 1972)
- Disproved in 2012 by Huang and Sudakov: $\chi(G) \geq b p(G)^{6 / 5}$ for some graphs.

"Polynomial Alon-Saks-Seymour conjecture"

For every graph $G, \chi(G) \leq \operatorname{poly}(b p(G))$.

\Leftrightarrow

Poly CS-Separation for every graph
Every graph G admits a CS-Separator of size poly $(|V(G)|)$.

Alon-Saks-Seymour conjecture

Alon-Saks-Seymour conjecture (1991)

For every graph $G, \chi(G) \leq b p(G)+1$.
$\mathrm{bp}(G)=\mathrm{min} . \mathrm{nb}$ of complete bipartite graphs to partition $E(G)$.

- True when $G=K_{n}$ (Graham-Pollack theorem, 1972)
- Disproved in 2012 by Huang and Sudakov: $\chi(G) \geq b p(G)^{6 / 5}$ for some graphs.

"Polynomial Alon-Saks-Seymour conjecture"

For every graph $G, \chi(G) \leq \operatorname{poly}(b p(G))$.

\Leftrightarrow

Poly CS-Separation for every graph
Every graph G admits a CS-Separator of size poly $(|V(G)|)$.
Disproved by Göös, 2015.

Perspectives

- Polynomial CS-Separation in perfect graphs?

Perspectives

- Polynomial CS-Separation in perfect graphs?
- Extending results on CS-Separation to extension complexity?

Perspectives

- Polynomial CS-Separation in perfect graphs?
- Extending results on CS-Separation to extension complexity?
- Find polynomial CS-Separators in some more classes of graphs?

Perspectives

- Polynomial CS-Separation in perfect graphs?
- Extending results on CS-Separation to extension complexity?
- Find polynomial CS-Separators in some more classes of graphs?

Perspectives

- Polynomial CS-Separation in perfect graphs?
- Extending results on CS-Separation to extension complexity?
- Find polynomial CS-Separators in some more classes of graphs?

Explore relationship between different properties of classes:

- CS-Separation
- χ-boundedness
- Erdős-Hajnal property
- computing α is polynomial-time solvable
- ...

Perspectives

- Polynomial CS-Separation in perfect graphs?
- Extending results on CS-Separation to extension complexity?
- Find polynomial CS-Separators in some more classes of graphs?

Explore relationship between different properties of classes:

- CS-Separation
- χ-boundedness
- Erdős-Hajnal property
- computing α is polynomial-time solvable
- ...

Thank you for your attention!

