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Introduction
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Coloring

Properly color the vertices of G with the fewest number of colors.

w(G) : size of the largest clique
X(G) : smallest number of colors needed to properly color V(G).
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Introduction
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Definition: perfect graphs

A graph G is perfect iff for every induced subgraph H of G, we
have w(H) = x(H).

Strong perfect graph theorem [CRST]

A graph is perfect iff it does not contain any odd hole and any odd
antihole.

Odd hole Odd antihole
X(G) =w(G)+1
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x-boundedness

Gyarfas generalized the notion of perfect graphs to "reasonably
colorable":

Definition: x-bounded class

A hereditary class C of graphs is said to be x-bounded by function
f if for every G € C, x(G) < f(w(G)).

Examples:

@ Perfect graphs are y-bounded by the identity function.

e Triangle-free graphs (and even graphs with fixed girth g) are
not x-bounded by any function.

@ Even-hole-free graphs are x-bounded by f : x — 2x — 1.

@ Graphs with no odd hole of length > k are x-bounded by an
exponential function [Chudnovsky, Scott, Seymour, Spirkl].
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Coloring 2K>-free graphs

2K,

Question [Gyarfas 87]

What is the order of magnitude of the smallest x-binding function
for 2K,-free graphs?

Best upper bound: O(w?). [Wagon 80]
Best lower bound: M which is Q(w!*¢) for some ¢ > 0
[Chung 80]

Question: Close the gap?
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Question: For which subclasses is there
@ a linear x-binding function?
o No for (2K, 3K1)-free graphs [1]
e x(G) < LMT(G)J for (2K>, Ps)-free graphs and this bound is
tight [4]

© Brause, Randerath, Schiermeyer, Vumar, BGW’ 2016
@ Karthick, Mishra, ArXiv 2017

© Karthick, Maffray, Graphs and Combinatorics 2016
© Fouquet et al. Discrete Mathematics 1995
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Question: For which subclasses is there

@ a linear x-binding function?
o No for (2K, 3K1)-free graphs [1]
e x(G) < LMT(G)J for (2K>, Ps)-free graphs and this bound is

tight [4]

@ a w + ¢ (for some constant c¢) x-binding function?
o Yes for (2K3, Ks — e)-free graphs [3]

@ a w + 1 x-binding function?
o Yes for (2K, Ky — e)-free graphs [2]
o Yes for (2K3, Cy)-free graphs

Brause, Randerath, Schiermeyer, Vumar, BGW’ 2016
Karthick, Mishra, ArXiv 2017

Karthick, Maffray, Graphs and Combinatorics 2016
Fouquet et al. Discrete Mathematics 1995
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2K4 Wy
Theorem [Bousquet, L., 2018]

(2K3, Wa)-free graphs are w(G) + 1 colorable, and this bound is
tight (on a Cg for example).

Best previous bound [Brause, Randerath, Shiermeyer, Vumar 2016]:
5w+ 5

Main idea of the proof

Study carefully the structure of (2Ky, W4 )-free graphs to know how
vertices can be linked with one another.

=- Once structure is known, it is easy to identify the largest clique
and to give a proper coloring.
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Classical techniques

We may assume that G is twin-free :
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Classical techniques

We may assume that G is twin-free or even weak-free: Au # v s.t.
N(u) C N(v).

N(u) € N(v) V(G)\ N(v)

u

()

u is weak

8/23



Results
ooe

Odd holes and antiholes

@ Case A: G is perfect
e Case B: G contains a G;

@ Case C: G contains a Gy

O

Hole of length > 7 Antihole of length > 9
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Odd holes and antiholes

e Case A: G is perfect — x(G) = w(G)
e Case B: G contains a G;

@ Case C: G contains a Gy

O

Hole of length > 7 Antihole of length > 9
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Case B: G contains a G,

may or may not exist
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Case C: G contains a Cs
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Case C: G contains a Cs

Type b : T5
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Case C: G contains a Cs

Type 4 : u; T}
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Case C: G contains a Cs

Type 3: u; T4
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Case C: G contains a Cs

Type 2 : u; T¢
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Case C: G contains a Cs

Type1: 0
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Case C: G contains a Cs

Type 0 : stable set
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A few facts on types of vertices

About T5:

Ty
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A few facts on types of vertices

About T5:

Ty

T5 must be an stable set otherwise
T5 must be anticomplete to Tj otherwise

T, must be complete to 73" otherwise
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A few facts on types of vertices

Observation

If a and b are non-adjacent vertices of G, then N(a) N N(b) is the
disjoint union of a clique and a stable set (either of which can be
empty).

N(a) N N(b)
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Observation

If a and b are non-adjacent vertices of G, then N(a) N N(b) is the
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empty).
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A few facts on types of vertices

Observation

If a and b are non-adjacent vertices of G, then N(a) N N(b) is the
disjoint union of a clique and a stable set (either of which can be
empty).

N(a) N N ()

Only one clique can be > 2 otherwise
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A few facts on types of vertices
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Lemma: Contrapositive

If N(a) N N(b) contains an induced Ps3, then ab € E.

From this we deduce that:
o for each i, Ts U TL{ is a clique
o for each i, TjU T, is a clique
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Lemma: Contrapositive

If N(a) N N(b) contains an induced Ps3, then ab € E.

From this we deduce that:
o for each i, Ts U TL{ is a clique
o for each i, TjU T, is a clique

Moreover: T and T, cannot be both non empty.

non-edge =

eTi ' ‘ € T;+?
N
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Lemma: Contrapositive

If N(a) N N(b) contains an induced Ps3, then ab € E.

From this we deduce that:
o for each i, Ts U TL{ is a clique
o for each i, TjU T, is a clique

Moreover: T and T, cannot be both non empty.

edge =

= T4 is reduced to T‘{ U Tf“l for some i, and must be a clique.
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Three cases when G contains a Gy

Case C.1: G contains a vertex of type 5
Case C.2: G contains a vertex of type 4 and no vertex of type 5

Case C.3: G contains no vertex of type 4 or 5
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Case C.1: G contains a vertex of type 5

Case C.1.1: If [Ts| > 2

no vertex of type 2, 3, 4

&

T5 i.S a clique /possible edges
of size > 2 between T and T

0

w=|T5+2=x—1
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Case C.1: G contains a vertex of type 5

Case C.1.2: If |T5| =1

no vertex of type 2, 4 inside: singleton T3
for each i, or empty Ty

AN

possible edges
between Ty and T5

— ™~

4
_—

single T5 W = 3, X = 4
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Case C.2: G contains a vertex of type 4 and no vertex of
type 5

We know that T, = Tz{ U Tﬁl for some i, and it is a clique.
Case C.2.1: Both T; and T;** are non-empty

no vertex of type 2, 3
T
@ possible edges be-
tween T5UTy and Tj
w=Ty|+2=x-1

max clique
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Case C.2: G contains a vertex of type 4 and no vertex of
type 5

We know that T, = Tz{ U TZ{H for some i, and it is a clique.
Case C.2.2: T4 =T,

no vertex of type 2, 3

Ty

possible edges be-
tween T3UTy and T

max clique
w= Tyl + K| +2=x~1
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Case C.3: G contains no vertex of type 4 or 5

Trouble is coming!
T, might now be non-empty, and might misbehave.

Ti O\
(¢ Y0

Tit? Q 0 T2

The way we'd like T4 to behave: just like vertex i of the cycle
T5 must be an stable set otherwise
T, must be anticomplete to T otherwise
T, must be complete to T4+ U T4t otherwise

T, must be anticomplete to T4+ U T2
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Case C.3: G contains no vertex of type 4 or 5

Trouble is coming!

T, might now be non-empty, and might misbehave.

T3 If such an edge exists, we say that 73 is bad

i+2 i—2
T T

The way we'd like T4 to behave: just like vertex i of the cycle
T5 must be an stable set otherwise
T, must be anticomplete to T otherwise
T, must be complete to T4+ U T4t otherwise

FALSE T, must be anticomplete to T4+ U T2
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We choose the outer 5-cycle in order to minimize | T>|.
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Case C.3.1: T, is empty, and non-empty Té' are consecutives
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Case C.3.2: T, is non-empty, and at most one Té is non-empty
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Case C.3.3: Two non-consecutive Té' are empty

Ty
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Algorithms

Following the outline of the proof, we also obtain algorithms:

Theorem [Bousquet, L. 2018]

In (2Ky, Wy)-free graphs, we can compute in polynomial time:

@ a clique of maximum size, and

@ an optimal coloring with w(G) or w(G) + 1 colors.

Note: it is known by previous results that

@ The coloring problem is NP-complete on 2K,-free graphs
(even (2K>, net)-free graphs)

@ The max clique problem is NP-complete on 2K>-free graphs.
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Algorithms

Following the outline of the proof, we also obtain algorithms:

Theorem [Bousquet, L. 2018]

In (2Ky, Wy)-free graphs, we can compute in polynomial time:

@ a clique of maximum size, and

@ an optimal coloring with w(G) or w(G) + 1 colors.

Note: it is known by previous results that

@ The coloring problem is NP-complete on 2K,-free graphs
(even (2K>, net)-free graphs)

@ The max clique problem is NP-complete on 2K>-free graphs.

Thank you for your attention!
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