Coloring $(2K_2, W_4)$ -free graphs

Aurélie Lagoutte

LIMOS, University Clermont Auvergne, France

SIAM conference on Discrete Maths - June 4 2018 Mini-symposium on Graph Coloring

Joint work with N. Bousquet

Goal

Properly color the vertices of G with the fewest number of colors.

- $\omega(G)$: size of the largest clique
- $\chi(G)$: smallest number of colors needed to properly color V(G).

Goal

Properly color the vertices of G with the fewest number of colors.

- $\omega(G)$: size of the largest clique
- $\chi(G)$: smallest number of colors needed to properly color V(G).

 $\omega(G) \leq \chi(G)$

A graph G is *perfect* iff for every induced subgraph H of G, we have $\omega(H) = \chi(H)$.

Strong perfect graph theorem [CRST]

A graph is perfect iff it does not contain any odd hole and any odd antihole.

Gyárfás generalized the notion of perfect graphs to "reasonably colorable":

Definition: χ -bounded class

A hereditary class C of graphs is said to be χ -bounded by function f if for every $G \in C$, $\chi(G) \leq f(\omega(G))$.

Examples:

- Perfect graphs are χ -bounded by the identity function.
- Triangle-free graphs (and even graphs with fixed girth g) are not χ -bounded by any function.
- Even-hole-free graphs are χ -bounded by $f : x \mapsto 2x 1$.
- Graphs with no odd hole of length $\geq k$ are χ -bounded by an exponential function [Chudnovsky, Scott, Seymour, Spirkl].

Coloring $2K_2$ -free graphs

Question [Gyárfás 87]

What is the order of magnitude of the smallest χ -binding function for $2K_2$ -free graphs?

Best upper bound: $\mathcal{O}(\omega^2)$. [Wagon 80] Best lower bound: $\frac{R(C_4, K_{\omega+1})}{3}$ which is $\Omega(\omega^{1+\varepsilon})$ for some $\varepsilon > 0$ [Chung 80]

Question: Close the gap?

- a linear χ -binding function?
 - No for $(2K_2, 3K_1)$ -free graphs [1]
 - $\chi(G) \leq \lfloor \frac{3\omega(G)}{2} \rfloor$ for $(2K_2, \overline{P_5})$ -free graphs and this bound is tight [4]

- Brause, Randerath, Schiermeyer, Vumar, BGW' 2016
- 2 Karthick, Mishra, ArXiv 2017
- Sarthick, Maffray, Graphs and Combinatorics 2016
- Fouquet et al. Discrete Mathematics 1995

Question: For which subclasses is there

- a linear χ -binding function?
 - No for $(2K_2, 3K_1)$ -free graphs [1]
 - $\chi(G) \leq \lfloor \frac{3\omega(G)}{2} \rfloor$ for $(2K_2, \overline{P_5})$ -free graphs and this bound is tight [4]
- a $\omega + c$ (for some constant c) χ -binding function?
 - Yes for $(2K_2, K_5 e)$ -free graphs [3]

- Brause, Randerath, Schiermeyer, Vumar, BGW' 2016
- 2 Karthick, Mishra, ArXiv 2017
- Sarthick, Maffray, Graphs and Combinatorics 2016
- Fouquet et al. Discrete Mathematics 1995

Question: For which subclasses is there

- a linear χ -binding function?
 - No for $(2K_2, 3K_1)$ -free graphs [1]
 - $\chi(G) \leq \lfloor \frac{3\omega(G)}{2} \rfloor$ for $(2K_2, \overline{P_5})$ -free graphs and this bound is tight [4]
- a $\omega + c$ (for some constant c) χ -binding function?
 - Yes for $(2K_2, K_5 e)$ -free graphs [3]
- a $\omega + 1 \chi$ -binding function?
 - Yes for $(2K_2, K_4 e)$ -free graphs [2]
 - Yes for $(2K_2, C_4)$ -free graphs
- Brause, Randerath, Schiermeyer, Vumar, BGW' 2016
- 2 Karthick, Mishra, ArXiv 2017
- Sarthick, Maffray, Graphs and Combinatorics 2016
- Fouquet et al. Discrete Mathematics 1995

 $(2K_2, W_4)$ -free graphs are $\omega(G) + 1$ colorable, and this bound is tight (on a C_5 for example).

Best previous bound [Brause, Randerath, Shiermeyer, Vumar 2016]: $5\omega+5$

Main idea of the proof

Study carefully the structure of $(2K_2, W_4)$ -free graphs to know how vertices can be linked with one another.

 \Rightarrow Once structure is known, it is easy to identify the largest clique and to give a proper coloring.

We may assume that G is twin-free :

Classical techniques

We may assume that G is twin-free or even weak-free: $\nexists u \neq v$ s.t. $N(u) \subseteq N(v)$.

Odd holes and antiholes

- Case A: G is perfect
- Case B: G contains a $\overline{C_7}$
- Case C: G contains a C_5

Odd holes and antiholes

- Case A: G is perfect $\rightarrow \chi(G) = \omega(G)$
- Case B: G contains a $\overline{C_7}$
- Case C: G contains a C₅

Case B: G contains a $\overline{C_7}$

Results

Case C: G contains a C_5

Results

Case C: G contains a C_5

Type 5 : T_5

Results

Case C: G contains a C_5

Type 4 : $\cup_i T_4^i$

Results

Case C: G contains a C_5

Type 3 : $\cup_i T_3^i$

Results

Case C: G contains a C_5

Type 2 : $\cup_i T_2^i$

Results

Case C: G contains a C_5

Type $1: \emptyset$

11/23

Results

Case C: G contains a C_5

Type 0 : stable set

About T_2 :

About T_2 :

 T_2 must be an stable set otherwise $2K_2$

About T_2 :

 T_2 must be an stable set otherwise $2K_2$ T_2 must be anticomplete to T_0 otherwise $2K_2$

About T_2 :

 T_2 must be an stable set otherwise $2K_2$ T_2 must be anticomplete to T_0 otherwise $2K_2$ T_2 must be complete to T_2^{i+1} otherwise $2K_2$

Observation

Observation

Observation

Observation

If a and b are non-adjacent vertices of G, then $N(a) \cap N(b)$ is the disjoint union of a clique and a stable set (either of which can be empty).

 $N(a)\cap N(b)$

Observation

If a and b are non-adjacent vertices of G, then $N(a) \cap N(b)$ is the disjoint union of a clique and a stable set (either of which can be empty).

 $N(a)\cap N(b)$

Only one clique can be ≥ 2 otherwise $2K_2$

Observation

From this we deduce that:

- for each *i*, $T_5 \cup T_4^i$ is a clique
- for each *i*, $T_4^i \cup T_4^{i+1}$ is a clique

From this we deduce that:

- for each *i*, $T_5 \cup T_4^i$ is a clique
- for each *i*, $T_4^i \cup T_4^{i+1}$ is a clique

From this we deduce that:

- for each *i*, $T_5 \cup T_4^i$ is a clique
- for each *i*, $T_4^i \cup T_4^{i+1}$ is a clique

From this we deduce that:

- for each *i*, $T_5 \cup T_4^i$ is a clique
- for each *i*, $T_4^i \cup T_4^{i+1}$ is a clique

From this we deduce that:

- for each *i*, $T_5 \cup T_4^i$ is a clique
- for each *i*, $T_4^i \cup T_4^{i+1}$ is a clique

From this we deduce that:

- for each *i*, $T_5 \cup T_4^i$ is a clique
- for each *i*, $T_4^i \cup T_4^{i+1}$ is a clique

From this we deduce that:

- for each *i*, $T_5 \cup T_4^i$ is a clique
- for each *i*, $T_4^i \cup T_4^{i+1}$ is a clique

Moreover: T_4^i and T_4^{i+2} cannot be both non empty.

 \Rightarrow T_4 is reduced to $T_4^i \cup T_4^{i+1}$ for some *i*, and must be a clique.

Case C.1: G contains a vertex of type 5

Case C.2: G contains a vertex of type 4 and no vertex of type 5

Case C.3: G contains no vertex of type 4 or 5

Case C.1: G contains a vertex of type 5

Case C.1.1: If $|T_5| \ge 2$

Algo 0

Case C.1: G contains a vertex of type 5

Case C.1.2: If $|T_5| = 1$

Algo 0

Introduction Results Case C.2: G contains a vertex of type 4 and no vertex of type 5 We know that $T_4 = T_4^i \cup T_4^{i+1}$ for some i, and it is a clique. Case C.2.1: Both T_4^i and T_4^{i+1} are non-empty no vertex of type 2, 3 T_0 T_{4}^{i} possible edges between $T_3 \cup T_4$ and T_0 max clique

Results

Case C.2: G contains a vertex of type 4 and no vertex of type 5

We know that $T_4 = T_4^i \cup T_4^{i+1}$ for some i, and it is a clique. Case C.2.2: $T_4 = T_4^i$

Algo

Case C.3: G contains no vertex of type 4 or 5

Trouble is coming!

 T_2 might now be non-empty, and might misbehave.

The way we'd like T_2^i to behave: just like vertex i of the cycle **TRUE** T_2 must be an stable set otherwise $2K_2$ **TRUE** T_2 must be anticomplete to T_0 otherwise $2K_2$ **TRUE** T_2 must be complete to $T_2^{i+1} \cup T_2^{i-1}$ otherwise $2K_2$? T_2 must be anticomplete to $T_2^{i+2} \cup T_2^{i-2}$

Case C.3: G contains no vertex of type 4 or 5

Trouble is coming!

 T_2 might now be non-empty, and might misbehave.

The way we'd like T_2^i to behave: just like vertex i of the cycle **TRUE** T_2 must be an stable set otherwise $2K_2$ **TRUE** T_2 must be anticomplete to T_0 otherwise $2K_2$ **TRUE** T_2 must be complete to $T_2^{i+1} \cup T_2^{i-1}$ otherwise $2K_2$ **FALSE** T_2 must be anticomplete to $T_2^{i+2} \cup T_2^{i-2}$ Algo 0 We choose the outer 5-cycle in order to minimize $|T_2|$.

We choose the outer 5-cycle in order to minimize $|T_2|$.

Lemma

Case C.3.1: T_2 is empty, and non-empty T_3^j are consecutives

Case C.3.2: T_2 is non-empty, and at most one T_3^j is non-empty

Case C.3.3: Two non-consecutive T_3^j are empty

Following the outline of the proof, we also obtain algorithms:

Theorem [Bousquet, L. 2018]

In $(2K_2, W_4)$ -free graphs, we can compute in polynomial time:

- a clique of maximum size, and
- an optimal coloring with $\omega(G)$ or $\omega(G) + 1$ colors.

Note: it is known by previous results that

- The coloring problem is NP-complete on 2K₂-free graphs (even (2K₂, net)-free graphs)
- The max clique problem is NP-complete on $2K_2$ -free graphs.

Following the outline of the proof, we also obtain algorithms:

Theorem [Bousquet, L. 2018]

In $(2K_2, W_4)$ -free graphs, we can compute in polynomial time:

- a clique of maximum size, and
- an optimal coloring with $\omega(G)$ or $\omega(G) + 1$ colors.

Note: it is known by previous results that

- The coloring problem is NP-complete on 2K₂-free graphs (even (2K₂, net)-free graphs)
- The max clique problem is NP-complete on $2K_2$ -free graphs.

Thank you for your attention!

Algo