Coloring $\left(2 K_{2}, W_{4}\right)$-free graphs

Aurélie Lagoutte

LIMOS, University Clermont Auvergne, France

SIAM conference on Discrete Maths - June 42018
Mini-symposium on Graph Coloring

Joint work with N. Bousquet

Coloring

Goal

Properly color the vertices of G with the fewest number of colors.
$\omega(G)$: size of the largest clique
$\chi(G)$: smallest number of colors needed to properly color $V(G)$.

Coloring

Goal

Properly color the vertices of G with the fewest number of colors.
$\omega(G)$: size of the largest clique
$\chi(G)$: smallest number of colors needed to properly color $V(G)$.

$$
\omega(G) \leq \chi(G)
$$

Definition: perfect graphs

A graph G is perfect iff for every induced subgraph H of G, we have $\omega(H)=\chi(H)$.

Strong perfect graph theorem [CRST]

A graph is perfect iff it does not contain any odd hole and any odd antihole.

Odd hole

Odd antihole

$$
\chi(G)=\omega(G)+1
$$

χ-boundedness

Gyárfás generalized the notion of perfect graphs to "reasonably colorable":

Definition: χ-bounded class

A hereditary class \mathcal{C} of graphs is said to be χ-bounded by function f if for every $G \in \mathcal{C}, \chi(G) \leq f(\omega(G))$.

Examples:

- Perfect graphs are χ-bounded by the identity function.
- Triangle-free graphs (and even graphs with fixed girth g) are not χ-bounded by any function.
- Even-hole-free graphs are χ-bounded by $f: x \mapsto 2 x-1$.
- Graphs with no odd hole of length $\geq k$ are χ-bounded by an exponential function [Chudnovsky, Scott, Seymour, Spirkl].

Coloring $2 K_{2}$-free graphs

$$
\underset{2 k}{ }!
$$

Question [Gyárfás 87]

What is the order of magnitude of the smallest χ-binding function for $2 K_{2}$-free graphs?

Best upper bound: $\mathcal{O}\left(\omega^{2}\right)$. [Wagon 80] Best lower bound: $\frac{R\left(C_{4}, K_{\omega+1}\right)}{3}$ which is $\Omega\left(\omega^{1+\varepsilon}\right)$ for some $\varepsilon>0$ [Chung 80]

Question: Close the gap?

Question: For which subclasses is there

- a linear χ-binding function?
- No for ($2 K_{2}, 3 K_{1}$)-free graphs [1]
- $\chi(G) \leq\left\lfloor\frac{3 \omega(G)}{2}\right\rfloor$ for $\left(2 K_{2}, \overline{P_{5}}\right)$-free graphs and this bound is tight [4]
(1) Brause, Randerath, Schiermeyer, Vumar, BGW' 2016
(2) Karthick, Mishra, ArXiv 2017
(3) Karthick, Maffray, Graphs and Combinatorics 2016
(4) Fouquet et al. Discrete Mathematics 1995

Question: For which subclasses is there

- a linear χ-binding function?
- No for ($2 K_{2}, 3 K_{1}$)-free graphs [1]
- $\chi(G) \leq\left\lfloor\frac{3 \omega(G)}{2}\right\rfloor$ for $\left(2 K_{2}, \overline{P_{5}}\right)$-free graphs and this bound is tight [4]
- a $\omega+c$ (for some constant c) χ-binding function?
- Yes for $\left(2 K_{2}, K_{5}-e\right)$-free graphs [3]
(1) Brause, Randerath, Schiermeyer, Vumar, BGW' 2016
(2) Karthick, Mishra, ArXiv 2017
(3) Karthick, Maffray, Graphs and Combinatorics 2016
(4) Fouquet et al. Discrete Mathematics 1995

Question: For which subclasses is there

- a linear χ-binding function?
- No for ($2 K_{2}, 3 K_{1}$)-free graphs [1]
- $\chi(G) \leq\left\lfloor\frac{3 \omega(G)}{2}\right\rfloor$ for $\left(2 K_{2}, \overline{P_{5}}\right)$-free graphs and this bound is tight [4]
- a $\omega+c$ (for some constant c) χ-binding function?
- Yes for $\left(2 K_{2}, K_{5}-e\right)$-free graphs [3]
- a $\omega+1$ - χ-binding function?
- Yes for $\left(2 K_{2}, K_{4}-e\right)$-free graphs [2]
- Yes for $\left(2 K_{2}, C_{4}\right)$-free graphs
(1) Brause, Randerath, Schiermeyer, Vumar, BGW' 2016
(2) Karthick, Mishra, ArXiv 2017
(3) Karthick, Maffray, Graphs and Combinatorics 2016
(4) Fouquet et al. Discrete Mathematics 1995

$2 K_{2}$

W_{4}

Theorem [Bousquet, L., 2018]

$\left(2 K_{2}, W_{4}\right)$-free graphs are $\omega(G)+1$ colorable, and this bound is tight (on a C_{5} for example).

Best previous bound [Brause, Randerath, Shiermeyer, Vumar 2016]: $5 \omega+5$

Main idea of the proof

Study carefully the structure of $\left(2 K_{2}, W_{4}\right)$-free graphs to know how vertices can be linked with one another.
\Rightarrow Once structure is known, it is easy to identify the largest clique and to give a proper coloring.

Classical techniques

We may assume that G is twin-free :

twins

Classical techniques

We may assume that G is twin-free or even weak-free: $\nexists u \neq v$ s.t. $N(u) \subseteq N(v)$.

u is weak

Odd holes and antiholes

- Case A: G is perfect
- Case B: G contains a $\overline{C_{7}}$
- Case C: G contains a C_{5}

Hole of length ≥ 7

Antihole of length ≥ 9

Odd holes and antiholes

- Case A: G is perfect $\rightarrow \chi(G)=\omega(G)$
- Case B: G contains a $\overline{C_{7}}$
- Case C: G contains a C_{5}

Hole of length ≥ 7

Antihole of length ≥ 9

Case B: G contains a $\overline{C_{7}}$

may or may not exist

Case C: G contains a C_{5}

Case C: G contains a C_{5}

Type 5: T_{5}

Case $C: G$ contains a C_{5}

$$
\text { Type } 4 \text { : } \cup_{i} T_{4}^{i}
$$

Case C: G contains a C_{5}

$$
\text { Type } 3 \text { : } \cup_{i} T_{3}^{i}
$$

Case C: G contains a C_{5}

Type 2: $U_{i} T_{2}^{i}$

Case C: G contains a C_{5}

Type 1: \emptyset

Case C: G contains a C_{5}

Type 0 : stable set

A few facts on types of vertices
About T_{2} :

A few facts on types of vertices
About T_{2} :

T_{2} must be an stable set otherwise $2 K_{2}$

A few facts on types of vertices
About T_{2} :

T_{2} must be an stable set otherwise $2 K_{2}$
T_{2} must be anticomplete to T_{0} otherwise $2 K_{2}$

A few facts on types of vertices
About T_{2} :

T_{2} must be an stable set otherwise $2 K_{2}$
T_{2} must be anticomplete to T_{0} otherwise $2 K_{2}$
T_{2} must be complete to T_{2}^{i+1} otherwise $2 K_{2}$

A few facts on types of vertices

Observation

If a and b are non-adjacent vertices of G, then $N(a) \cap N(b)$ is the disjoint union of a clique and a stable set (either of which can be empty).

A few facts on types of vertices

Observation

If a and b are non-adjacent vertices of G, then $N(a) \cap N(b)$ is the disjoint union of a clique and a stable set (either of which can be empty).

$$
N(a) \cap N(b)
$$

A few facts on types of vertices

Observation

If a and b are non-adjacent vertices of G, then $N(a) \cap N(b)$ is the disjoint union of a clique and a stable set (either of which can be empty).

$N(a) \cap N(b)$
No P_{3} otherwise W_{4}

A few facts on types of vertices

Observation

If a and b are non-adjacent vertices of G, then $N(a) \cap N(b)$ is the disjoint union of a clique and a stable set (either of which can be empty).

$$
N(a) \cap N(b)
$$

A few facts on types of vertices

Observation

If a and b are non-adjacent vertices of G, then $N(a) \cap N(b)$ is the disjoint union of a clique and a stable set (either of which can be empty).

$N(a) \cap N(b)$
Only one clique can be ≥ 2 otherwise $2 K_{2}$

A few facts on types of vertices

Observation

If a and b are non-adjacent vertices of G, then $N(a) \cap N(b)$ is the disjoint union of a clique and a stable set (either of which can be empty).

Lemma: Contrapositive
If $N(a) \cap N(b)$ contains an induced P_{3}, then $a b \in E$.
From this we deduce that:

- for each $i, T_{5} \cup T_{4}^{i}$ is a clique
- for each $i, T_{4}^{i} \cup T_{4}^{i+1}$ is a clique

Lemma: Contrapositive
If $N(a) \cap N(b)$ contains an induced P_{3}, then $a b \in E$.
From this we deduce that:

- for each $i, T_{5} \cup T_{4}^{i}$ is a clique
- for each $i, T_{4}^{i} \cup T_{4}^{i+1}$ is a clique

Moreover: T_{4}^{i} and T_{4}^{i+2} cannot be both non empty.

Lemma: Contrapositive
If $N(a) \cap N(b)$ contains an induced P_{3}, then $a b \in E$.
From this we deduce that:

- for each $i, T_{5} \cup T_{4}^{i}$ is a clique
- for each $i, T_{4}^{i} \cup T_{4}^{i+1}$ is a clique

Moreover: T_{4}^{i} and T_{4}^{i+2} cannot be both non empty.

Lemma: Contrapositive
If $N(a) \cap N(b)$ contains an induced P_{3}, then $a b \in E$.
From this we deduce that:

- for each $i, T_{5} \cup T_{4}^{i}$ is a clique
- for each $i, T_{4}^{i} \cup T_{4}^{i+1}$ is a clique

Moreover: T_{4}^{i} and T_{4}^{i+2} cannot be both non empty.

Lemma: Contrapositive
If $N(a) \cap N(b)$ contains an induced P_{3}, then $a b \in E$.
From this we deduce that:

- for each $i, T_{5} \cup T_{4}^{i}$ is a clique
- for each $i, T_{4}^{i} \cup T_{4}^{i+1}$ is a clique

Moreover: T_{4}^{i} and T_{4}^{i+2} cannot be both non empty.

Lemma: Contrapositive
If $N(a) \cap N(b)$ contains an induced P_{3}, then $a b \in E$.
From this we deduce that:

- for each $i, T_{5} \cup T_{4}^{i}$ is a clique
- for each $i, T_{4}^{i} \cup T_{4}^{i+1}$ is a clique

Moreover: T_{4}^{i} and T_{4}^{i+2} cannot be both non empty.

Lemma: Contrapositive

If $N(a) \cap N(b)$ contains an induced P_{3}, then $a b \in E$.
From this we deduce that:

- for each $i, T_{5} \cup T_{4}^{i}$ is a clique
- for each $i, T_{4}^{i} \cup T_{4}^{i+1}$ is a clique

Moreover: T_{4}^{i} and T_{4}^{i+2} cannot be both non empty.

$\Rightarrow T_{4}$ is reduced to $T_{4}^{i} \cup T_{4}^{i+1}$ for some i, and must be a clique.

Three cases when G contains a C_{5}

Case C.1: G contains a vertex of type 5
Case C.2: G contains a vertex of type 4 and no vertex of type 5
Case C.3: G contains no vertex of type 4 or 5

Case C.1: G contains a vertex of type 5
Case C.1.1: If $\left|T_{5}\right| \geq 2$

Case C.1: G contains a vertex of type 5
Case C.1.2: If $\left|T_{5}\right|=1$

Case C.2: G contains a vertex of type 4 and no vertex of type 5

We know that $T_{4}=T_{4}^{i} \cup T_{4}^{i+1}$ for some i, and it is a clique.
Case C.2.1: Both T_{4}^{i} and T_{4}^{i+1} are non-empty no vertex of type 2,3

Case C.2: G contains a vertex of type 4 and no vertex of type 5

We know that $T_{4}=T_{4}^{i} \cup T_{4}^{i+1}$ for some i , and it is a clique.
Case C.2.2: $T_{4}=T_{4}^{i}$
no vertex of type 2,3

Case C.3: G contains no vertex of type 4 or 5

Trouble is coming!

T_{2} might now be non-empty, and might misbehave.

The way we'd like T_{2}^{i} to behave: just like vertex i of the cycle
TRUE T_{2} must be an stable set otherwise $2 K_{2}$
TRUE T_{2} must be anticomplete to T_{0} otherwise $2 K_{2}$
TRUE T_{2} must be complete to $T_{2}^{i+1} \cup T_{2}^{i-1}$ otherwise $2 K_{2}$
? $\quad T_{2}$ must be anticomplete to $T_{2}^{i+2} \cup T_{2}^{i-2}$

Case C.3: G contains no vertex of type 4 or 5

Trouble is coming!

T_{2} might now be non-empty, and might misbehave.

The way we'd like T_{2}^{i} to behave: just like vertex i of the cycle
TRUE T_{2} must be an stable set otherwise $2 K_{2}$
TRUE T_{2} must be anticomplete to T_{0} otherwise $2 K_{2}$
TRUE T_{2} must be complete to $T_{2}^{i+1} \cup T_{2}^{i-1}$ otherwise $2 K_{2}$
FALSE T_{2} must be anticomplete to $T_{2}^{i+2} \cup T_{2}^{i-2}$

We choose the outer 5-cycle in order to minimize $\left|T_{2}\right|$.

We choose the outer 5-cycle in order to minimize $\left|T_{2}\right|$.

Lemma

If T_{2}^{i} contains a bad vertex, then T_{3}^{i} cannot be empty.

We choose the outer 5-cycle in order to minimize $\left|T_{2}\right|$.

Lemma

If T_{2}^{i} contains a bad vertex, then T_{3}^{i} cannot be empty.

We choose the outer 5-cycle in order to minimize $\left|T_{2}\right|$.

Lemma

If T_{2}^{i} contains a bad vertex, then T_{3}^{i} cannot be empty.

We choose the outer 5-cycle in order to minimize $\left|T_{2}\right|$.

Lemma

If T_{2}^{i} contains a bad vertex, then T_{3}^{i} cannot be empty.

We choose the outer 5-cycle in order to minimize $\left|T_{2}\right|$.

Lemma

If T_{2}^{i} contains a bad vertex, then T_{3}^{i} cannot be empty.

We choose the outer 5-cycle in order to minimize $\left|T_{2}\right|$.

Lemma

If T_{2}^{i} contains a bad vertex, then T_{3}^{i} cannot be empty.

We choose the outer 5-cycle in order to minimize $\left|T_{2}\right|$.

Lemma

If T_{2}^{i} contains a bad vertex, then T_{3}^{i} cannot be empty.

Case C.3.1: T_{2} is empty, and non-empty T_{3}^{j} are consecutives

$\omega=3, \chi=4$

$\omega=3=\chi$

Case C.3.2: T_{2} is non-empty, and at most one T_{3}^{j} is non-empty

Case C.3.3: Two non-consecutive T_{3}^{j} are empty

Algorithms

Following the outline of the proof, we also obtain algorithms:

Theorem [Bousquet, L. 2018]

In $\left(2 K_{2}, W_{4}\right)$-free graphs, we can compute in polynomial time:

- a clique of maximum size, and
- an optimal coloring with $\omega(G)$ or $\omega(G)+1$ colors.

Note: it is known by previous results that

- The coloring problem is NP-complete on $2 K_{2}$-free graphs (even ($2 K_{2}$, net)-free graphs)
- The max clique problem is NP-complete on $2 K_{2}$-free graphs.

Algorithms

Following the outline of the proof, we also obtain algorithms:

Theorem [Bousquet, L. 2018]

In $\left(2 K_{2}, W_{4}\right)$-free graphs, we can compute in polynomial time:

- a clique of maximum size, and
- an optimal coloring with $\omega(G)$ or $\omega(G)+1$ colors.

Note: it is known by previous results that

- The coloring problem is NP-complete on $2 K_{2}$-free graphs (even ($2 K_{2}$, net)-free graphs)
- The max clique problem is NP-complete on $2 K_{2}$-free graphs.

