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Coloring

Goal
Properly color the vertices of G with the fewest number of colors.

ω(G) : size of the largest clique
χ(G) : smallest number of colors needed to properly color V (G).

ω(G) ≤ χ(G)
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Definition: perfect graphs
A graph G is perfect iff for every induced subgraph H of G , we
have ω(H) = χ(H).

Strong perfect graph theorem [CRST]
A graph is perfect iff it does not contain any odd hole and any odd
antihole.

Odd hole Odd antihole

χ(G) = ω(G) + 1
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χ-boundedness

Gyárfás generalized the notion of perfect graphs to "reasonably
colorable":
Definition: χ-bounded class
A hereditary class C of graphs is said to be χ-bounded by function
f if for every G ∈ C, χ(G) ≤ f (ω(G)).

Examples:

Perfect graphs are χ-bounded by the identity function.
Triangle-free graphs (and even graphs with fixed girth g) are
not χ-bounded by any function.
Even-hole-free graphs are χ-bounded by f : x 7→ 2x − 1.
Graphs with no odd hole of length ≥ k are χ-bounded by an
exponential function [Chudnovsky, Scott, Seymour, Spirkl].
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Coloring 2K2-free graphs

2K2

Question [Gyárfás 87]
What is the order of magnitude of the smallest χ-binding function
for 2K2-free graphs?

Best upper bound: O(ω2). [Wagon 80]
Best lower bound: R(C4,Kω+1)

3 which is Ω(ω1+ε) for some ε > 0
[Chung 80]

Question: Close the gap?
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Question: For which subclasses is there
a linear χ-binding function?

No for (2K2, 3K1)-free graphs [1]
χ(G) ≤ b 3ω(G)

2 c for (2K2,P5)-free graphs and this bound is
tight [4]

a ω + c (for some constant c) χ-binding function?
Yes for (2K2,K5 − e)-free graphs [3]

a ω + 1 χ-binding function?
Yes for (2K2,K4 − e)-free graphs [2]
Yes for (2K2,C4)-free graphs

1 Brause, Randerath, Schiermeyer, Vumar, BGW’ 2016
2 Karthick, Mishra, ArXiv 2017
3 Karthick, Maffray, Graphs and Combinatorics 2016
4 Fouquet et al. Discrete Mathematics 1995
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2K2 W4

Theorem [Bousquet, L., 2018]
(2K2,W4)-free graphs are ω(G) + 1 colorable, and this bound is
tight (on a C5 for example).

Best previous bound [Brause, Randerath, Shiermeyer, Vumar 2016]:
5ω + 5
Main idea of the proof
Study carefully the structure of (2K2,W4)-free graphs to know how
vertices can be linked with one another.
⇒ Once structure is known, it is easy to identify the largest clique
and to give a proper coloring.
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Classical techniques

We may assume that G is twin-free :

or even weak-free: @u 6= v s.t.
N(u) ⊆ N(v).

u

v

N(u) = N(v) V (G) \N(v)

twins
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Classical techniques

We may assume that G is twin-free or even weak-free: @u 6= v s.t.
N(u) ⊆ N(v).

u

v

V (G) \N(v)

u is weak

N(u) ⊆ N(v)
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Odd holes and antiholes

Case A: G is perfect

→ χ(G) = ω(G)

Case B: G contains a C7

Case C: G contains a C5

Antihole of length ≥ 9

2K2

Hole of length ≥ 7

W4
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Odd holes and antiholes

Case A: G is perfect → χ(G) = ω(G)
Case B: G contains a C7

Case C: G contains a C5

Antihole of length ≥ 9

2K2

Hole of length ≥ 7

W4
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Case B: G contains a C7

1

2 2

3

3
4

1

4 4

may or may not exist

ω = 3, χ = 4
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Case C: G contains a C5
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Case C: G contains a C5

Type 5 : T5
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Case C: G contains a C5

Type 4 :
⋃

i T i
4

i
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Case C: G contains a C5

i

Type 3 :
⋃

i T i
3
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Case C: G contains a C5

Type 2 :
⋃

i T i
2

i
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Case C: G contains a C5

Type 1 : ∅
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Case C: G contains a C5

Type 0 : stable set
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A few facts on types of vertices

About T2:

T i
2 T0
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A few facts on types of vertices

Observation
If a and b are non-adjacent vertices of G , then N(a) ∩ N(b) is the
disjoint union of a clique and a stable set (either of which can be
empty).

N(a) ∩N(b)

a b
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Lemma: Contrapositive
If N(a) ∩ N(b) contains an induced P3, then ab ∈ E .

From this we deduce that:
for each i , T5 ∪ T i

4 is a clique
for each i , T i

4 ∪ T i+1
4 is a clique

Moreover: T i
4 and T i+2

4 cannot be both non empty.

⇒ T4 is reduced to T i
4 ∪ T i+1

4 for some i , and must be a clique.
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Three cases when G contains a C5

Case C.1: G contains a vertex of type 5

Case C.2: G contains a vertex of type 4 and no vertex of type 5

Case C.3: G contains no vertex of type 4 or 5
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Case C.1: G contains a vertex of type 5
Case C.1.1: If |T5| ≥ 2

1

2

2

1

4
5

3
1

1

1

T0

possible edges

between T0 and T5

no vertex of type 2, 3, 4

ω = |T5| + 2 = χ− 1

T5 is a clique

of size ≥ 2
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Case C.1: G contains a vertex of type 5
Case C.1.2: If |T5| = 1

1

3

2

4

y

H2

2

2

1

4

4

33
1

1

1

T0

ω = 3, χ = 4single T5

inside: singleton T i3
for each i, or empty

possible edges

between T0 and T5

no vertex of type 2, 4
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Case C.2: G contains a vertex of type 4 and no vertex of
type 5

We know that T4 = T i
4 ∪ T i+1

4 for some i, and it is a clique.
Case C.2.1: Both T i

4 and T i+1
4 are non-empty

T i
4

max clique

T i+1
4

T0

possible edges be-
tween T3∪T4 and T0

ω = |T4|+ 2 = χ− 1

no vertex of type 2, 3
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Case C.2: G contains a vertex of type 4 and no vertex of
type 5

We know that T4 = T i
4 ∪ T i+1

4 for some i, and it is a clique.
Case C.2.2: T4 = T i

4

T0

possible edges be-
tween T3∪T4 and T0

T i
4

K

S
y

T i
3

max clique
ω = |T4|+ |K|+ 2 = χ− 1

no vertex of type 2, 3
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Case C.3: G contains no vertex of type 4 or 5

Trouble is coming!
T2 might now be non-empty, and might misbehave.

T i
2

The way we’d like T i
2 to behave: just like vertex i of the cycle

T2 must be anticomplete to T0 otherwise 2K2

T2 must be an stable set otherwise 2K2

T2 must be complete to T i+1
2 ∪ T i−1

2 otherwise 2K2

T i+1
2 T i−1

2

T i−2
2T i+2

2

TRUE

TRUE

TRUE

T2 must be anticomplete to T i+2
2 ∪ T i−2

2?
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T i+1
2 T i−1

2

T i−2
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2

TRUE

TRUE

TRUE

T2 must be anticomplete to T i+2
2 ∪ T i−2

2

The way we’d like T i
2 to behave: just like vertex i of the cycle

FALSE

If such an edge exists, we say that T i
2 is bad
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We choose the outer 5-cycle in order to minimize |T2|.

Lemma
If T i

2 contains a bad vertex, then T i
3 cannot be empty.
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Case C.3.1: T2 is empty, and non-empty T j
3 are consecutives

1

2

3

4

3

3

3

3

3

1

1 1

1

1

2 2

2

24

ω = 3, χ = 4 ω = 3 = χ
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Case C.3.2: T2 is non-empty, and at most one T j
3 is non-empty

ω = 3, χ = 4

∅

T i2 bad
T0
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Case C.3.3: Two non-consecutive T j
3 are empty

ω = 3, χ = 4

T i2 may be bad

T0
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Algorithms

Following the outline of the proof, we also obtain algorithms:
Theorem [Bousquet, L. 2018]
In (2K2,W4)-free graphs, we can compute in polynomial time:

a clique of maximum size, and
an optimal coloring with ω(G) or ω(G) + 1 colors.

Note: it is known by previous results that

The coloring problem is NP-complete on 2K2-free graphs
(even (2K2, net)-free graphs)
The max clique problem is NP-complete on 2K2-free graphs.

Thank you for your attention!
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