
Master 2 Internship report

Quasi-P versus P

Aurélie Lagoutte

Supervised by Stéphan Thomassé

From March to July 2012

Team MC2, LIP, ENS Lyon

46, allée d'Italie

69 007 LYON

Abstract

This report studies problems coming from three di�erent domains of theoretical com-

puter science: Clique versus Independent set in communication complexity, the Alon-Saks-

Seymour conjecture in graph coloring and the stubborn problem in constraint satisfaction

problem. Each problem admits a quasi-polynomial size solution, meaning of size nlogn

where n is the parameter, and the problem is to �nd a polynomial size solution. We prove

an equivalence theorem between the existence of a polynomial solution for every problem.

We study further the Clique versus Independent set problem on two particular classes of

graphs: random graphs and split-free graphs, for which we �nd a polynomial size solution.



1 Introduction

This report links problems coming from three di�erent domains of theoretical computer science.
Let us make a brief overview of each domain in the light of the problems under study. The goal
is to give some context and intuition, while formal de�nitions will be given later.

Communication complexity and the Clique-Stable Set separation. Yannakakis intro-
duced in [23] the following communication complexity problem, called CL−IS: given a publicly
known graph Γ on n vertices, Alice and Bob agree on a protocol, then Alice is given a clique and
Bob is given a stable set. They do not know which clique or which stable set was given to the
other one, and their goal is to decide whether the clique and the stable set intersect or not, by
minimizing the worst-case number of exchanged bits. Note that the intersection of a clique and
a stable set is at most one vertex. In the deterministic version, Alice and Bob send alternatively
messages one to each other, and the minimization is on the number of bits exchanged between
them. It is a long standing open problem to prove a O(log2 n) lower bound for the deterministic
communication complexity. In the non-deterministic version, for b ∈ {0, 1}, an all powerful
prover sends a certi�cate in order to convince both Alice and Bob that the result is b. Then,
Alice and Bob exchange one �nal bit, saying whether they agree or disagree with the certi�cate.
The aim is to minimize the size of the certi�cate.

In this particular setting, a certi�cate proving that the clique and the stable set intersect
is just the name of a vertex in the intersection. Such a certi�cate has clearly a logarithmic
size. Convincing Alice and Bob that the clique and the stable set do not intersect is much more
complicated. A certi�cate can be a partition of the vertices into two parts such that the whole
clique is included in the �rst part, and the whole stable set is included in the second part. Such
a partition is called a cut that separates the clique and the stable set. A family of m cuts such
that for every clique and for every stable set, there is a cut in the family that separates the
clique and the stable set is called a CS-separator. Observe that Alice and Bob can agree on a
CS-separator at the beginning, and then the prover just sends the name of a cut that separates
the clique and the stable set: the certi�cate has size log2m. Hence if there is a CS-separator of
size polynomial in n, one can ensure a non-deterministic certi�cate of size O(log2 n).

Yannakakis proved that there is a O(log2 n) certi�cate for the CL−IS problem if and only if
there is a CS-separator of polynomial size. The existence of such a CS-separator is called in the
following the clique-stable set separation problem. It appears from a geometric problem which
was studied both by Yannakakis [23] and by Lovász [16]. The question is to determine if the stable
set polytope of a graph is the projection of a polytope in higher dimension, with a polynomial
number or facets (called extended formulation). The existence of such a polytope in higher
dimension implies the existence of a polynomial CS-separator for the graph. Moreover, they
proved that the answer is positive for several subclasses of perfect graphs, such as comparability
graphs and their complements, chordal graphs and their complements, and t-perfect graphs
which are a generalization of series-parallel graphs. The existence of an extended formulation
for general graphs has recently been answered negatively by Fiorini et al. [8].

Constraint satisfaction problem and the stubborn problem. The complexity of the
so-called list-M partition problems has been widely studied in the last decades (see [20] for an
overview). M stands for a �xed k×k symmetric matrix �lled with 0, 1 and ∗ as illustrated on Fig.
1. The input is a graph G = (V,E) together with a list assignment L : V → P({A1, . . . , Ak}) and
the question is to determine whether the vertices of G can be partitioned into k sets A1, . . . , Ak
respecting two types of requirements. The �rst one is given by the list assignments, that is to
say v can be put in Ai only if Ai ∈ L(v). The second one is described in M , namely: if Mi,i = 0
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0 ∗ 0 ∗
∗ 0 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ 1


Figure 1: Matrix M for the stubborn problem.

(resp. Mi,i = 1), then Ai is a stable set (resp. a clique), and ifMi,j = 0 (resp. Mi,j = 1), then Ai
and Aj are completely non-adjacent (resp. completely adjacent). If Mi,i = ∗ (resp. Mi,j = ∗),
then Ai can be any set (resp. Ai and Aj can have any kind of adjacency).

Feder et al. ([7], [6]) proved a quasi-dichotomy theorem. The list-M partition problems are
classi�ed between NP-complete and quasi-polynomial time solvable (i.e. time O(nc logn) where c
is a constant). Moreover, many investigations have been made about small matrices M (k ≤ 4)
to get a dichotomy theorem, meaning a classi�cation of the list-M partition problems between
polynomial time solvable and NP-complete. Cameron et al. [3] reached such a dichotomy for
k ≤ 4, except for one special case (and its complement) then called the stubborn problem (see Fig.
1 for the corresponding matrix), which remained only quasi-polynomial time solvable. Cygan et
al. [4] closed the question by �nding a polynomial time algorithm solving the stubborn problem.
More precisely, they found a polynomial time algorithm for 3-Compatible Coloring, which
was introduced in [5] and said to be no easier than the stubborn problem. 3-Compatible Col-
oring has also been introduced and studied in [14] under the name Adapted List Coloring,
and was proved to be a model for some strong scheduling problems.

These two problems under study are de�ned in the following way:

3-Compatible Coloring Problem (3-CCP)
Input: An edge coloring fE of the complete graph on n vertices with 3 colors {A,B,C}.
Question: Is there a coloring of the vertices with {A,B,C}, such that no edge has the same
color as both its endpoints?

Stubborn Problem

Input: A graph G = (V,E) together with a list assignment L : V → P({A1, A2, A3, A4}).
Question: Can V be partitioned into four sets A1, . . . , A4 such that A4 is a clique, both A1

and A2 are stable sets, there is no edge between A1 and A3, and each vertex v belongs to Ai
only if Ai ∈ L(v)?

Graph coloring and the Alon-Saks-Seymour conjecture. Given a graph G, the bipartite
packing, denoted by bp, is the minimum number of edge-disjoint complete bipartite graphs
needed to partition the edges of G. The Alon-Saks-Seymour conjecture [13] states that if a
graph has bipartite packing k, then its chromatic number χ is at most k+ 1. It is inspired from
the Graham Pollak theorem [10] which states that bp(Kn) = n − 1, and the conjecture has
interested several authors ([19],[9]). Huang and Sudakov found in [12] a counterexample to the
Alon-Saks-Seyour conjecture, twenty-�ve years after its statement. Actually they proved that
there is an in�nite family of graphs for which χ ≥ bp6/5. The Alon-Saks-Seymour conjecture
can now be restated as the polynomial Alon-Saks-Seymour conjecture: is the chromatic number
polynomially upper bounded in terms of bp? Moreover, Alon and Haviv [1] observed that a
gap between χ and bp such as Huang and Sudakov proved, implies for the Clique-Stable Set
separation problem a lower bound of n6/5. This in turns implies a 6/5 log2(n) − O(1) lower
bound on the non-deterministic communication complexity of CL− IS when the clique and the
stable set do not intersect.
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A generalization of the bipartite packing of a graph is the t-biclique number, denoted by
bpt. It is the minimum number of complete bipartite graphs needed to cover the edges of the
graph such that each edge is covered at most t times. It was introduced by Alon [17] to model
neighborly families of boxes, and the most studied question so far is �nding tight bounds for
bpt(Kn).

Contribution The Clique-Stable set separation problem will be considered as our reference
problem, since it seems the easiest to handle and to work with. Our main result states equivalence
between the previously mentioned problems.

More precisely, we start in section 3 by proving that there is a polynomial CS-separator for
two classes of graphs: random graphs and split-free graphs. The proof for random graphs is
based on random cuts. For split-free graphs, it is based on Vapnik-Chervonenkis-dimension.
The interest is that random graphs seem totally unstructured, while on the contrary split-free
graph have strong structure properties.

In section 4, we highlight links between the clique-stable set separation problem and both
the stubborn problem and 3-CCP. The quasi-dichotomy theorem for list-M partitions proceeds
by covering all the solutions by O(nlogn) particular instances of 2-SAT, called 2-list assignments.
A natural extension would be a covering of all the solutions with a polynomial number of 2-list
assignments. We prove that the existence of a polynomial covering of all the maximal solutions
(to be de�ned later) for the stubborn problem is equivalent to the existence of such a covering
for all the solutions of 3-CCP, which in turn is equivalent to the clique-stable set separation
problem.

In section 5, we extend Alon and Haviv's observation and prove the equivalence between then
polynomial Alon-Saks-Seymour conjecture and the Clique-Stable separation. It follows from an
intermediate result which is also interesting in itself: for every integer t, the chromatic number
χ can be bounded polynomially in terms of bp if and only if it can be bounded polynomially
on bpt.

2 De�nitions

Let G = (V,E) be a graph and k be an integer. An edge uv ∈ E links its two endpoints u and
v. The neighborhood N(x) of x is the set of vertices y such that xy ∈ E. The non-neighborhood
NC(x) of x is V \(N(x)∪{x}). For oriented graphs, N+(x) (resp. N−(x)) denote the outcoming
(resp. incoming) neighborhood of x, i.e. the set of vertices y such that xy ∈ E (resp. yx ∈ E).
The subgraph induced by X ⊆ V denoted by G[X] is the graph with vertex set X and edge set
E ∩ (X × X). A clique of size n, denoted by Kn, is a complete induced subgraph. A stable
set is an induced subgraph with no edge. Note that a clique and a stable set intersect on at
most one vertex. Two subsets of vertices X,Y ⊆ V are completely adjacent if for all x ∈ X,
y ∈ Y , xy ∈ E. They are completely non-adjacent if there are no edge between them. A graph
G = (V,E) is split if V = V1 ∪ V2 and the subgraph induced by V1 is a clique and the subgraph
induced by V2 is a stable set. A vertex-coloring (resp. edge-coloring) of G with a set Col of k
colors is a function fV (resp. fE) from V (resp. E) to Col.

A graph G is bipartite if V can be partitioned into (U,W ) such that both U and W are
stable sets. Moreover, G is complete if U and W are completely adjacent. An oriented bipartite
graph is a bipartite graph together with an edge orientation such that all the edges go from U to
W . A hypergraph H = (V,E) is a generalization of a graph and is composed of a set of vertices
V and a set of hyperedges E ⊆ P(V ).
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3 Clique-Stable Set separation conjecture

The communication complexity problem CL− IS can be formalized by a function f : X ×Y →
{0, 1}, where X is the set of cliques and Y the set of stable sets. Alice is given a clique x, Bob
is given a stable set y, and then f(x, y) = 1 if and only if x and y intersect. It can also be
represented by a |X| × |Y | matrix M with Mx,y = f(x, y). As previously mentioned, we study
the non-deterministic version, where for b ∈ {0, 1}, an all powerful prover sends a certi�cate of
size N b(f) in order to convince both Alice and Bob that the value of f is b. Then, Alice and
Bob exchange one �nal bit, saying whether they agree or disagree with the certi�cate. The aim
is to minimize N b(f) in the worst case.

The best upper bound so far on N0(f) is O(log2(n)) [23], which is actually a bound on the
deterministic communication complexity.

It is known in theory of communication complexity [15] that, for general f , N b(f) =⌈
log2C

b(f)
⌉
where Cb(f) is the minimum number of monochromatic combinatorial rectangles

needed to cover the b-inputs of the communication matrix M (a monochromatic combinatorial
rectangle is a set of rows and columns such that the matrix restricted to this set of rows and
this set of columns is entirely �lled by b). One can observe that a monochromatic combinatorial
rectangle that cover some 0-inputs of M corresponds to a cut that separates the cliques and the
stable sets involved in the rectangle. Thus �nding the minimum N0(f) is equivalent to �nding
the minimum number of cuts needed to separate all the cliques and the stable sets. In particular,
there is a O(log n) certi�cate for the CL− IS problem if and only if there is a CS-separator of
polynomial size.

A cut is a pair (A,B) such that A ∪ B = V and A ∩ B = ∅. It separates a clique C and a
stable set S if C ⊆ A and S ⊆ B. Note that a clique and a stable set can be separated if and
only if they do not intersect. Let CG be the set of cliques of G and SG be the set of stable sets
of G. We say that a family F of cuts is a CS-separator if for all (C, S) ∈ CG ×SG which do not
intersect, there exists a cut in F that separates C and S.

Conjecture 1. (Clique-Stable Set separation Conjecture) There is a polynomial Q, such that
for every graph G on n vertices, there is a CS-separator of size at most Q(n).

Proposition 2. Conjecture 1 holds if and only if a polynomial family F of cuts separates all
the maximal (in sense of inclusion) cliques from the maximal stable sets that do not intersect.

Proof. First note that one direction is direct. Let us prove the other one. Assume F is a
polynomial family that separates all the maximal cliques from the maximal stable sets that do not
intersect. Let Cut1,x be the cut (N(x)∪x, V \{N(x), x}) and Cut2,x be the cut (N(x), V \N(x)).
Let us prove that F ′ which is the family F together with the families Cut1,x and Cut2,x for all
x is a CS-separator.

Let (C, S) be a pair of clique and stable set. Extend C and S by adding vertices to get a
maximal clique C ′ and a maximal stable set S′. Either C ′ and S′ do not intersect, and there is
a cut in F that separate C ′ from S′ (thus C from S). Or C ′ and S′ intersect in x (recall that a
clique and a stable set intersect on at most one vertex): if x ∈ C, then Cut1,x separates C from
S, otherwise Cut2,x does.

Consequently, in the following, we will only focus on separating the maximal cliques from
the maximal stable sets. In this section, we study the Clique-Stable set separation conjecture
on random graphs and split-free graphs.
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3.1 Random graphs

Random graphs are a typical example of unstructured graphs, hence they appear as a natural
candidate for a counterexample to the Clique-Stable set conjecture. However, the size of their
cliques and stable sets will enable some random cuts to separate them. Let n be a positive integer
and p ∈ [0, 1]. Several models of random graphs have been studied [2], and we will work on the
Erd®s-Rényi model. The random graph G(n, p) is a probability space over the set of graphs on
the vertex set {1, . . . , n} determined by Pr[ij ∈ G] = p, with these events mutually independent.
We say that G(n, p) has clique number ω if ω satis�es E(number of cliques of size ω) = 1. We
de�ne similarly the independent number of G(n, p). An event E occurs with high probability if
the probability of this event tends to 1 when n tends to in�nity.

A family F of cuts on a graph G with n vertices is a complete (a, b, n)-separator if for every
pair (A,B) of subsets of vertices with |A| ≤ a, |B| ≤ b, there exists a cut (U, V \ U) ∈ F
separating A and B, namely A ⊆ U and B ⊆ V \ U . We say that G(n, p) has a polynomial
complete (a, b, n)-separator if there exists a polynomial P such that for all p ∈ [0, 1], there exists
a complete (a, b, n)-separator of size P (n) in G(n, p) with high probability.

Theorem 3. G(n, p) has a polynomial complete (ω, α, n)-separator where ω and α are respec-
tively the clique number and the independent number of G(n, p).

Proof. In the following, logb denotes the logarithm to base b, and log denotes the logarithm to
base 2. Without loss of generality, we assume p = 1 − 2−2 logn/a(n), where a(n) is a function
of n. Let p′ = 1 − p, b = 1/p and b′ = 1/p′. The independence number and clique number of
G(n, p) are given by the following formulas, depending on p (see [2]):

ω = 2 logb(n)− 2 logb(logb n) + 2 logb(e/2) + 1 + o(1)
α = 2 logb′(n)− 2 logb′(logb′ n) + 2 logb′(e/2) + 1 + o(1)

Draw a random partition (V1, V2) where each vertex is put in V1 independently from the
others with probability p. Let (C, S) be a pair of clique and stable set of the graph. There
are at most 4n such pairs. The probability that C ⊆ V1 and S ⊆ V2 is at least pω(1 − p)α.
Assume for a moment that pω(1 − p)α ≥ 1/n6. Then (C, S) is separated by at least 1/n6 of
all the partitions. By double counting, there exists a partition that separates at least 1/n6 of
all the pairs. We delete these separated pairs, and there remains at most (1− 1/n6) · 4n pairs.
The same probability for a pair (C, S) to be cut by a random partition still holds, hence we can
iterate the process k times until (1 − 1/n6)k · 4n ≤ 1. This is satis�ed for k = 2n7 which is a
polynomial in n. Thus there is a complete (α, ω, n)-separator of size polynomial in n.

The proof that pω(1− p)α ≥ 1/n6 is detailed in Appendix A and uses Taylor series compu-
tation. For simplicity, we only show here the case when p = 1/2. Then :

• ω = 2 log(n) + o(log n)

• α = 2 log(n) + o(log n)

Thus pω(1− p)α = 1/24 logn+o(logn) = n4+o(1).

Note here that no optimization was made on the constant of the polynomial. Some re-
�nements in the proof can lead to a complete (ω, α, n)-separator of size O(n5+ε). Moreover,
an interesting question would be a lower bound on the constant of the polynomial needed to
separate the cliques and the stable sets in random graphs, in particular for the special case
p = 1/2.
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Figure 2: A net

3.2 Graph classes: the case of split-free graphs.

A graph Γ is called split if it is the union of a clique and a stable set. A graph G = (V,E) has
an induced Γ if there exists X ⊆ V such that the induced graph G[X] is isomorphic to Γ. We
denote by CΓ the class of graph with no induced Γ. For instance, if Γ is the split graph described
on Fig. 2 and called a net, then CΓ is the class of net-free graphs and contains comparability
graphs.

Let us �rst state some de�nitions concerning hypergraphs and VC-dimension. Let H =
(V,E) be a hypergraph. The transversality τ(H) is the minimum cardinality of a subset of
vertices intersecting each hyperedge. The transversality corresponds to an optimal solution of
the following integer linear program.

Objective function: min
∑
x∈V

w(x)

Subject to:

• for all x ∈ V , w(x) ∈ {0, 1}.

• for all e ∈ E, ∑x∈ew(x) ≥ 1.

The fractional transversality τ∗ is the fractional relaxation of the above linear programming.
The �rst condition is then replaced by: for all x ∈ V , 0 ≤ w(x) ≤ 1. Note that removing the
constraint w(x) ≤ 1 for all x ∈ V does not change the solution as we want to minimize the
objective function. Indeed if w(y) > 1 for some y ∈ V in a feasible solution w, getting w(y)
down to 1 will not violate any constraint, and will reduce strictly the objective function.

The Vapnik-Chervonenkis dimension or VC-dimension of a hypergraph H = (V,E) is the
maximum cardinality of a set of vertices A ⊆ V such that for every B ⊆ A there is an edge e ∈ E
so that e∩A = B. The following bound due to Haussler and Welzl [11] links the transversality,
the VC-dimension and the fractional transversality.

Lemma 4. Every hypergraph H with VC-dimension d satis�es

τ(H) ≤ 16dτ∗(H) log(dτ∗(H)).

Let us introduce the dual measure of VC-dimension. A set T of hyperedges forms a complete
Venn diagram is for all T ′ ⊆ T , there exists a vertex v such that v ∈ e if and only if e ∈ T ′.
The dual Vapnik-Chervonenkis dimension (dual VC-dimension for short) of H is the maximum
size of a complete Venn diagram in H. In the remaining of the report, we only consider hyper-
graphs which are neighborhood hypergraphs, i.e. hypergraphs so that the hyperedges are the
neighborhoods of vertices in a given graph G. In this context, the VC-dimension and the dual
VC-dimension of a hypergraph coincide, since for all vertices x and y, x ∈ N(y) if and only if
y ∈ N(x). Consequently, for simplicity, in the following the dual VC-dimension will be called
VC-dimension.
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Theorem 5. Let Γ be a �xed split graph. Then the clique-stable set conjecture is veri�ed on CΓ.

Proof. The vertices of Γ are partitioned into (V1, V2) where V1 is a clique and V2 is a stable set.
Let ϕ = max(|V1|, |V2|). Let t be the constant 32ϕ(log(ϕ) + 1). Let G = (V,E) ∈ CΓ and let F
be the following family of cuts. For every subset {x1, . . . , xr} of at most t vertices which is a
clique (resp. a stable set), take U = ∩1≤i≤rN(xi) (resp. U = ∪1≤i≤rN(xi)), and put (U, V \U)
in F . Since each member of F is de�ned with a set of at most t vertices, the size of F is at most
O(nt). Let us now prove that F is a CS-separator.

Let (C, S) be a pair of maximal clique and stable set. We prove that (C, S) is separated by
F . Build an oriented graph B with vertex set C ∪ S. For all x ∈ C and y ∈ S, put the arc xy if
xy ∈ E, and put the arc yx otherwise (see Fig. 3(b)). We use the following variant of Farkas'
lemma, from which we derive Lemma 7:

Lemma 6 (Farkas' lemma [21]). Let A be a m× n matrix and b ∈ Rm. Then either:

1. There is a w ∈ Rn such that Aw ≤ b,

or 2. There is a y ∈ Rm such that y ≥ 0, yA = 0 and yb < 0.

Lemma 7. For all oriented graph G = (V,E), there exists a weight function w : V → [0, 1] such
that w(V ) = 1 and for all vertex x, w(N+(x)) ≥ w(N−(x)).

Proof. Let us de�ne a (2n+ 1)× n matrix A obtained from the vertical concatenation of three
matrices. First, the transpose tAdj(G) of the adjacency matrix of G which will ensure the
constraints of type w(N+(x)) ≥ w(N−(x)). Second, the matrix −Idn which will ensure the
constraints of type w(x) ≥ 0. And �nally the auxiliary line vector (−1, . . . ,−1) ∈ Rn. De�ne
b = t(0, . . . , 0,−1) ∈ R2n+1.

Then apply lemma 6. Either case one occurs and then Aw ≤ b: as expected, we get
w(N+(x)) ≥ w(N−(x)) for all x ∈ V thanks to tAdj(G). Thanks to the other lines, we get
w(x) ≥ 0 for all x and w(V ) ≥ 1. We conclude by rescaling the weight function with a factor
1/w(V ).

Otherwise, case two occurs and there is y ∈ R2n+1 : let w ∈ Rn be the projection of y
on the �rst n coordinates. Then for all j ∈ {1, . . . , 2n + 1}, yj ≥ 0 so w(x) ≥ 0 for all x;
moreover, since yA = 0 then for all xi ∈ V , we have w(N+(x))−w(N−(x))− yn+i − y2n+1 = 0
hence w(N+(x)) ≥ w(N−(x)). Since yb < 0, then y2n+1 > 0 which ensures w(V ) > 0: indeed,
otherwise for all x, w(x) = 0 and the previous equality becomes y2n+1 = −yn+i ≤ 0, which is a
contradiction. We conclude as before by rescaling with a factor 1/w(V ).

Corollary 8. In B, there exists either:

(i) a weight function w : C → R+ such that w(C) = 2 and for all vertex x ∈ S,w(N+(x)) ≥ 1.

or (ii) a weight function w : S → R+ such that w(S) = 2 and for all vertex x ∈ C,w(N+(x)) ≥ 1.

Proof. Let w : V → [0, 1] be a weight function satisfying conditions of Lemma 7. Since w(V ) = 1,
either w(C) > 0 or w(S) > 0. Assume w(C) > 0 (the other case is handled symmetrically).
Take a new weight function de�ned by w′(x) = 2w(x)/w(C) if x ∈ C, and 0 otherwise. Then
for all x ∈ S, on one hand w′(N+(x)) ≥ w′(N−(x)) by extension of the property of w, and on
the other hand, N+(x) ∪ N−(x) = C by construction of B. Thus w′(N+(x)) ≥ w′(C)/2 = 1
since w′(C) = 2.

In the following, let assume we are in case (i). Case (ii) is handled symmetrically by switching
C (resp. neighborhood) and S (resp. non-neighborhood).

Let us now build H a hypergraph with vertex set C. For all x ∈ S, build the hyperedge
C \NG(x), that is the complementary in C of the neighbors of x (see Fig. 3(c)).
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C
S

(a) A clique C and a stable S in G.

C
S

(b) Graph B build from C and S. Edges in G
are replaced by forward arcs, and non-edges
are replaced by backward arcs.

C
S

(c) Hypergraph H where hyperedges are
built from the non-neighborhood of vertices
from S.

Figure 3: Illustration of proof of Theorem 5. For more visibility in 3(b), forward arcs are drawn
in blue and backward arcs in yellow.

Lemma 9. The hypergraph H has fractional transversality τ∗ ≤ 2.

Proof. Let w be the weight function given by Corollary 8. Let h be a hyperedge built from the
non-neighborhood of x ∈ S. Recall that this non-neighborhood is precisely N+(x) in B, then
we have: ∑

y∈h
w(y) = w(N+(x)) ≥ 1.

Thus w satis�es the constraints of the fractional transversality, and w(C) ≤ 2, i.e. τ∗ ≤ 2.

Lemma 10. H has VC-dimension bounded by 2ϕ− 1.

Proof. Assume that there is a complete Venn-diagram D of size 2ϕ in H. The aim is to exploit
the shattering to �nd an induced Γ, which builds a contradiction. Let s1, . . . sϕ, t1, . . . , tϕ be
the hyperedges composing D. In the following, we will abuse notation by calling si (resp. ti)
both the hyperedge and the vertex of S whose non-neighborhood is precisely the hyperedge si
(resp. ti). Recall that the forbidden split graph Γ is the union of a clique V1 = {x1, . . . , xr} and
a stable set V2 = {y1, . . . , yr′} (with r, r′ ≤ ϕ). Let xi ∈ V1 and let {yi1 , . . . , yik} = NΓ(xi) ∩ V2

be the set of its neighbors in V2.
Consider S = {si1 , . . . , sik}∪ {ti} (possible because |V1|, |V2| ≤ ϕ). As D is a complete Venn

diagram, there exists x′i ∈ C such that x′i ∈ ∩s∈Ss and x′i /∈ ∪s′ /∈Ss′, meaning that the set of
hyperedges containing x′i is precisely S. Now, forget about the existence of t1, . . . , tϕ, and look
at the subgraph of G induced by x′1, . . . , x

′
r and s1, . . . , sr′ : x

′
i has exactly the same shape of

neighborhood in {s1, . . . , sr′} as the neighborhood of xi in V2. Thus we have found an induced
Γ, which is impossible.

8



(a) An instance of 3-
CCP

{A,C}

{A,B}

{A,B}
(b) A solution to the instance
(vertex coloring) together with
a compatible 2-list assignment:
each vertex has a 2-constraint.

{A,B}

{A,C}

{C,B}
(c) Another solution to the in-
stance with a compatible 2-list as-
signment.

Figure 4: Illustration of de�nitions. Color correspondence: A=red ; B=blue ; C=green. Both
2-list assignments together form a 2-list covering because any solution is compatible with at
least one of them.

Note that the presence of t1, . . . , tϕ is useful in case where two vertices of V1 are twins with
respect to V2, meaning that their neighborhoods intersected with V2 are the same. Then, the
complete Venn diagram does not ensure that at least two vertices are contained in exactly the
set of hyperedges S = {si1 , . . . , sik}, and no more. In fact, this remark leads us to assert that
the VC-dimension of H is bounded by ϕ+ logϕ. Indeed, we need only t1, . . . , tlogϕ in addition
to s1, . . . , sϕ: for xi ∈ V1, code i in binary over logϕ bits and de�ne S to be the union of
{si1 , . . . , sik} with the set of tj such that the j-th bit is one. This ensures that no two xi, xi′

have the same S.
Applying Lemmas 4, 9 and 10 to H, we obtain

τ(H) ≤ 16dτ∗(H) log(dτ∗(H)) ≤ 32ϕ(log(ϕ) + 1) = t.

Hence τ is bounded by t which only depends on H. There must be x1, . . . , xτ ∈ C such that each
hyperedge of H contains at least one xi. Thus for all y ∈ S, there is an i such that xi ∈ NC(y).
Consequently, S ⊆ ∪1≤i≤tN

C
G (xi). Moreover, C ⊆ U = ∩1≤i≤tNG(xi)∪{xi} since x1, . . . , xτ are

in the same clique C. This means that the cut (U, V \U) ∈ F built from the subclique x1, . . . xτ
separates C and S.

When case (ii) of Corollary 8 occurs, there are τ vertices x1, . . . , xτ ∈ S such that for all
y ∈ C, there exists xi ∈ N(y). Thus C ⊆ U = ∪1≤i≤tNG(xi) and S ⊆ ∪1≤i≤tN

C
G (xi). The cut

(U, V \ U) ∈ F built from the stable set x1, . . . xτ separates C and S.

4 3-CCP and the stubborn problem

The following de�nitions are illustrated on Fig. 4 and deal with list colorings. Formally, let G
be a graph and Col a set of k colors. A set of possible colors, called constraint, is associated
to each vertex. A vertex has an l-constraint if its set of possible colors has size l. An l-list
assignment is a function L : V → P(Col) that give each vertex an l-constraint. A solution S
is a coloring of the vertices S : V → Col that respects some requirements depending on the
problem. We can equivalently consider S as a partition (A1, . . . , Ak) with x ∈ Ai if and only if
S(x) = Ai (note then that Ai denotes both the color and the set of vertices having this color).
An l-list assignment L is compatible with a solution S if for each vertex x, S(x) ∈ L(x). A set
of l-list assignment covers a solution S if at least one of the l-list assignment is compatible with
S.

We recall the de�nitions of 3-CCP and the stubborn problem:

9



⇒?

G A1

A2

A3

A4

Figure 5: Diagram representing the stubborn problem. Cliques are represented by hatched sets,
stable sets by dotted sets. Completely non-adjacent sets are linked by a dashed edge. Grey lines
represent edges that may or may not appear in the graph.

3-Compatible Coloring Problem (3-CCP)
Input: An edge coloring fE of Kn with 3 colors {A,B,C}.
Question: Is there a coloring of the vertices with {A,B,C}, such that no edge has the same
color as both its endpoints?

Stubborn Problem (see Fig. 5)
Input: A graph G = (V,E) together with a list assignments L : V → P({A1, A2, A3, A4}).
Question: Can V be partitioned into four sets A1, . . . , A4 such that A4 is a clique, both A1

and A2 are stable sets, A1 and A3 are completely non-adjacent, and the partition is compatible
with L?

Given an edge-coloring fE on Kn, we say that a set of 2-list assignment is a 2-list covering
for 3-CCP on (Kn, fE) if it covers all the solutions of 3-CCP on this instance. Moreover, 3-CCP
is said to have a polynomial 2-list covering if for all n and for all edge-coloring fE , there is a
2-list covering on (Kn, fE) whose cardinality is bounded by a polynomial in n. Symmetrically,
we want to de�ne a 2-list covering for the stubborn problem. However, we will not be able to
cover polynomially all the solutions: for example on a stable set with the trivial 4-constraint on
each vertex, any partition of the vertices into three sets gives a solution (A1, A2, A3, ∅). Thus
we need a notion of maximal solutions. This notion is extracted from the notion of domination
(here A3 dominates A1) in the language of general list-M partition problem (see [7]). Intuitively,
if L(v) contains both A1 and A3 and v belongs to A1 in some solution S, we can build a simpler
solution by putting v ∈ A3 and leaving everything else unchanged. A solution (A1, A2, A3, A4)
of the stubborn problem on (G,L) is a maximal solution if no member of A1 satis�es A3 ∈ L(v).
We may note that if A3 is contained in every L(v) for v ∈ V , then every maximal solution of the
stubborn problem on (G,L) let A1 empty. Now, a set of 2-list assignments is a 2-list covering for
the stubborn problem on (G,L) if it covers all the maximal solutions on this instance. Moreover,
it is called a polynomial 2-list covering if its size is bounded by a polynomial in the number of
vertices in G.

For edge-colored graphs, an α1, ..., αk-clique is a clique for which every edge has a color in
{α1, ..., αk}. A split graph is the union of an α-clique and a β-clique. The α-edge-neighborhood
of x is the set of vertices y such that xy is an α-edge, i.e an edge colored with α. The majority
color of x ∈ V is the color which appears the most often for the edges with endpoint x (in case
of ties, we arbitrarily cut them).

In this section, we prove that the existence of a polynomial 2-list covering for the stubborn
problem is equivalent to the existence of a polynomial one for 3-CCP, which in turn is equivalent
to the existence of a polynomial CS-separator. We may observe that the existence of a polynomial
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2-list covering does not imply the polynomial solvability of the problem: indeed, such a family
may not be computable in polynomial time.

We start by justifying the interest of 2-list covering and observing that we can always �nd a
quasi-polynomial 2-list covering for 3-CCP.

Observation 11. Given a polynomial number of 2-list assignments for 3-CCP, it is possible to
decide in polynomial time if there exists a solution covered by them.

Proof. Each 2-list assignment can be translated into an instance of 2-SAT. Each vertex has a
2-constraint {α, β} from which we construct two variables xα and xβ and a clause xα∨xβ . Turn
xα to true will mean that x is given the color α. Then we need also the clause ¬xα∨¬xβ saying
that only one color can be given to x. Finally for all edge xy colored with α, we add the clause
¬xα ∨ ¬yα if both variables exists.

Theorem 12. [5] There exists an algorithm giving a 2-list covering of size O(nlogn) for 3-CCP.
By Observation 11, this gives an algorithm in time O(nlogn) which solves 3-CCP.

Proof. Let us build a tree of maximum degree n+1 and height O(log n) whose leaves will exactly
be the 2-list assignments needed to cover all the solutions. By a counting argument, such a tree
will have at most O(nlogn) leaves. Let x be a vertex, without loss of generality we can assume
that x has majority color A. The solutions are easily partitioned between those where x is given
its majority color A, and those where x is given color B or C. From this simple remark, we
can build a tree with an unlabelled root, n children each labelled by a di�erent vertex, and
an extra leave corresponding to the solutions where no vertex is colored by its majority color.
The latter forms a 2-list assignment since we forbid one color for each vertex. Each labelled
child of the root, say its label is x, will consider only solutions where x is given its majority
color A, thus x has constraint {A}. Then in every such solution, each vertex linked to x by
an A-edge will be given the color B or C. Thus we associate the 2-constraint {B,C} to the
whole A-edge-neighborhood of x. Since the graph is complete and A is the majority color, this
A-edge-neighborhood represents at least 1/3 of all the vertices. We iterate the process on the
graph restricted to unconstrained vertices, and build a subtree rooted at node x. We do so for
the other labelled children of the root. The tree is ensured to have height O(log n) because we
erase at least 1/3 of the vertices at each level.

The main result of this section is the following theorem:

Theorem 13. The following are equivalent:

1. For every graph G and every list assignment L : V → P({A1, A2, A3, A4}), there is a
polynomial 2-list covering for the stubborn problem on (G,L).

2. For every n and every edge-coloring f : E(Kn) → {A,B,C}, there is a polynomial 2-list
covering for 3-CCP on (Kn, f).

3. For every graph G, there is a polynomial CS-separator.

We decompose the proof into three lemmas, each of which describing one implication.

Lemma 14. (1⇒ 2): Suppose for every graph G and every list assignment L : V → P({A1, . . . , A4}),
there is a polynomial 2-list covering for the stubborn problem on (G,L). Then for every graph n
and every edge-coloring f : E(Kn)→ {A,B,C}, there is a polynomial 2-list covering for 3-CCP
on (Kn, f).
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Proof. Let n ∈ N, (Kn, f) be an instance of 3-CCP, and x a vertex of Kn. Let us build a
polynomial number of 2-list assignments that cover all the solutions where x is given color A.
Since the colors are symmetric, we just have to multiply the number of 2-list assignments by 3
to cover all the solutions. Let (A,B,C) be a solution of 3-CCP where x ∈ A.
Claim 15. Let x be a vertex and α, β, γ be the three di�erent colors. Let U be the α-edge-
neighborhood of x. If there is a βγ-clique Z of U which is not split, then there is no solution
where x is colored with α.

Proof. Consider a solution in which x is colored with α. All the vertices of Z are of color β or γ
because they are in the α-edge-neighborhood of x. The vertices colored with β form a γ-clique,
those colored by γ form a β-clique. Hence Z is split.

A vertex x is really 3-colorable if for each color α, every βγ-clique of the α-edge-neighborhood
of x is a split graph. If a vertex is not really 3-colorable then, in a solution, it can be colored by
at most 2 di�erent colors. Hence if Kn(V \x) has a polynomial 2-list covering, the same holds
for Kn by assigning the only two possible colors to x in each 2-list assignment.

Thus we can assume that x is really 3-colorable, otherwise there is a natural 2-constraint
on it. Since we assume that the color of x is A, we can consider that in all the following 2-list
assignments, the constraint {B,C} is given to the A-edge-neighborhood of x. Let us abuse
notation and still denote by (A,B,C) the partition of the C-edge-neighborhood of x, induced
by the solution (A,B,C). As x is really 3-colorable, Claim 15 ensures that C is a split graph
C ′ ] C ′′ with C ′ a B-clique and C ′′ a A-clique. The situation is described in Fig. 7(a). Let H
be the non-colored graph with vertex set the C-edge-neighborhood of x and there is an edge e
if and only if f(e) = B or f(e) = C (see Fig. 7(b)). Moreover, let H ′ be the non-colored graph
with vertex set the C-edge-neighborhood of x and there is an edge e if and only if f(e) = B (see
Fig. 7(c)). We consider (H,L0) and (H ′,L0) as two instances of the stubborn problem, where
L0 is the trivial list assignment that gives each vertex the constraint {A1, A2, A3, A4}.

By assumption, there exists F (resp. F ′) a polynomial 2-list covering for the stubborn
problem on (H,L0) (resp. (H ′,L0)). We construct F ′′ the set of 2-list assignment f ′′ built from
all the pairs (f, f ′) ∈ F × F ′ according to the rules described in Fig. 6 (intuition for such rules
is given in the next paragraph). F ′′ aims at being a polynomial 2-list covering for 3-CCP on the
C-edge-neighborhood of x.

The following is illustrated on Fig. 7(b) and 7(c). Let S be the partition de�ned by A1 = ∅,
A2 = C ′′, A3 = B∪C ′ and A4 = A. We can check that A2 is a stable set and A4 is a clique (the
others restrictions are trivially satis�ed by A1 being empty and L0 being trivial). In parallel,
let S ′ be the partition de�ned by A′1 = ∅, A′2 = B, A′3 = A ∪ C ′′ and A4 = C ′. We can also
check that A′2 is a stable set and A′4 is a clique. Thus S (resp. S ′) is a maximal solution for the
stubborn problem on (H,L0) (resp. (H ′,L0)) inherited from the solution (A,B,C = C ′ ] C ′′)
for 3-CCP.

Let f ∈ F (resp. f ′ ∈ F ′) be a 2-list assignment compatible with S (resp. S ′). Then f ′′ ∈ F ′′
built from (f, f ′) is a 2-list assignment compatible with (A,B,C).

Doing so for the B-edge-neighborhood of x and pulling everything back together gives a
polynomial 2-list covering for 3-CCP on (Kn, f).

Lemma 16. (2 ⇒ 3): Suppose for every n and every edge-coloring f : E(Kn) → {A,B,C},
there is a polynomial 2-list covering for 3-CCP on (Kn, f). Then for every graph G, there is a
polynomial CS-separator.
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f(v) f ′(v) f ′′(v)

A2 or A1, A2 ∗ C

A3 or A1, A3 ∗ B,C

A4 or A1, A4 ∗ A

A2, A4 ∗ A,C

A2, A3 ∗ B,C

A3, A4 A′2 or A′1, A
′
2 B

A3, A4 A′3 or A′1, A
′
3 A,C

A3, A4 A′4 or A′1, A
′
4 C

A3, A4 A′2, A
′
4 B,C

A3, A4 A′2, A
′
3 A,B

A3, A4 A′3, A
′
4 A,C

Figure 6: This table describes the rules used in proof of lemma 14 to built a 2-list assignment
f ′′ for 3-CCP from a pair (f, f ′) of 2-list assignment for two instances of the stubborn problem.
Symbol ∗ stands for any constraint. For simplicity, we write X,Y (resp. X) instead of {X,Y }
(resp. {X}).

Proof. Let G = (V,E) be a graph on n vertices. Let f be the coloring onKn de�ned by f(e) = A
if e ∈ E and f(e) = B otherwise. In the following (Kn, f) is considered as an instance of 3-CCP.
By hypothesis, there is a polynomial 2-list covering F for 3-CCP on (Kn, f). Let us prove that
we can derive from F a polynomial CS-separator C.

Let L ∈ F be a 2-list assignment. De�ne X (resp. Y , Z) the set of vertices which have
the constraint {A,B} (resp. {B,C}, {A,C}). Since no edge has color C, X is split. Indeed,
the vertices of color A form a B-clique and conversely. Given a graph, there is a linear number
of decompositions into a split graph [7]. Thus there are a linear number of decomposition
(Uk, Vk)k≤cn of X into a split graph where Uk is a B-clique. For all k, the cut (Uk ∪ Y, Vk ∪ Z)
is added in C. For each 2-list assignment we create a linear number of separators.

Let K be a clique and S a stable set of G which do not intersect. The edges of K are colored
by A, and those of S are colored by B. Then the coloration S(x) = B if x ∈ K, S(x) = A
if x ∈ S and S(x) = C otherwise is a solution of (Kn, f). Left-hand side of Fig. 8 illustrates
the situation. There is a 2-list assignment L in F which is compatible with this solution. As
before, let X (resp. Y , Z) be the set of vertices which have the constraint {A,B} (resp. {B,C},
{A,C}). Since the vertices of K are colored B, we have K ⊆ X ∪ Y (see right hand-side of Fig.
8). Likewise, S ⊆ X ∪Z. Then (K∩X,S∩X) forms a split partition of X. So, by construction,
there is a cut ((K ∩X) ∪ Y, (S ∩X) ∪ Z) ∈ C which ensures that (K,S) is separated by C.

Lemma 17. (3 ⇒ 1): Suppose for every graph G, there is a polynomial CS-separator. Then
for every graph G and every list assignment L : V → P({A1, A2, A3, A4}), there is a polynomial
2-list covering for the stubborn problem on (G,L).

Proof. Let (G,L) be an instance of the stubborn problem. By assumption, there is a polynomial
CS-separator for G.

Claim 18. If there are p cuts that separate all the cliques from the stable sets, then there are p2

cuts that separate all the cliques from the unions S ∪ S′ (where S and S′ are stable sets).

Proof. Indeed, if (V1, V2) separates C from S and (V ′1 , V
′

2) separates C from S′, then the new
cut (V1 ∩ V ′1 , V2 ∪ V ′2) satis�es C ⊆ V1 ∩ V ′1 and S ∪ S′ ⊆ V2 ∪ V ′2 .
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Constraint {B,C}
A-edge-neighbourhood

B-edge-neighbourhood

C-edge-neighbourhood

C-colored vertices

A-colored verticesB-colored vertices

C ′ C ′′

AB

x

(a) Vertex x, its A-edge-neighborhood subject to the constraint {B,C}, and
its C-edge-neighborhood separated in di�erent parts.

C ′′

AB

H

C ′

Solution to (H,L0)

A2

A4

A3

(b) Above, the graph H obtained
from the C-edge-neighborhood by
keeping only B-edges and C-edges.
Below, the solution of the stubborn
problem.

C ′′

AB

H ′

C ′

Solution to (H ′,L0)

A2

A4

A3

(c) Above, the graph H ′ obtained
from the C-edge-neighborhood by
keeping only B-edges. Below, the
solution of the stubborn problem.

Figure 7: Illustration of proof of lemma 14. Color correspondence: A=red ; B=blue ; C=green.
As before, cliques are represented by hatched sets, stable sets by dotted sets.

K

SV \ (K ∪ S)

X

Z

Y

{A, B}

{A, C}

{B, C}⇒

Figure 8: Illustration of proof of lemma 16. On the left hand-side, G is separated in 3 parts:
K, S, and the remaining vertices. Each possible con�guration of edge- and vertex-coloring
are represented. On the right-hand-side, (X,Y, Z) is a 2-list assignment compatible with the
solution. X (resp. Y , Z) has constraint {A,B} (resp. {B,C}, {A,C}). Color correspondence:
A=red ; B=blue ; C=green.
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A1

A2

A3

A4

G

constraint {A3, A4}

constr.{A2, A3} if A3 ∈ L(v)

A3 /∈ L(v)

constr.{A1, A2} otherwise

Figure 9: Illustration of proof of lemma 17. A solution to the stubborn problem together with
the cut that separates A4 from A1 ∪ A2. The 2-list assignment built from this cut is indicated
in purple.

Let F2 be a polynomial family of cuts that separate all the cliques from union of two stable
sets, which exists by Claim 18. Then for all (U,W ) ∈ F2, we build the following 2-list assignment
L′:

1. If v ∈ U , let L′(v) = {A3, A4}.

2. If v ∈W and A3 ∈ L(v), then let L′(v) = {A2, A3}.

3. Otherwise, v ∈W and A3 /∈ L(v), let L′(v) = {A1, A2}.

Now the set F ′ of such 2-list assignment L′ is a 2-list covering for the stubborn problem on
(G,L): let S = (A1, A2, A3, A4) be a maximal solution of the stubborn problem on this instance.
Then A4 is a clique and A1, A2 are stable sets, so there is a separator (U,W ) ∈ F2 such that
A4 ⊆ U and A1 ∪ A2 ⊆ W (see Fig. 9), and there is a corresponding 2-list assignment L′ ∈ F ′.
Consequently, the 2-constraint L′(v) built from rules 1 and 3 are compatible with S. Finally, as
S is maximal, there is no v ∈ A1 such that A3 ∈ L(v): the 2-constraints built from rule 2 are
also compatible with S.

Proof of theorem 13. Lemmas 14, 16 and 17 conclude the proof of Theorem 13.

5 Bipartite packing and graph coloring

The aim of this section is to prove that the polynomial Alon-Saks-Seymour conjecture is equiv-
alent to the Clique-Stable set separation conjecture. We �rst need an intermediate step using
a new version of the Alon-Saks-Seymour conjecture, called the Oriented Alon-Saks-Seymour
conjecture. Then we prove that bounding the chromatic number χ polynomially in terms of
the t-biclique number bpt is equivalent to bounding χ polynomially in terms of the bipartite
packing bp. Combining these two properties prove the statement.

5.1 Oriented Alon-Saks-Seymour conjecture

Given a graph G, the chromatic number χ(G) of G is the minimum number of colors needed
to color the vertices such that two vertices connected by an edge do not have the same color.
The bipartite packing bp(G) of a graph G is the minimum number of edge-disjoint complete
bipartite graphs needed to partition the edges of G. The Alon-Saks-Seymour conjecture states
the following.
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Conjecture 19. (Alon, Saks, Seymour) If bp(G) ≤ k, then χ(G) ≤ k + 1 .

For complete graphs it is a well-known result, due to Graham and Pollak [10]. Indeed, n− 1
edge-disjoint complete bipartite graphs are needed to partition the edges of Kn. A beautiful
algebraic proof of this theorem is due to Tverberg [22]. Conjecture 19 was disproved by Huang
and Sudakov in [12] who proved that χ ≥ k6/5 for some graphs using a construction based
on Razborov's graphs [18]. Nevertheless the existence of a polynomial bound is still open. In
the following we will consider an oriented version of the Alon-Saks-Seymour conjecture. The
oriented bipartite packing bpor(G) of a non-oriented graph G is the minimum number of oriented
complete bipartite graphs such that each edge is covered by an arc in at least one direction (it
can be in both directions), but it cannot be covered twice in the same direction.

Conjecture 20. (Oriented Alon-Saks-Seymour Conjecture) There exists a polynomial P such
that for every G, χ(G) ≤ P (bpor(G)).

Lemma 21. If the oriented Alon-Saks-Seymour conjecture is veri�ed, then the Clique-Stable set
separation conjecture is veri�ed.

Proof. Let G be a graph on n vertices. We want to separate all the pairs of cliques and stable
sets which do not intersect. Consider all the pairs (C, S) such that the clique C does not intersect
the stable set S. Construct an auxiliary graph H as follows. The vertices of H are the pairs
(C, S) and there is an edge between a pair (C, S) and a pair (C ′, S′) if and only if there is a
vertex x ∈ S∩C ′. Observe that the number of vertices of H is at most 4n. The bipartite packing
of this graph is at most the number n of vertices of G. Indeed, let Hx be the graph H restricted
to the edges for which x ∈ S ∩ C ′. Put an orientation (C, S)(C ′, S′) on these edges. Observe
that the union of the oriented graphs Hx for all x covers the graph H because if (C, S)(C ′, S′)
is an edge, then S ∩ C ′ 6= ∅. In addition, the graph Hx is a complete bipartite graph: if there
is an edge which starts in (C, S) and if there is an edge which ends in (C ′, S′) then x ∈ S and
x ∈ C ′ and �nally there is an arc (C, S)(C ′, S′). The graphs Hx and Hy cannot share an arc
because otherwise the intersection between a clique and a stable set would be at least 2 which
is impossible. Hence the oriented bipartite packing of this graph is at most n.
If the oriented Alon-Saks-Seymour conjecture is veri�ed, χ(H) < P (n). Consider a color of this
polynomial coloring. Let A be the set of vertices of this color. There is no edge between two
vertices of A, then the union of all the second components (stable sets) of the vertices of A do
not intersect the union of all the �rst components (cliques) of A. Indeed, if they intersect, there
is a clique C which intersects a stable set S, hence there is an edge which is impossible.

The union of the cliques and the union of the stable sets do not intersect, hence it de�nes
a cut which separates all the pairs of A. The same can be done for every color. Then we can
separate all the pairs (C, S) by χ(H) cuts, which is a polynomial in n if the Alon-Saks-Seymour
conjecture is veri�ed. This achieves the proof.

Lemma 22. If the Clique-Stable set separation conjecture is veri�ed, then the oriented Alon-
Saks-Seymour conjecture is veri�ed.

Proof. Let G = (V,E) be a graph with bipartite packing k. Construct an auxiliary graph H as
follows. It has k vertices which are the oriented complete bipartite graphs that cover the edges
of G. There is an edge between two pairs (A1, B1) and (A2, B2) if and only if there is a vertex
x ∈ A1 ∩ A2. Hence the complete bipartite graphs in which x appears at the left form a clique
of H (say the clique Cx associated to x) and the complete bipartite graphs for which y appears
at the right form a stable set in H (say the stable set Sy associated to y) . Indeed, it is quite
clear for the clique, and it is also true for the stable set because if y ∈ B1 ∩ B2 and there is an
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edge resulting from x ∈ A1 ∩ A2, then the arc xy is covered twice which is impossible. Note
that a clique or a stable set associated to a vertex can be empty, but this does not trigger any
problem.

By assumption there are P (k) (with P a polynomial) cuts which separate all the pairs (C, S),
in particular which separate all the pairs (Cx, Sx) for x ∈ V . We color each vertex x by the
color of the cut separating (Cx, Sx). This coloring is proper: assume there is an edge from x to
y, and that x and y are given the same color. Then there exists a bipartite graph (A,B) that
cover the edge xy, hence (A,B) is in the clique associated to x and in the stable set associated
to y, which means they intersect: no cut can separate at the same time both Cx from Sx and
Cy from Sy, because it would then separate Cx from Sy. This is impossible. Then we have a
coloring with at most P (k) colors, which is a polynomial in k.

Theorem 23. The oriented Alon-Saks-Seymour conjecture is veri�ed if and only if the Clique-
Stable set separation conjecture is veri�ed.

Proof. This is straightforward using Lemmas 21 and 22.

5.2 Generalization: t-biclique covering numbers

We study here a natural generalization of the Alon-Saks-Seymour conjecture, studied by Huang
and Sudakov in [12]. While the Alon-Saks-Seymour conjecture deals with partitioning the edges,
we relax here to a covering of the edges by complete bipartite graphs, meaning that an edge can
be covered several times. Formally, a t-biclique covering of an undirected graph G is a collection
of bipartite graphs that cover every edge of G at least once and at most t times. The minimum
size of such a covering is called the t-biclique covering number, and is denoted by bpt(G). In
particular, bp1(G) is the usual biclique partition number bp(G).

In addition to being an interesting parameter to study in its own right, the t-biclique covering
number of complete graphs is also closely related to a question in combinatorial geometry about
neighborly families of boxes. It was studied by Zaks [24] and then by Alon [17], who proved
that Rd has a t-neighborly family of k standard boxes if and only if the complete graph Kk

has a t-biclique covering of size d (see [12] for de�nitions and further details). Alon also gives
asymptotic bounds for bpt(Kk):

(1 + o(1))(t!/2t)1/tk1/t ≤ bpt(Kk) ≤ (1 + o(1))tk1/t .

Our results are concerned not only with Kk but for every graph G. It is natural to ask the
same question for bpt(G) as for bp(G), namely:

Conjecture 24 (Generalized Alon-Saks-Seymour conjecture of order t). There exists a polyno-
mial P such that for all graphs G, χ(G) ≤ P (bpt(G)).

Observation 25. A t-biclique covering is a fortiori a t′-biclique covering for all t′ ≥ t. Moreover,
the set of bpor(G) oriented bipartite graphs covering each edge at most once in each direction
can be seen as a non-oriented biclique covering which covers each edge at most twice. Hence, we
have the following inequalities:

. . . ≤ bpt+1(G) ≤ bpt(G) ≤ bpt−1(G) ≤ . . . bp2(G) ≤ bpor(G) ≤ bp1(G) .

In particular, if the generalized Alon-Saks-Seymour conjecture of order t holds, then χ(G) is
bounded by a polynomial in bpt(G) and thus by a polynomial in bp1(G), so the generalized
Alon-Saks-Seymour of order 1 holds.

We prove that the reverse is also true.
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Theorem 26. Let t ∈ N∗. The generalized Alon-Saks-Seymour conjecture of order t holds if
and only if it holds for order 1.

Before going to the proof, we need a few de�nitions: let G be a graph and let B = {B1, ..., Bk}
be a family of bipartite complete graphs which covers the edges of G. Given an edge e, the
multiplicity m(e) of e is the number of bipartite graphs which contain the edge e. We associate
a positive side and a negative side to each bipartite graph, meaning that Bi = (B+

i , B
−
i ) with

B+
i (resp. B−i ) being a stable set and referred to as the positive (resp. negative) side of Bi.

Given an edge xy, two half edges are associated to xy: (xy, x) and (xy, y). If Bi covers the edge
xy, the half edge (xy, x) is a positive (resp. negative) half edge for Bi if x is in the positive (resp.
negative) side of the bipartite graph and y in the other side. The vertex associated to the half
edge (e, x) is the vertex x. A tag is a pair consisting into a bipartite graph Bi ∈ B and a sign
(+ or −). The opposite tag of a tag is the same bipartite graph and the opposite sign. A bag is
a set of tags and two bags X and Y are opposite if for each tag in X, the opposite tag is in Y .

Proof of Theorem 26. As Observation 25 proves one direction, we focus on the other, and assume
that the generalized Alon-Saks-Seymour conjecture of order 1 holds. Let us prove the result by
induction on t, initialization for t = 1 being obvious. Let G be a graph and let B = (B1, ..., Bk)
be a t-biclique covering. Since each edge is covered by at most t bipartite graphs, each half edge
(e, x) of the graph can be represented by a bag with at most t tags, containing all the (Bi,+)
such that (e, x) is a positive half edge in Bi, and all the (Bj ,−) such that (e, x) is a negative
half edge in Bj . Note that there are 2k possible tags, thus the total number of di�erent bags is
at most (2k)t.

Partition the set of half edges into {P1, . . . , Pm} with m = (2k)t, in such a way that two half
edges are in the same Pj if and only if they have exactly the same bag. The vertices associated
to Pj are the vertices associated to the half edges which appear in Pj . In a �rst time we will
only consider the edges which are covered exactly t times. Let Pj and Pj′ be two parts such
that their induced bags X and X are opposite and of size t, and let U and U ′ be their set of
associated vertices, respectively. Observe that the bipartite graphs appearing in X and in X are
the same, and that the vertices of U and U ′ appear in all these bipartite graphs. Note �rst that
U and U ′ are disjoint: indeed, if x ∈ U ∩ U ′, then there exists (e, x) ∈ Pj and (e′, x) ∈ Pj′ . For
all tag (Bi,±) in X, (Bi,∓) is in X, thus x has to be on both side of Bi, which is impossible.
Moreover, there is a complete bipartite graph between U and U ′ in G. Indeed, for all x ∈ U ,
x′ ∈ U ′ and for all bipartite graph Bi in X, x is on one side on Bi and x

′ on the other so the
edge xx′ is in Bi.

Select one bipartite graph (it can be any of those appearing in X) and call it B′j . It covers

all the edges between U and U ′. We do the same for all pair (X,X) of opposite bags of size t
and get a family B′ of complete bipartite graphs. All the edges of the graph G of multiplicity
t are covered by this set of bipartite graphs. Indeed, consider an edge xy of multiplicity t, the
two half edges (xy, x) and (xy, y) have two opposite bags of size t. Then by construction, they
are covered by one of the B′j . Let us prove that each edge is covered at most once. Indeed, if

xy is covered by B′j , then the two half-edges are appearing in two opposite bags (X,X) of size
t, thus there are already t bipartite graphs Bi which cover xy. If it is also covered by another
bipartite graph B′j′ selected from a di�erent pair of opposite bags (Y, Y ), it means that, there is
a bipartite graph Bi′ which is not in the bag X but in the bag Y (since all the bags have size t)
which covers the edge xy. Thus, the edge xy is covered by at least t+ 1 bipartite graphs which
contradicts the hypothesis on t. Thus this set of bipartite graphs cover the edges of multiplicity
t with a multiplicity one.

As we assumed that the generalized Alon-Saks-Seymour conjecture of order 1 holds, it means
that the graph restricted to this set of bipartite graphsB′j has chromatic number at most P ((2k)t)
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(with P a polynomial) since B′ ensures bp1(G) ≤ (2k)t. Thus the vertex set can be partitioned
into P ((2k)t) stable sets S1, . . . , SP ((2k)t). Since all the edges of multiplicity t in B are covered, it
means that the multiplicity of the edges of G in each part Si is at most t−1. Hence by induction
hypothesis, it means that the chromatic number of each Si is bounded by a polynomial Q in
bpt−1(Si). As Si contains no edge of multiplicity t, B restricted to the vertices of Si ensures
that bpt−1(Si) ≤ (2k)t. Thus the chromatic number of G seen as a product graph is at most
(P ·Q)(2kt), which is a polynomial in k. Thus the generalized Alon-Saks-Seymour conjecture of
order t holds if and only if it holds for order one.

6 Conclusion

Corollary 27. The following are equivalent:

• Oriented Alon-Saks-Seymour Conjecture.

There exists a polynomial P such that for every graph G, χ(G) ≤ P (bpor(G)).

• Generalized Alon-Saks-Seymour conjecture of order t, t ∈ N∗.
There exists a polynomial P such that for every graph G, χ(G) ≤ P (bpt(G))

• Clique-Stable set Separation Conjecture.

For every graph G, there is a polynomial CS-separator.

• Polynomial 2-list covering for the stubborn problem.

For every graph G and every list assignment L : V → P({A1, A2, A3, A4}), there is a
polynomial 2-list covering for the stubborn problem on (G,L).

• Polynomial 2-list covering for 3-CCP.

For every n and every edge-coloring f : E(Kn) → {A,B,C}, there is a polynomial 2-list
covering for 3-CCP on (Kn, f).

Proof. Combining Observation 25 and Theorems 13, 23, 26.

These results are interesting due to the link they make between some distant areas of theoret-
ical computer science such as communication complexity, graph theory, constraint satisfaction
problem, and even polytope geometrics, via an equivalence between long-standing open prob-
lems in each area. It has been somehow fascinating to explore such a wide range of domains and
to see links appearing between them. The main question is now of course to prove or disprove
one of these equivalent problems. Our results are a step forward, enabling anyone to choose his
favourite domain between the three involved ones.

I would like to gratefully thank my supervisor Stéphan Thomassé and his PhD student
Nicolas Bousquet for their close collaboration during my internship. They were fully avail-
able for answering my questions and they have been willingly sharing some interesting research
problems with me. Moreover, I thank the whole team for their warm welcome and for having
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Appendix

A Detailed proof on random graphs

We give here detailed computations using Taylor series for a result used in the proof of Th. 3.

Proposition 28. If ω and α are respectively the clique number and the independent number of
G(n, p), then pω(1− p)α ≥ 1/n6.

Proof. In the following, logb denotes the logarithm to base b, log denotes the logarithm to base 2,
and ln denotes the logarithm to base e. Without loss of generality, we assume p = 1−2−2 logn/a(n),
where a(n) is a function of n. Let p′ = 1− p, b = 1/p and b′ = 1/p′. The independence number
and clique number of G(n, p) are given by the following formulas, depending on p (see [2]):

ω = 2 logb(n)− 2 logb(logb n) + 2 logb(e/2) + 1 + o(1)
α = 2 logb′(n)− 2 logb′(logb′ n) + 2 logb′(e/2) + 1 + o(1)

We need to distinguish two cases.

Case 1 a(n) = o(log n) and a(n) ≥ 2.
In the following, a(n) will be denoted by a.

Using the previous formula and
1

log b′
=

a

2 log n
, we get:

α = 2 logb′(n)− 2 logb′ logb′ n+ 2 logb′(e/2) + 1 + o(1)

= a− a

log n
log
(a

2

)
+ 1 + o(1)

= a− a log a

log n
+ 1 + o(1)

Moreover, thanks to Taylor series we get:

1

log b
=

−1

log(1− 2−2 logn/a)
by de�nition of b

=
− ln 2

−2−2 logn/a +O(2−4 logn/a)
using ln(1 + x) = x+O(x2)

=
ln 2 · 22 logn/a

1 +O(2−2 logn/a)
by factorization

= ln 2 · 22 logn/a · (1 +O(2−2 logn/a))) using
1

1− x = 1 +O(x)
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Thus, let us look at the di�erent terms in the approximation of ω:

• 2 logb n = 2 ln 2 · 22 logn/a · (1 +O(2−2 logn/a)) · log n

= 2 ln 2 · 22 logn/a log n+O(log n)

• −2 logb logb n = −2 ln 2 · 22 logn/a · (1 +O(2−2 logn/a)) · (log log n− log log b)

by substitution of log b

= −2 ln 2 · 22 logn/a · (1 +O(2−2 logn/a))

· (log log n+ log ln 2− log(2−2 logn/a(1 +O(2−2 logn/a))))

by previous computation

= −2 ln 2 · 22 logn/a · (1 +O(2−2 logn/a))

· (log log n+ log ln 2 +
2 log n

a
+O(2−2 logn/a))

using ln(1 + x) = x+O(x2)

= −2 ln 2 · 22 logn/a · (log log n+ log ln 2 +
2 log n

a
) +O(log n)

by developping.

• 2 logb(e/2) + 1 + o(1) = 2 log(e/2) ln 2 · 22 logn/a +O(1)

Hence:

w = 2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log logn− log ln 2 + log(e/2)) +O(log n)

= 2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log logn) +O(22 logn/a) +O(log n)

On one hand,

(1− p)α ≥ n−(3+ε) ⇔ α log(1− p) ≥ −(3 + ε) log n

⇔ (a− a log a

log n
+ 1 + o(1)) · −2 log n

a
≥ −(3 + ε) log n

⇔ 2 log n+
2 log n

a
+ o(log n) ≤ (3 + ε) log n

which is true if n is large enough.

On the other hand, using the previous approximations:
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pω ≥ n−(2+ε) ⇔ ω log p ≥ −(2 + ε) log n

⇔
(

2 ln 2 · 22 logn/a · (log n− 2 log n

a
− log log n) +O(22 logn/a) +O(log n)

)
·
(
−2−2 logn/a

ln 2
+O(2−4 logn/a)

)
≥ −(2 + ε) log n

⇔ 2(log n− 2 log n

a
− log log n) +O(1) +O(2−2 logn/a log n) ≤ (2 + ε) log n

which is true if n is large enough.

As a conclusion, for all ε, pα(1− p)ω ≥ 1/n5+ε.

Case 2: a(n) = 2d′ log n for some constant d′ > 0. De�ne d = −1/ log(1 − 2−1/d). Then
1

log b′
= d and

1

log b
= d, which implies:

α = 2d′ log(n) + o(log n)
ω = 2d log(n) + o(log n)

Thus

(1− p)α ≥ n−(2+ε) ⇔ α log(1− p) ≥ −(2 + ε) log n

⇔ (2d′ log(n) + o(log n)) · −1

d′
≥ −(2 + ε) log n

⇔ 2 log(n) + o(log n) ≤ (2 + ε) log n
which is true if n is large enough.

Similarly

pω ≥ n−(2+ε) ⇔ α log p ≥ −(2 + ε) log n

⇔ (2d log(n) + o(log n)) · −1

d
≥ −(2 + ε) log n

⇔ 2 log(n) + o(log n) ≤ (2 + ε) log n
which is true if n is large enough.

As a conclusion, for all ε, pω(1− p)α ≥ 1/n4+ε.

Observation 29. In the previous proof, if a(n) < 2, then the independent number α is upper
bounded by 3. Thus, the family of every cut (U, V \ U) with |U | ≤ 3 has size O(n3) and is a
complete (ω, α, n)-separator for G(n, p).
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