Enumeration algorithms in graphs

Aurélie Lagoutte - GT Graphes G-SCOP, Grenoble INP / Université Grenoble Alpes

Journées du GDR-IM - April 5, 2023, Paris

Enumeration : principle

Some problems need as an answer a **list** of solutions, instead of a **single** solution. For example :

Enumeration : principle

Some problems need as an answer a ${\mbox{list}}$ of solutions, instead of a ${\mbox{single}}$ solution. For example :

Answer to a database qu	uery				
<pre>\$ select appellation, '</pre>	vignobl	e,	type from AOC		
Côte-Rôtie		I	Vallée du Rhône		Rouge
Saint-Emilion		I	Bordeaux		Rouge
Saint-Nicolas-de-Bourg	ueil	I	Val de Loire		Rouge
	Answer to a database qu \$ select appellation, Côte-Rôtie Saint-Emilion Saint-Nicolas-de-Bourg	Answer to a database query \$ select appellation, vignobl Côte-Rôtie Saint-Emilion Saint-Nicolas-de-Bourgueil	Answer to a database query \$ select appellation, vignoble, Côte-Rôtie Saint-Emilion Saint-Nicolas-de-Bourgueil	Answer to a database query \$ select appellation, vignoble, type from AOC Côte-Rôtie Vallée du Rhône Saint-Emilion Bordeaux Saint-Nicolas-de-Bourgueil Val de Loire	Answer to a database query \$ select appellation, vignoble, type from AOC Côte-Rôtie Vallée du Rhône Saint-Emilion Bordeaux Saint-Nicolas-de-Bourgueil Val de Loire

Enumeration : principle

Some problems need as an answer a **list** of solutions, instead of a **single** solution. For example :

- Truth table : list all input combinations

e_1	e_2	e ₃	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Enumeration : a typical example

Input: Graph *G* **Output :** The list of all **inclusion-wise maximal** stable sets of *G*

 $\{1,3,5\},\{1,4\},\{2,5\},\{3,6\}$

Methods

Focus on easy problems

Input: Graph G

Output : one inclusion-wise maximal stable set. $\in P(greedy)$

Not to be confused with : Input: Graph G Output : a stable set of maximum size

NP-complete

Enumerating in graphs : useful cases

Enumerate ... but what ?

Enumeration?

00000

- Graph databases : answer to a query
- Graph model is not exact : some solutions are *best* based on qualitative criteria, we have to examine them one by one

Methods

• Identify all problematic (or interesting !) patterns in a network

Application fields: bioinformatics (phylogenetic trees), chemistry (molecule structure), complex system modeling, databases...

Diagram of a stereoisomer¹

¹Comparison and Enumeration of Chemical Graphs, T. Akutsu, H. Nagamochi, *Comp. and Struct. Biotechnology Journal*

In most cases : exponential number of solutions to output (ex: $3^{n/3}$ max. stable sets) \Rightarrow Good complexity measure?

In most cases : exponential number of solutions to output (ex: $3^{n/3}$ max. stable sets)

⇒ Good complexity measure?

In most cases : exponential number of solutions to output (ex: $3^{n/3}$ max. stable sets)

⇒ Good complexity measure?

Output-polynomial

2 Incremental polynomial

In most cases : exponential number of solutions to output (ex: $3^{n/3}$ max. stable sets)

- \Rightarrow Good complexity measure?
 - 1 Output-polynomial
 - 2 Incremental polynomial
 - 3 Polynomial delay

In most cases : exponential number of solutions to output (ex: $3^{n/3}$ max. stable sets) \Rightarrow Good complexity measure?

 Output-polynomial 	
2 Incremental polynomial	poly space vs.
8 Polynomial delay	copolicitial space

1 Inclusion-wise minimal transversal of a hypergraph

- 1 Inclusion-wise minimal transversal of a hypergraph
- 2 Inclusion-wise minimal dominating sets

- 1 Inclusion-wise minimal transversal of a hypergraph
- 2 Inclusion-wise minimal dominating sets
- Spanning trees

- 1 Inclusion-wise minimal transversal of a hypergraph
- 2 Inclusion-wise minimal dominating sets
- Spanning trees
- Structured patterns" : inclusion-wise max. stable sets or cliques ...

- 1 Inclusion-wise minimal transversal of a hypergraph
- 2 Inclusion-wise minimal dominating sets
- Spanning trees
- Structured patterns" : inclusion-wise max. stable sets or cliques ...

Minimal fixings

3 variants

We want to satisfy a given property Π Example : $\Pi = C_4$ -free (contains no induced C_4)

Minimal fixings

3 variants

We want to satisfy a given property Π Example : $\Pi = C_4$ -free (contains no induced C_4)

Cograph fixings

Conclusion O

Minimal fixings

3 variants

We want to satisfy a given property Π Example : $\Pi = C_4$ -free (contains no induced C_4)

Cograph fixings

Conclusion O

Minimal fixings

3 variants

Methods 000000000000000 Cograph fixings

Minimal fixings

3 variants

Fixing by deleting edges Min. ∏-deletion

Chordal completion

Chordal completion of a graph G: a completion of G that is chordal (no chordless cycle of length ≥ 4).

A chordal completion of G is also called a *triangulation* of G or sometimes a *fill-in*.

Chordal completion

Chordal completion of a graph G: a completion of G that is chordal (no chordless cycle of length ≥ 4).

A chordal completion of G is also called a *triangulation* of G or sometimes a *fill-in*.

Link with database query evaluation

 φ : a conjunctive query seen as a First-Order formula with only existential quantifyer and \wedge operator

 φ -EVAL **Input:** A database *D* **Output :** All tuples from *D* satisfying φ

 $\mathsf{Example}: \ \varphi = \exists x_2 \ \mathsf{P}(x_1) \land \mathsf{R}(x_2) \land \mathsf{Q}(x_1, x_2) \land \mathsf{T}(x_2, x_3) \land \mathsf{S}(x_1, x_2, x_3)$

Algorithmic methods to enumerate

Not-to-be-missed results

Theorem (Courcelle, 2009)

For every monadic second-order formula $\varphi(X1, ..., Xp)$, there exists an algorithm that takes as input a graph G of treewidth at most k and that enumerates the set of p-tuples satisfying φ in G:

- after a preprocessing using time $O(n \log n)$, where n = |V(G)|,
- with linear delay

Theorem (Eiter, Gottlob, 1995)

There exists an incremental-polynomial algorithm that, given in input a hypergraph H with bounded-size hyperedges, enumerates all minimal transversals of H.

• Metagraph of solutions : traversal of this metagraph

- Metagraph of solutions : traversal of this metagraph
- outputting each solution once

- Metagraph of solutions : traversal of this metagraph
- outputting each solution once
- and only once

- Metagraph of solutions : traversal of this metagraph
- outputting each solution once
- and only once

Three classical methods :

```
Goal : get polynomial delay
+ poly space for 1 et 2 (and sometimes 3)
```

- Flashlight search or Binary partition [Read, Tarjan '75]
- Reverse search [Avis, Fukuda '96]
- Proximity Search
 [Conte, Uno '19]
 [Conte, Grossi, Marino, Uno, Versari, '21]

Three classical methods :

```
Goal : get polynomial delay
+ poly space for 1 et 2 (and sometimes 3)
```

- **Flashlight search** or Binary partition [Read, Tarjan '75]
- Reverse search [Avis, Fukuda '96]
- Proximity Search
 [Conte, Uno '19]
 [Conte, Grossi, Marino, Uno, Versari, '21]

Flashlight search or Binary partition

Flashlight search or Binary partition

Flashlight search or Binary partition

For *Flashlight search* to run in poly delay (and space) :

Answer in poly time to the *extension problem* of \mathcal{P} :

Let *A* and *B* be two disjoint sets is there a solution *S* of \mathcal{P} such that $A \subseteq S$ and $S \cap B = \emptyset$?

All of A must be in solution and all of B is forbidden in the solution.

Extension problem

A typical example : enumerate all models of a formula F in DNF. Ex: $F = (x_1 \land \neg x_2 \land \neg x_3) \lor (\neg x_1 \land x_2 \land x_3) \lor (x_3 \land x_4)$ Solution = variable assignment satisfying F.

$$\begin{array}{l} A = \{x_1, x_3\} \Rightarrow x_1 = x_3 = \textit{True} \\ B = \{x_2\} \Rightarrow x_2 = \textit{False} \\ \text{Does there exist a model } F \text{ containing A and disjoint from B } ? \\ F_{A,B} = (\textit{False}) \lor (\textit{False}) \lor (x_4) \end{array}$$

Extension problem : negative result

Assumptions : hereditary and "non-trivial" property Π Pb: $\Pi\text{-}fixings$ by deleting vertices

Input: Graph G, disjoint A, $B \subseteq V$ **Output :** Does there exist an induced subgraph of G :

- containing A,
- satisfying property Π under interest,
- inclusion-wise maximal,
- and avoiding B ?

Extension problem : negative result

Assumptions : hereditary and "non-trivial" property Π Pb: $\Pi\text{-}fixings$ by deleting vertices

Input: Graph G, disjoint A, $B \subseteq V$ **Output :** Does there exist an induced subgraph of G :

- containing A,
- satisfying property Π under interest,
- inclusion-wise maximal,
- and avoiding B ?

Theorem [Brosse, L., Limouzy, Mary, Pastor – 2020+]

The extension problem for $\Pi\mbox{-induced}$ subgraphs, for any hereditary non-trivial property $\Pi,$ is NP-hard.

Three classical methods :

```
Goal : get polynomial delay
+ poly space for 1 et 2 (and sometimes 3)
```

- Flashlight search or Binary partition [Read, Tarjan '75]
- **Reverse search** [Avis, Fukuda '96]
- Proximity Search
 [Conte, Uno '19]
 [Conte, Grossi, Marino, Uno, Versari, '21]

Solution metagraph

Solution tree

To have *Reverse search* run in poly delay and space :

Generate in poly time and space the *children* of a solution (each solution must have *a single* father)

Reverse Search for Maximal Stable Sets

 $S \xrightarrow{\prime} S'$ if $S \cap \{v_1, \dots, v_i\} = S' \cap \{v_1, \dots, v_i\}$ and S is the lexicographically smallest among all solutions containing $S' \cap \{v_1, \dots, v_i\}$

P is the father of *S* if $P \xrightarrow{i} S$ and there is no arc to *S* indexed > *i*

Three classical methods :

```
Goal : get polynomial delay
+ poly space for 1 et 2 (and sometimes 3)
```

- Flashlight search or Binary partition [Read, Tarjan '75]
- Reverse search [Avis, Fukuda '96]
- Proximity Search
 [Conte, Uno '19]

[Conte, Grossi, Marino, Uno, Versari, '21]

Designed for enumerating *inclusion-wise maximal* (or min.) solutions to a problem.

Designed for enumerating *inclusion-wise maximal* (or min.) solutions to a problem.

Recursive depth-first search (rather classical) with conditions :

 generate neighbors of a vertex in poly time
 → poly degree

Designed for enumerating *inclusion-wise maximal* (or min.) solutions to a problem.

- generate neighbors of a vertex in poly time → poly degree
- check if a vertex has already been visited
 - \rightarrow exponential space :-(

Designed for enumerating *inclusion-wise maximal* (or min.) solutions to a problem.

- generate neighbors of a vertex in poly time
 → poly degree
- check if a vertex has already been visited
 - ightarrow exponential space :-(
- strong connectedness of the graph to be proven thanks to a notion of proximity

Designed for enumerating *inclusion-wise maximal* (or min.) solutions to a problem.

- generate neighbors of a vertex in poly time
 → poly degree
- check if a vertex has already been visited
 - ightarrow exponential space :-(
- strong connectedness of the graph to be proven thanks to a notion of proximity

Designed for enumerating *inclusion-wise maximal* (or min.) solutions to a problem.

- generate neighbors of a vertex in poly time → poly degree
- check if a vertex has already been visited
 - ightarrow exponential space :-(
- strong connectedness of the graph to be proven thanks to a notion of proximity

Designed for enumerating *inclusion-wise maximal* (or min.) solutions to a problem.

- generate neighbors of a vertex in poly time → poly degree
- check if a vertex has already been visited
 - ightarrow exponential space :-(
- strong connectedness of the graph to be proven thanks to a notion of proximity

Designed for enumerating *inclusion-wise maximal* (or min.) solutions to a problem.

- generate neighbors of a vertex in poly time
 → poly degree
- check if a vertex has already been visited
 - ightarrow exponential space :-(
- strong connectedness of the graph to be proven thanks to a notion of proximity

Three classical methods :

```
Goal : get polynomial delay
+ poly space for 1 et 2 (and sometimes 3)
```

- Flashlight search or Binary partition [Read, Tarjan '75]
- Reverse search [Avis, Fukuda '96]
- Proximity Search
 [Conte, Uno '19]
 [Conte, Grossi, Marino, Uno, Versari, '21]

The class of cographs is hereditary and auto-complementary.

Theorem

Via *Proximity Search*, there exists an algorithm for : **Input:** a graph *G* **Output :** all inclusion-wise maximal induced subgraphs of *G* that are cographs (cograph fixing by min. deletion of vertices) ; running in complexity :

- polynomial delay ;
- exponential space.

Cographs admit a "twin ordering" on V(G): G can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.

True twins : N[x] = N[y]

False twins N(x) = N(y)

Cographs admit a "twin ordering" on V(G): G can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.

Cographs admit a "twin ordering" on V(G): G can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.

True twins : N[x] = N[y] False twins N(x) = N(y)

true twin

Cographs admit a "twin ordering" on V(G): G can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.

Cographs admit a "twin ordering" on V(G): G can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.

Cographs admit a "twin ordering" on V(G): G can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.

Cographs admit a "twin ordering" on V(G): G can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.

True twins : N[x] = N[y] Fa

False twins N(x) = N(y)

Cographs admit a "twin ordering" on V(G): G can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.

True twins : N[x] = N[y]

False twins N(x) = N(y)

Cographs admit a "twin ordering" on V(G): G can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.

True twins : N[x] = N[y]

False twins N(x) = N(y)

Conclusion

Neighbors in the solution metagraph

S: 24689 S': keeping 2 and 8, "force" 5 to enter as a (false) twin of 2

Cograph fixings : recap

We have all the ingredients for Proximity Search to work :

- 1 Proximity between two solutions S and S^* is defined
- **2** Neighbors(S) is computable in polytime
- S Lemma proving that we can always find a neighbor with higher proximity with a target solution, thanks to the twin ordering (not shown here)
- \rightarrow Enumeration of cograph fixings by inclusion-wise min. deletion of vertices in polynomial delay

Results

[Brosse, L., Limouzy, Mary, Pastor – 2020+]

Prop. Π:	Max. induced	Min. deletions	Min. completions
being a	subgraphs		
split graph	Poly delay & space	Poly delay & space	Poly delay & space
	[Cao'20 ⁺]		<i>via</i> autocompl.
cograph	poly delay	Open	Open
	via Proxi. Search		
threshold	Poly delay & space	poly delay	poly. delay
graph	[Cao'20 ⁺]	via Proxi. Search	<i>via</i> autocompl.

Results from [Cao20⁺] are mostly using another method, called *restricted problem*.

(and there are more than displayed in this array).

Enumeration?	Enumerate but what ?	Methods	Cograph fixings	Conclusion
00000	0000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	000000	•
More				

\rightarrow Enumerating minimal triangulations of a graph ?

Enumeration?	Enumerate but what ? 0000	Methods 00000000000000000	Cograph fixings	Conclusion •
More				

 \rightarrow Enumerating minimal triangulations of a graph ?

Theorem [Brosse, Limouzy, Mary, 2021⁺]

There exists a polynomial delay polynomial space algorithm to enumerate all inclusion-wise minimal chordal completion of a graph G given in input.

 \rightarrow Proximity Search with careful arguments (to get polynomial space in particular)

More

 \rightarrow Enumerating minimal triangulations of a graph?

Theorem [Brosse, Limouzy, Mary, 2021⁺]

There exists a polynomial delay polynomial space algorithm to enumerate all inclusion-wise minimal chordal completion of a graph G given in input.

 \rightarrow *Proximity Search* with careful arguments (to get polynomial space in particular)

 \rightarrow Enumerating all minimal "fixings" of a graph into a Π -graph for any hereditary Π ?