Enumeration algorithms in graphs

Aurélie Lagoutte - GT Graphes
 G-SCOP, Grenoble INP / Université Grenoble Alpes

Journées du GDR-IM - April 5, 2023, Paris

Enumeration : principle

Some problems need as an answer a list of solutions, instead of a single solution. For example :

Enumeration : principle

Some problems need as an answer a list of solutions, instead of a single solution. For example :

- Answer to a database query

\$ select appellation, vignoble, type from AOC		
Côte-Rôtie	Vallée du Rhône	Rouge
Saint-Emilion	I	Bordeaux
Saint-Nicolas-de-Bourgueil	I	Val de Loire

Enumeration : principle

Some problems need as an answer a list of solutions, instead of a single solution. For example :

- Answer to a database query

```
$ select appellation, vignoble, type from AOC
Côte-Rôtie | Vallée du Rhône | Rouge
Saint-Emilion | Bordeaux | Rouge
Saint-Nicolas-de-Bourgueil | Val de Loire | Rouge
```

- Truth table : list all input combinations

e_{1}	e_{2}	e_{3}	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Enumeration : a typical example

Input: Graph G
Output: The list of all inclusion-wise maximal stable sets of G

$\{1,3,5\},\{1,4\},\{2,5\},\{3,6\}$

Focus on easy problems

Input: Graph G
Output : one inclusion-wise maximal stable set. $\in P$ (greedy)

Not to be confused with:
Input: Graph G
NP-complete
Output : a stable set of maximum size

Enumerating in graphs: useful cases

- Graph databases : answer to a query
- Graph model is not exact : some solutions are best based on qualitative criteria, we have to examine them one by one
- Identify all problematic (or interesting !) patterns in a network

Application fields: bioinformatics (phylogenetic trees), chemistry (molecule structure), complex system modeling, databases...

Diagram of a stereoisomer ${ }^{1}$

[^0]
Complexity for enumeration problems

In most cases : exponential number of solutions to output (ex: $3^{n / 3}$ max. stable sets)
\Rightarrow Good complexity measure?

Complexity for enumeration problems

In most cases : exponential number of solutions to output (ex: $3^{n / 3}$ max. stable sets)
\Rightarrow Good complexity measure?
(1) Output-polynomial

Input of size n, N solutions to output.

Complexity for enumeration problems

In most cases : exponential number of solutions to output (ex: $3^{n / 3}$ max. stable sets)
\Rightarrow Good complexity measure?
(1) Output-polynomial
(2) Incremental polynomial

Input of size n, N solutions to output.

Complexity for enumeration problems

In most cases : exponential number of solutions to output (ex: $3^{n / 3}$ max. stable sets)
\Rightarrow Good complexity measure?
(1) Output-polynomial
(2) Incremental polynomial
(3) Polynomial delay

Input of size n, N solutions to output.

Complexity for enumeration problems

In most cases : exponential number of solutions to output (ex: $3^{n / 3}$ max. stable sets)
\Rightarrow Good complexity measure?
(1) Output-polynomial
(2) Incremental polynomial
(3) Polynomial delay
poly space vs.
exponential space

Input of size n, N solutions to output.

Interesting objects to enumerate

(1) Inclusion-wise minimal transversal of a hypergraph

Interesting objects to enumerate

(1) Inclusion-wise minimal transversal of a hypergraph
(2) Inclusion-wise minimal dominating sets

Interesting objects to enumerate

(1) Inclusion-wise minimal transversal of a hypergraph
(2) Inclusion-wise minimal dominating sets
(3) Spanning trees

Interesting objects to enumerate

(1) Inclusion-wise minimal transversal of a hypergraph
(2) Inclusion-wise minimal dominating sets
(3) Spanning trees
(4) "Structured patterns" : inclusion-wise max. stable sets or cliques ...

Interesting objects to enumerate

(1) Inclusion-wise minimal transversal of a hypergraph
(2) Inclusion-wise minimal dominating sets
(3) Spanning trees
(4) "Structured patterns" : inclusion-wise max. stable sets or cliques ...
(5) Inclusion-wise minimal " Π-fixings" of a graph
\rightarrow Completions, deletion, induced subgraphs of a graph ...
... satisfying a given property Π

Minimal fixings

3 variants

We want to satisfy a given property Π Example : $\Pi=C_{4}$-free (contains no induced C_{4})

Minimal fixings

3 variants

We want to satisfy a given property Π Example : $\Pi=C_{4}$-free (contains no induced C_{4})

Minimal fixings

3 variants

We want to satisfy a given property Π Example : $\Pi=C_{4}$-free (contains no induced C_{4})

Fixing by adding edges
Min. П-completion

Minimal fixings

3 variants

We want to satisfy a given property Π Example : $\Pi=C_{4}$-free (contains no induced C_{4})

Minimal fixings

3 variants

We want to satisfy a given property Π Example : $\Pi=C_{4}$-free (contains no induced C_{4})

Fixing by adding edges
Min. П-completion

Fixing by deleting edges
Min. Π-deletion

+3 others

Fixing by deleting vertices Max. П-induced subgraph

+3 others

Chordal completion

Chordal completion of a graph G : a completion of G that is chordal (no chordless cycle of length ≥ 4).

A chordal completion of G is also called a triangulation of G or sometimes a fill-in.

Chordal completion

Chordal completion of a graph G : a completion of G that is chordal (no chordless cycle of length ≥ 4).

A chordal completion of G is also called a triangulation of G or sometimes a fill-in.

Link with database query evaluation

φ : a conjunctive query seen as a First-Order formula with only existential quantifyer and \wedge operator
φ-Eval
Input: A database D
Output : All tuples from D satisfying φ
Example : $\varphi=\exists x_{2} P\left(x_{1}\right) \wedge R\left(x_{2}\right) \wedge Q\left(x_{1}, x_{2}\right) \wedge T\left(x_{2}, x_{3}\right) \wedge S\left(x_{1}, x_{2}, x_{3}\right)$

Hypergraph repr. of φ

Join tree of φ

Algorithmic methods to enumerate

Not-to-be-missed results

Theorem (Courcelle, 2009)

For every monadic second-order formula $\varphi(X 1, \ldots, X p)$, there exists an algorithm that takes as input a graph G of treewidth at most k and that enumerates the set of p-tuples satisfying φ in G :

- after a preprocessing using time $\mathcal{O}(n \log n)$, where $n=|V(G)|$,
- with linear delay

Theorem (Eiter, Gottlob, 1995)

There exists an incremental-polynomial algorithm that, given in input a hypergraph H with bounded-size hyperedges, enumerates all minimal transversals of H.

General principle of an enumeration algorithm

- Metagraph of solutions : traversal of this metagraph

Example with maximal stable sets Solution metagraph

General principle of an enumeration algorithm

- Metagraph of solutions : traversal of this metagraph
- outputting each solution once

Example with maximal stable sets Solution metagraph

General principle of an enumeration algorithm

- Metagraph of solutions : traversal of this metagraph
- outputting each solution once
- and only once

Example with maximal stable sets Solution metagraph

General principle of an enumeration algorithm

- Metagraph of solutions : traversal of this metagraph
- outputting each solution once
- and only once

Example with maximal stable sets Solution metagraph

Three classical methods :

Goal : get polynomial delay + poly space for 1 et 2 (and sometimes 3)
(1) Flashlight search or Binary partition [Read, Tarjan '75]
(2) Reverse search
[Avis, Fukuda '96]
3 Proximity Search
[Conte, Uno '19]
[Conte, Grossi, Marino, Uno, Versari, '21]

Three classical methods :

Goal : get polynomial delay + poly space for 1 et 2 (and sometimes 3)
(1) Flashlight search or Binary partition [Read, Tarjan '75]
(2) Reverse search
[Avis, Fukuda '96]
(3) Proximity Search
[Conte, Uno '19]
[Conte, Grossi, Marino, Uno, Versari, '21]

Flashlight search or Binary partition

Flashlight search or Binary partition

Flashlight search or Binary partition

$1 \in S$?

Flashlight search or Binary partition

$1 \in S$?

Flashlight search or Binary partition

Flashlight search or Binary partition

Flashlight search or Binary partition

$1 \in S ?$
$2 \in S ?$

Flashlight search or Binary partition

$1 \in S ?$
$2 \in S ?$
$3 \in S ?$

Flashlight search or Binary partition

Flashlight search or Binary partition

For Flashlight search to run in poly delay (and space) :
Answer in poly time to the extension problem of \mathcal{P} :
Let A and B be two disjoint sets
is there a solution S of \mathcal{P} such that $A \subseteq S$ and $S \cap B=\varnothing$?

All of A must be in solution and all of B is forbidden in the solution.

Extension problem

A typical example : enumerate all models of a formula F in DNF.
Ex: $F=\left(x_{1} \wedge \neg x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{3} \wedge x_{4}\right)$
Solution $=$ variable assignment satisfying F.
$A=\left\{x_{1}, x_{3}\right\} \Rightarrow x_{1}=x_{3}=$ True
$B=\left\{x_{2}\right\} \Rightarrow x_{2}=$ False
Does there exist a model F containing A and disjoint from B ?
$F_{A, B}=($ False $) \vee($ False $) \vee\left(x_{4}\right)$

Extension problem : negative result

Assumptions: hereditary and "non-trivial" property Π $\mathrm{Pb}: \Pi$-fixings by deleting vertices

Input: Graph G, disjoint $A, B \subseteq V$
Output : Does there exist an induced subgraph of G :

- containing A,
- satisfying property Π under interest,
- inclusion-wise maximal,
- and avoiding B ?

Extension problem : negative result

Assumptions: hereditary and "non-trivial" property Π $\mathrm{Pb}: \Pi$-fixings by deleting vertices Input: Graph G, disjoint $A, B \subseteq V$ Output : Does there exist an induced subgraph of G :

- containing A,
- satisfying property Π under interest,
- inclusion-wise maximal,
- and avoiding B ?

Theorem [Brosse, L., Limouzy, Mary, Pastor - 2020+]

The extension problem for Π-induced subgraphs, for any hereditary non-trivial property Π, is NP-hard.

Three classical methods:
Goal : get polynomial delay

+ poly space for 1 et 2 (and sometimes 3)
(1) Flashlight search or Binary partition [Read, Tarjan '75]
(2) Reverse search
[Avis, Fukuda '96]
(3) Proximity Search
[Conte, Uno '19]
[Conte, Grossi, Marino, Uno, Versari, '21]

Reverse search

Solution space

Reverse search

Solution metagraph

Reverse search

Solution tree

Reverse search

Solution tree

Reverse search

Reverse search

To have Reverse search run in poly delay and space :
Generate in poly time and space the children of a solution (each solution must have a single father)

Reverse Search

1,3,5 ALL stable sets

Reverse Search for Maximal Stable Sets

$S \xrightarrow{i} S^{\prime}$ if $S \cap\left\{v_{1}, \ldots, v_{i}\right\}=S^{\prime} \cap\left\{v_{1}, \ldots, v_{i}\right\}$ and S is the lexicographically smallest among all solutions containing $S^{\prime} \cap\left\{v_{1}, \ldots, v_{i}\right\}$
P is the father of S if $P \xrightarrow{i} S$ and there is no arc to S indexed $>i$

Three classical methods :

Goal : get polynomial delay

+ poly space for 1 et 2 (and sometimes 3)
(1) Flashlight search or Binary partition [Read, Tarjan '75]
(2) Reverse search
[Avis, Fukuda '96]
3 Proximity Search
[Conte, Uno '19]
[Conte, Grossi, Marino, Uno, Versari, '21]

Proximity Search

Designed for enumerating inclusion-wise maximal (or min.) solutions to a problem.

Proximity Search

Designed for enumerating inclusion-wise maximal (or min.) solutions to a problem.
Recursive depth-first search (rather classical) with conditions :

Solution metagraph

- generate neighbors of a vertex in poly time \rightarrow poly degree

Proximity Search

Designed for enumerating inclusion-wise maximal (or min.) solutions to a problem.

Recursive depth-first search (rather classical) with conditions :

Solution metagraph

- generate neighbors of a vertex in poly time \rightarrow poly degree
- check if a vertex has already been visited
\rightarrow exponential space :-(

Proximity Search

Designed for enumerating inclusion-wise maximal (or min.) solutions to a problem.

Recursive depth-first search (rather classical) with conditions :

Solution metagraph

- generate neighbors of a vertex in poly time \rightarrow poly degree
- check if a vertex has already been visited
\rightarrow exponential space :-(
- strong connectedness of the
 graph to be proven thanks to a notion of proximity

Proximity Search

Designed for enumerating inclusion-wise maximal (or min.) solutions to a problem.

Recursive depth-first search (rather classical) with conditions :

Solution metagraph

- generate neighbors of a vertex in poly time \rightarrow poly degree
- check if a vertex has already been visited
\rightarrow exponential space :-(
- strong connectedness of the

graph to be proven thanks to a notion of proximity

Proximity Search

Designed for enumerating inclusion-wise maximal (or min.) solutions to a problem.

Recursive depth-first search (rather classical) with conditions :

Solution metagraph

- generate neighbors of a vertex in poly time \rightarrow poly degree
- check if a vertex has already been visited
\rightarrow exponential space :-(
- strong connectedness of the

graph to be proven thanks to a notion of proximity

Proximity Search

Designed for enumerating inclusion-wise maximal (or min.) solutions to a problem.

Recursive depth-first search (rather classical) with conditions :

Solution metagraph

- generate neighbors of a vertex in poly time \rightarrow poly degree
- check if a vertex has already been visited
\rightarrow exponential space :-(
- strong connectedness of the graph to be proven thanks to
 a notion of proximity

Proximity Search

Designed for enumerating inclusion-wise maximal (or min.) solutions to a problem.

Recursive depth-first search (rather classical) with conditions :

- generate neighbors of a vertex in poly time \rightarrow poly degree
- check if a vertex has already been visited
\rightarrow exponential space :-(
- strong connectedness of the graph to be proven thanks to
 a notion of proximity

Three classical methods :

Goal : get polynomial delay + poly space for 1 et 2 (and sometimes 3)
(1) Flashlight search or Binary partition [Read, Tarjan '75]
(2) Reverse search
[Avis, Fukuda '96]
3 Proximity Search
[Conte, Uno '19]
[Conte, Grossi, Marino, Uno, Versari, '21]

Cographs $=P_{4}$-free graphs

P_{4}

$G \notin$ Cographs

The class of cographs is hereditary and auto-complementary.

Theorem

Via Proximity Search, there exists an algorithm for :
Input: a graph G
Output : all inclusion-wise maximal induced subgraphs of G that are cographs (cograph fixing by min. deletion of vertices) ; running in complexity :

- polynomial delay ;
- exponential space.

Cographes \& twins

Cographs admit a "twin ordering" on $V(G): G$ can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.
True twins : $N[x]=N[y]$
False twins $N(x)=N(y)$

Cographes \& twins

Cographs admit a "twin ordering" on $V(G): G$ can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.
True twins : $N[x]=N[y]$
False twins $N(x)=N(y)$

Cographes \& twins

Cographs admit a "twin ordering" on $V(G): G$ can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.
True twins : $N[x]=N[y]$
False twins $N(x)=N(y)$

Cographes \& twins

Cographs admit a "twin ordering" on $V(G): G$ can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.
True twins : $N[x]=N[y]$
False twins $N(x)=N(y)$

Cographes \& twins

Cographs admit a "twin ordering" on $V(G): G$ can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.
True twins : $N[x]=N[y]$
False twins $N(x)=N(y)$

Cographes \& twins

Cographs admit a "twin ordering" on $V(G): G$ can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.
True twins : $N[x]=N[y]$
False twins $N(x)=N(y)$
true twin

Cographes \& twins

Cographs admit a "twin ordering" on $V(G): G$ can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.
True twins : $N[x]=N[y]$
False twins $N(x)=N(y)$

Cographes \& twins

Cographs admit a "twin ordering" on $V(G): G$ can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.
True twins : $N[x]=N[y]$
False twins $N(x)=N(y)$

Cographes \& twins

Cographs admit a "twin ordering" on $V(G): G$ can always be obtained from a single vertex by adding a true or a false twin to a existing vertex.
True twins : $N[x]=N[y]$
False twins $N(x)=N(y)$

Canonical twin ordering

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Proximity between two subcographs

Goal : enumerating all inclusion-wise maximal induced subgraphs of G that are cographs with Proximity Search

Neighbors in the solution metagraph

$S: 24689$

S*:28596

S^{\prime} : keeping 2 and 8 , "force" 5 to enter as a (false) twin of 2

Neighbors in the solution metagraph

S : 24689

$S^{*}: 28596$

S^{\prime} : keeping 2 and 8 , "force" 5 to enter as a (false) twin of 2

Force x to enter in the solution as a (false) twin of y :

Neighbors in the solution metagraph

S : 24689

$S^{*}: 28596$

S^{\prime} : keeping 2 and 8 , "force" 5 to enter as a (false) twin of 2

Force x to enter in the solution as a (false) twin of y :

$\operatorname{Neighbors}(S)=\bigcup_{y \in S, x \notin S} S_{x y}^{\prime}$

Cograph fixings : recap

We have all the ingredients for Proximity Search to work:
(1) Proximity between two solutions S and S^{*} is defined
(2) Neighbors (S) is computable in polytime
(3) Lemma proving that we can always find a neighbor with higher proximity with a target solution, thanks to the twin ordering (not shown here)
\rightarrow Enumeration of cograph fixings by inclusion-wise min. deletion
of vertices in polynomial delay

Results

[Brosse, L., Limouzy, Mary, Pastor - 2020+]

Prop. ח: being a....	Max. induced subgraphs	Min. deletions	Min. completions
split graph	Poly delay \& space $\left[{\left.\text { Cao' } 20^{+}\right]}\right.$	Poly delay \& space	Poly delay \& space via autocompl.
cograph	poly delay via Proxi. Search	Open	Open
threshold graph	Poly delay \& space $\left[C^{\prime} 0^{\prime} 20^{+}\right]$	poly delay via Proxi. Search	poly. delay via autocompl.

Results from $\left[\mathrm{Cao} 20^{+}\right.$] are mostly using another method, called restricted problem.
(and there are more than displayed in this array).

More

\rightarrow Enumerating minimal triangulations of a graph ?

More

\rightarrow Enumerating minimal triangulations of a graph ?

Theorem [Brosse, Limouzy, Mary, 2021 ${ }^{+}$]

There exists a polynomial delay polynomial space algorithm to enumerate all inclusion-wise minimal chordal completion of a graph G given in input.
\rightarrow Proximity Search with careful arguments (to get polynomial space in particular)

More

\rightarrow Enumerating minimal triangulations of a graph ?

Theorem [Brosse, Limouzy, Mary, 2021 ${ }^{+}$]

There exists a polynomial delay polynomial space algorithm to enumerate all inclusion-wise minimal chordal completion of a graph G given in input.
\rightarrow Proximity Search with careful arguments (to get polynomial space in particular)
\rightarrow Enumerating all minimal "fixings" of a graph into a П-graph for any hereditary Π ?

[^0]: ${ }^{1}$ Comparison and Enumeration of Chemical Graphs, T. Akutsu, H. Nagamochi, Comp. and Struct. Biotechnology Journal

