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Proper coloring : two adjacent vertices get different colors.
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ω(G): size of the largest clique
χ(G): min. number of colors in a proper coloring

⇒ χ(G) ≥ ω(G)
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Motivation Result & Proof Conclusion

χ-boundedness

Let C be a hereditary class of graphs.

Definition (Gyárfás 1987)
The class C is χ-bounded if there exists f such that for every
G ∈ C, χ(G) ≤ f (ω(G)).

Perfect graphs are χ-bounded with f (x) = x .
Triangle-free graphs is not a χ-bounded class.
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Motivation Result & Proof Conclusion

Theorem (Erdős 1959)
For every k, `, there exist graphs with girth ≥ k and chromatic
number ≥ `.

⇒ No hope to get a χ-bounded class by forbidding only finitely
many cycles.
⇒ What about forbidding a tree H?

Conjecture (Gyárfás 1975)
The class of H-free graphs is χ-bounded if H is a tree.

Proved when:
H is a path (Gyárfás 1987)
H is a star
H has radius two (or three, with extra conditions)
H is any tree but ’H-free’ means no subdivision of H instead
of no induced subgraphs isom. to H (Scott 1997).
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Motivation Result & Proof Conclusion

Hole Parity & Length

Conjectures (Gyárfás 1987)
The class of graphs with no odd hole is χ-bounded.
For every k, the class of graphs with no long hole is
χ-bounded. (long = of length ≥ k)
For every k, the class of graphs with no long odd hole is
χ-bounded. (long = of length ≥ k)

First and second conjectures were proved.
(Scott, Seymour 2014 & Chudnovsky, Scott, Seymour, 2015)
Triangle-free case of the third conjecture has just been proved
(Scott, Seymour 2015)

: For every k, there exists ` such that every
triangle-free graph G with χ(G) ≥ ` has a sequence of holes of k
consecutive lengths.
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Even-hole-free graphs

Well-understood class of graphs:
Decomposition theorem, recognition algorithm.

Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)
Every even-hole-free graph has a bisimplicial vertex.
x is bisimplicial if N(x) is the union of two cliques.

⇒ For every even-hole-free graph G , χ(G) ≤ 2ω(G)− 1.

v

N(v) G \N [v]
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Well-understood class of graphs:
Decomposition theorem, recognition algorithm.

Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)
Every even-hole-free graph has a bisimplicial vertex.
x is bisimplicial if N(x) is the union of two cliques.

⇒ For every even-hole-free graph G , χ(G) ≤ 2ω(G)− 1.

v

N(v) G \N [v]

≤ ω(G)− 1

≤ ω(G)− 1

d(v) ≤ 2ω(G)− 2

By ind. χ(G′) ≤ 2ω(G)− 1

One color available

7/28



Motivation Result & Proof Conclusion

Forbidding C4?
Let k be an integer. Consider the class Ck of graphs with:

No triangle
No induced C4

No induced cycle of length divisible by k

In particular: no C4 subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)
For every graph H and any s ≥ 1, every graph of large average
degree with no Ks,s subgraph contains an induced subdivision of
H, where each edge is subdivided at least once.

G min. counter-ex. to χ(Ck) ≤ 1010k .
G has large min. degree.
Let H = Kt , t = f (k) large.
G contains an ind. subdiv of Kt .
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G has no triangle, no ind. C4, no hole of length divisible by k.

Theorem
Every graph with large average degree and no C4 subgraph
contains an ind. (≥ 1)-subdivision of Kt .

G
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G has no triangle, no ind. C4, no hole of length divisible by k.

Theorem
Every graph with large average degree and no C4 subgraph
contains an ind. (≥ 1)-subdivision of Kt .
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⇒ Ramsey: ∃ monochr.
clique of size k
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The Result

Let C3,2k≥6 be the class of graphs with no triangle and no hole of
even length at least 6.

Theorem (L. 2015+)
There exists c > 0 such that for every graph G ∈ C3,2k≥6,
χ(G) ≤ c.

Let C3,5,2k≥6 be the class of graphs with no triangle, no C5 and no
hole of even length at least 6.

Lemma
There exists c ′ > 0 such that for every graph G ∈ C3,5,2k≥6,
χ(G) ≤ c ′.
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Parity Changing Path

H

G1 G2 G3

P1 P2 P3

y1 x2 y2
x3 y3

x4x1

leftovers

A Parity Changing Path (PCP) of order ` is a sequence
(G1,P1, . . . ,G`,P`,H) such that:

There is an odd and an even path from xi to yi , ∀i .
Pi has length ≥ 2, ∀i .
H is connected and χ(H) is the leftovers.
χ(Gi) ≤ 4

x1 is the origin of the PCP.
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Motivation Result & Proof Conclusion

Sketch of proof

1 Big χ ⇒ Grow a PCP
2 Big χ ⇒ Grow a rooted PCP in Nk

3 Having a neighbor in H ⇒ having neighbors everywhere
4 The active lift (∼ parents of the PCP) has big χ.
5 Conclusion
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Lemma
Let G ∈ C3,5,2k≥6 be connected, v ∈ V (G) and δ = χ(G). Then ∃
a PCP of order 1 with origin v and leftovers ≥ h(δ) = δ/2− 8.

G1

P1

y1
x1

leftovers

H
x2= v
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Sketch of proof

1 Big χ ⇒ Grow a PCP
2 Big χ ⇒ Grow a rooted PCP in Nk
3 Having a neighbor in H ⇒ having neighbors everywhere
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Lemma
The active lift N(G2) ∩ Nk−1 has big χ.
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Motivation Result & Proof Conclusion

Sketch of proof

1 Big χ ⇒ Grow a PCP
2 Big χ ⇒ Grow a rooted PCP in Nk
3 Having a neighbor in H ⇒ having neighbors everywhere
4 The active lift (∼ parents of the PCP) has big χ.
5 Conclusion
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Motivation Result & Proof Conclusion

We just proved:

Lemma
There exists c ′ > 0 such that for every graph G ∈ C3,5,2k≥6,
χ(G) ≤ c ′.

Where C3,5,2k≥6 is the class of graphs with no triangle, no C5 and
no hole of even length at least 6.
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When C5 is not forbidden

Key lemma
Let S be a stable set dominating a C5.

For every t ∈ S, there
exists t ′ ∈ S such that there is a tt ′-path of length 4 and a
tt ′-path of length 3 or 5 (odd).

Nk
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Motivation Result & Proof Conclusion

Conclusion

Theorem
The class of triangle-free graphs with no hole of even length ≥ 6
has bounded χ.

Initial goal:

Remove triangle-free hypothesis
Or change no even hole ≥ 6 into no even hole ≥ k

If Scott & Seymour result gets confirmed:

Theorem
For every k, there exists ` such that every triangle-free graph G
with χ(G) ≥ ` has a sequence of holes of k consecutive lengths.

Only thing left: remove the triangle-free hypothesis.

Thank you for your attention!
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