Coloring graphs with no even hole of length at least 6: the triangle-free case

Aurélie Lagoutte

LIP, ENS Lyon

Friday, July 3, 2015 GOAL Seminar - Université Lyon 1 Proper coloring: two adjacent vertices get different colors.

- $\omega(G)$: size of the largest clique
- $\chi(G)$: min. number of colors in a proper coloring

- $\omega(G)$: size of the largest clique
- $\chi(G)$: min. number of colors in a proper coloring

 $\Rightarrow \chi(G) \geq \omega(G)$

- $\omega(G)$: size of the largest clique
- $\chi(G)$: min. number of colors in a proper coloring
- $\Rightarrow \chi(G) \geq \omega(G)$

$$\chi(C_5) > \omega(C_5)!$$

χ -boundedness

Let $\ensuremath{\mathcal{C}}$ be a hereditary class of graphs.

Definition (Gyárfás 1987)

The class C is χ -bounded if there exists f such that for every $G \in C$, $\chi(G) \leq f(\omega(G))$.

χ -boundedness

Let $\ensuremath{\mathcal{C}}$ be a hereditary class of graphs.

Definition (Gyárfás 1987)

The class C is χ -bounded if there exists f such that for every $G \in C$, $\chi(G) \leq f(\omega(G))$.

- Perfect graphs are χ -bounded with f(x) = x.
- Triangle-free graphs is not a χ -bounded class.

For every k, ℓ , there exist graphs with girth $\geq k$ and chromatic number $\geq \ell$.

For every k, ℓ , there exist graphs with girth $\geq k$ and chromatic number $\geq \ell$.

 \Rightarrow No hope to get a $\chi\text{-bounded class by forbidding only finitely many cycles.$

For every k, ℓ , there exist graphs with girth $\geq k$ and chromatic number $\geq \ell$.

 \Rightarrow No hope to get a $\chi\text{-bounded class by forbidding only finitely many cycles.$

 \Rightarrow What about forbidding a tree *H*?

For every k, ℓ , there exist graphs with girth $\geq k$ and chromatic number $\geq \ell$.

 \Rightarrow No hope to get a $\chi\text{-bounded class by forbidding only finitely many cycles.$

 \Rightarrow What about forbidding a tree *H*?

Conjecture (Gyárfás 1975)

The class of *H*-free graphs is χ -bounded if *H* is a tree.

For every k, ℓ , there exist graphs with girth $\geq k$ and chromatic number $\geq \ell$.

 \Rightarrow No hope to get a $\chi\text{-bounded class by forbidding only finitely many cycles.$

 \Rightarrow What about forbidding a tree *H*?

Conjecture (Gyárfás 1975)

The class of *H*-free graphs is χ -bounded if *H* is a tree.

Proved when:

- *H* is a path (Gyárfás 1987)
- H is a star
- *H* has radius two (or three, with extra conditions)
- *H* is any tree but '*H*-free' means *no subdivision of H* instead of *no induced subgraphs isom. to H* (Scott 1997).

Hole Parity & Length

Conjectures (Gyárfás 1987)

- The class of graphs with no **odd** hole is χ -bounded.
- For every k, the class of graphs with no **long** hole is χ -bounded. (long = of length $\geq k$)
- For every k, the class of graphs with no **long odd** hole is χ -bounded. (long = of length $\geq k$)
- First and second conjectures were proved. (Scott, Seymour 2014 & Chudnovsky, Scott, Seymour, 2015)
- Triangle-free case of the third conjecture has just been proved (Scott, Seymour 2015)

Hole Parity & Length

Conjectures (Gyárfás 1987)

- The class of graphs with no **odd** hole is χ -bounded.
- For every k, the class of graphs with no **long** hole is χ -bounded. (long = of length $\geq k$)
- For every k, the class of graphs with no **long odd** hole is χ -bounded. (long = of length $\geq k$)
- First and second conjectures were proved. (Scott, Seymour 2014 & Chudnovsky, Scott, Seymour, 2015)
- Triangle-free case of the third conjecture has just been proved (Scott, Seymour 2015): For every k, there exists ℓ such that every triangle-free graph G with χ(G) ≥ ℓ has a sequence of holes of k consecutive lengths.

Result & Proof

Even-hole-free graphs

Well-understood class of graphs:

Well-understood class of graphs: Decomposition theorem, recognition algorithm.

Well-understood class of graphs:

Decomposition theorem, recognition algorithm.

Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)

Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if N(x) is the union of two cliques.

Well-understood class of graphs:

Decomposition theorem, recognition algorithm.

Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)

Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if N(x) is the union of two cliques.

Well-understood class of graphs:

Decomposition theorem, recognition algorithm.

Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)

Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if N(x) is the union of two cliques.

Well-understood class of graphs:

Decomposition theorem, recognition algorithm.

Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)

Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if N(x) is the union of two cliques.

Well-understood class of graphs:

Decomposition theorem, recognition algorithm.

Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)

Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if N(x) is the union of two cliques.

Well-understood class of graphs:

Decomposition theorem, recognition algorithm.

Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)

Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if N(x) is the union of two cliques.

Well-understood class of graphs:

Decomposition theorem, recognition algorithm.

Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)

Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if N(x) is the union of two cliques.

Let k be an integer. Consider the class C_k of graphs with:

- No triangle
- No induced C₄
- No induced cycle of length divisible by k

Let k be an integer. Consider the class C_k of graphs with:

- No triangle
- No induced C₄
- No induced cycle of length divisible by k

In particular: no C_4 subgraphs, even not induced!

Let k be an integer. Consider the class C_k of graphs with:

- No triangle
- No induced C₄
- No induced cycle of length divisible by k

In particular: no C_4 subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \ge 1$, every graph of large average degree with no $K_{s,s}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.

Let k be an integer. Consider the class C_k of graphs with:

- No triangle
- No induced C₄
- No induced cycle of length divisible by k

In particular: no C_4 subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \ge 1$, every graph of large average degree with no $K_{2,2}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.

Let k be an integer. Consider the class C_k of graphs with:

- No triangle
- No induced C₄
- No induced cycle of length divisible by k

In particular: no C_4 subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \ge 1$, every graph of large average degree with no $K_{2,2}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.

G min. counter-ex. to $\chi(\mathcal{C}_k) \leq 10^{10^k}$.

Let k be an integer. Consider the class C_k of graphs with:

- No triangle
- No induced C₄
- No induced cycle of length divisible by k

In particular: no C_4 subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \ge 1$, every graph of large average degree with no $K_{2,2}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.

G min. counter-ex. to $\chi(C_k) \leq 10^{10^k}$. *G* has large min. degree.

Let k be an integer. Consider the class C_k of graphs with:

- No triangle
- No induced C₄
- No induced cycle of length divisible by k

In particular: no C_4 subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \ge 1$, every graph of large average degree with no $K_{2,2}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.

G min. counter-ex. to $\chi(C_k) \le 10^{10^k}$. G has large min. degree. Let $H = K_t$, t = f(k) large.

Let k be an integer. Consider the class C_k of graphs with:

- No triangle
- No induced C₄
- No induced cycle of length divisible by k

In particular: no C_4 subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \ge 1$, every graph of large average degree with no $K_{2,2}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.

G min. counter-ex. to $\chi(C_k) \le 10^{10^k}$. *G* has large min. degree. Let $H = K_t$, t = f(k) large. *G* contains an ind. subdiv of K_t .

Theorem

The Result

Let $C_{3,2k\geq 6}$ be the class of graphs with no triangle and no hole of even length at least 6.

Theorem (L. 2015⁺)

There exists c > 0 such that for every graph $G \in C_{3,2k \ge 6}$, $\chi(G) \le c$.

The Result

Let $C_{3,2k\geq 6}$ be the class of graphs with no triangle and no hole of even length at least 6.

Theorem (L. 2015⁺)

There exists c > 0 such that for every graph $G \in \mathcal{C}_{3,2k \geq 6}$, $\chi(G) \leq c$.

Let $C_{3,5,2k\geq 6}$ be the class of graphs with no triangle, no C_5 and no hole of even length at least 6.

Lemma

There exists c' > 0 such that for every graph $G \in C_{3,5,2k \ge 6}$, $\chi(G) \le c'$.

Parity Changing Path

A Parity Changing Path (PCP) of order ℓ is a sequence $(G_1, P_1, \ldots, G_\ell, P_\ell, H)$ such that:

- There is an odd and an even path from x_i to y_i , $\forall i$.
- P_i has length ≥ 2 , $\forall i$.
- *H* is connected and $\chi(H)$ is the *leftovers*.
- *χ*(*G_i*) ≤ 4

 x_1 is the *origin* of the PCP.

Sketch of proof

- **2** Big $\chi \Rightarrow$ Grow a rooted PCP in N_k
- **③** Having a neighbor in $H \Rightarrow$ having neighbors everywhere
- The active lift (\sim parents of the PCP) has big χ .
- Sonclusion

Sketch of proof

$I Big \ \chi \Rightarrow Grow \ a \ PCP$

- **2** Big $\chi \Rightarrow$ Grow a rooted PCP in N_k
- **6** Having a neighbor in $H \Rightarrow$ having neighbors everywhere
- The active lift (\sim parents of the PCP) has big χ .
- 6 Conclusion

Let $G \in C_{3,5,2k \ge 6}$ be connected, $v \in V(G)$ and $\delta = \chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\ge h(\delta) = \delta/2 - 8$.

v

•

 N_0

We can iterate the process:

Huge leftovers

We can iterate the process:

Huge leftovers

We can iterate the process:

Huge leftovers

⇒ If χ is large enough, we can grow a PCP of order ℓ with large leftovers from any $v \in V(G)$.

Sketch of proof

- $I Big \ \chi \Rightarrow Grow \ a \ PCP$
- **2** Big $\chi \Rightarrow$ Grow a rooted PCP in N_k
- Having a neighbor in $H \Rightarrow$ having neighbors everywhere
- The active lift (\sim parents of the PCP) has big χ .
- 6 Conclusion

leftovers

Sketch of proof

- $I Big \ \chi \Rightarrow Grow \ a \ PCP$
- 2 Big $\chi \Rightarrow$ Grow a rooted PCP in N_k
- **③** Having a neighbor in $H \Rightarrow$ having neighbors everywhere
- The active lift (\sim parents of the PCP) has big χ .
- 6 Conclusion

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Sketch of proof

- $I Big \ \chi \Rightarrow Grow \ a \ PCP$
- **2** Big $\chi \Rightarrow$ Grow a rooted PCP in N_k
- Having a neighbor in $H \Rightarrow$ having neighbors everywhere
- The active lift (\sim parents of the PCP) has big χ .
- Onclusion

Stable set has children with small χ

Lemma

Let S be a stable set in N_{k-1} . Then $\chi(N(S) \cap N_k) \leq 52$.

Stable set has children with small χ

Lemma

Let S be a stable set in N_{k-1} . Then $\chi(N(S) \cap N_k) \leq 52$.

Stable set has children with small χ

Lemma

Let S be a stable set in N_{k-1} . Then $\chi(N(S) \cap N_k) \leq 52$.

Lemma

Let S be a stable set in N_{k-1} . Then $\chi(N(S) \cap N_k) \leq 52$.

Lemma

Let S be a stable set in N_{k-1} . Then $\chi(N(S) \cap N_k) \leq 52$.

Lemma

Let S be a stable set in N_{k-1} . Then $\chi(N(S) \cap N_k) \leq 52$.

Lemma

Let S be a stable set in N_{k-1} . Then $\chi(N(S) \cap N_k) \leq 52$.

 \Rightarrow Creates a C_5 or a hole of even length \geq 6.

The active lift $N(G_2) \cap N_{k-1}$ has big χ .

 \Rightarrow a contradiction with ~0 .

Sketch of proof

- $I Big \ \chi \Rightarrow Grow \ a \ PCP$
- **2** Big $\chi \Rightarrow$ Grow a rooted PCP in N_k
- **6** Having a neighbor in $H \Rightarrow$ having neighbors everywhere
- The active lift (\sim parents of the PCP) has big χ .
- Onclusion

 \Rightarrow Creates a C_5 or a hole of even length \ge 6.

We just proved:

Lemma

There exists c' > 0 such that for every graph $G \in C_{3,5,2k \ge 6}$, $\chi(G) \le c'$.

Where $C_{3,5,2k\geq 6}$ is the class of graphs with no triangle, no C_5 and no hole of even length at least 6.

Key lemma

Let S be a stable set dominating a C_5 .

Key lemma

Let S be a stable set dominating a C_5 . For every $t \in S$,

Key lemma

Let S be a stable set dominating a C_5 . For every $t \in S$, there exists $t' \in S$

Key lemma

Let S be a stable set dominating a C_5 . For every $t \in S$, there exists $t' \in S$ such that there is a tt'-path of length 4

Key lemma

Let S be a stable set dominating a C_5 . For every $t \in S$, there exists $t' \in S$ such that there is a tt'-path of length 4 and a tt'-path of length 3 or 5 (odd).

Theorem

The class of triangle-free graphs with no hole of even length \geq 6 has bounded χ .

• Initial goal:

Theorem

The class of triangle-free graphs with no hole of even length \geq 6 has bounded χ .

- Initial goal:
 - Remove triangle-free hypothesis

Theorem

The class of triangle-free graphs with no hole of even length \geq 6 has bounded χ .

- Initial goal:
 - Remove triangle-free hypothesis
 - Or change no even hole \geq 6 into no even hole \geq k

Theorem

The class of triangle-free graphs with no hole of even length \geq 6 has bounded χ .

- Initial goal:
 - Remove triangle-free hypothesis
 - Or change no even hole \geq 6 into no even hole \geq k
- If Scott & Seymour result gets confirmed:

Theorem

The class of triangle-free graphs with no hole of even length \geq 6 has bounded χ .

- Initial goal:
 - Remove triangle-free hypothesis
 - Or change no even hole \geq 6 into no even hole \geq k
- If Scott & Seymour result gets confirmed:

Theorem

For every k, there exists ℓ such that every triangle-free graph G with $\chi(G) \ge \ell$ has a sequence of holes of k consecutive lengths.

Only thing left: remove the triangle-free hypothesis.

Theorem

The class of triangle-free graphs with no hole of even length \geq 6 has bounded χ .

- Initial goal:
 - Remove triangle-free hypothesis
 - Or change no even hole ≥ 6 into no even hole $\geq k$
- If Scott & Seymour result gets confirmed:

Theorem

For every k, there exists ℓ such that every triangle-free graph G with $\chi(G) \ge \ell$ has a sequence of holes of k consecutive lengths.

Only thing left: remove the triangle-free hypothesis.

Thank you for your attention!