Coloring graphs with no even hole of length at least 6: the triangle-free case

Aurélie Lagoutte
LIP, ENS Lyon

Friday, July 3, 2015
GOAL Seminar - Université Lyon 1

Proper coloring: two adjacent vertices get different colors.

- $\omega(G)$: size of the largest clique
- $\chi(G)$: min. number of colors in a proper coloring

- $\omega(G)$: size of the largest clique
- $\chi(G)$: min. number of colors in a proper coloring
$\Rightarrow \chi(G) \geq \omega(G)$

- $\omega(G)$: size of the largest clique
- $\chi(G)$: min. number of colors in a proper coloring
$\Rightarrow \chi(G) \geq \omega(G)$

$\chi\left(C_{5}\right)>\omega\left(C_{5}\right)!$

χ-boundedness

Let \mathcal{C} be a hereditary class of graphs.

Definition (Gyárfás 1987)

The class \mathcal{C} is χ-bounded if there exists f such that for every $G \in \mathcal{C}, \chi(G) \leq f(\omega(G))$.

χ-boundedness

Let \mathcal{C} be a hereditary class of graphs.

Definition (Gyárfás 1987)

The class \mathcal{C} is χ-bounded if there exists f such that for every $G \in \mathcal{C}, \chi(G) \leq f(\omega(G))$.

- Perfect graphs are χ-bounded with $f(x)=x$.
- Triangle-free graphs is not a χ-bounded class.

Theorem (Erdős 1959)

For every k, ℓ, there exist graphs with girth $\geq k$ and chromatic number $\geq \ell$.

Theorem (Erdős 1959)

For every k, ℓ, there exist graphs with girth $\geq k$ and chromatic number $\geq \ell$.
\Rightarrow No hope to get a χ-bounded class by forbidding only finitely many cycles.

Theorem (Erdős 1959)

For every k, ℓ, there exist graphs with girth $\geq k$ and chromatic number $\geq \ell$.
\Rightarrow No hope to get a χ-bounded class by forbidding only finitely many cycles.
\Rightarrow What about forbidding a tree H ?

Theorem (Erdős 1959)

For every k, ℓ, there exist graphs with girth $\geq k$ and chromatic number $\geq \ell$.
\Rightarrow No hope to get a χ-bounded class by forbidding only finitely many cycles.
\Rightarrow What about forbidding a tree H ?
Conjecture (Gyárfás 1975)
The class of H-free graphs is χ-bounded if H is a tree.

Theorem (Erdős 1959)

For every k, ℓ, there exist graphs with girth $\geq k$ and chromatic number $\geq \ell$.
\Rightarrow No hope to get a χ-bounded class by forbidding only finitely many cycles.
\Rightarrow What about forbidding a tree H ?
Conjecture (Gyárfás 1975)
The class of H-free graphs is χ-bounded if H is a tree.
Proved when:

- H is a path (Gyárfás 1987)
- H is a star
- H has radius two (or three, with extra conditions)
- H is any tree but ' H-free' means no subdivision of H instead of no induced subgraphs isom. to H (Scott 1997).

Hole Parity \& Length

Conjectures (Gyárfás 1987)

- The class of graphs with no odd hole is χ-bounded.
- For every k, the class of graphs with no long hole is χ-bounded. (long $=$ of length $\geq k$)
- For every k, the class of graphs with no long odd hole is χ-bounded. (long $=$ of length $\geq k$)
- First and second conjectures were proved. (Scott, Seymour 2014 \& Chudnovsky, Scott, Seymour, 2015)
- Triangle-free case of the third conjecture has just been proved (Scott, Seymour 2015)

Hole Parity \& Length

Conjectures (Gyárfás 1987)

- The class of graphs with no odd hole is χ-bounded.
- For every k, the class of graphs with no long hole is χ-bounded. (long $=$ of length $\geq k$)
- For every k, the class of graphs with no long odd hole is χ-bounded. (long $=$ of length $\geq k$)
- First and second conjectures were proved. (Scott, Seymour 2014 \& Chudnovsky, Scott, Seymour, 2015)
- Triangle-free case of the third conjecture has just been proved (Scott, Seymour 2015): For every k, there exists ℓ such that every triangle-free graph G with $\chi(G) \geq \ell$ has a sequence of holes of k consecutive lengths.

Even-hole-free graphs

Even-hole-free graphs

Well-understood class of graphs:

Even-hole-free graphs

Well-understood class of graphs:
Decomposition theorem, recognition algorithm.

Even-hole-free graphs

Well-understood class of graphs:
Decomposition theorem, recognition algorithm.

Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)

Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if $N(x)$ is the union of two cliques.
\Rightarrow For every even-hole-free graph $G, \chi(G) \leq 2 \omega(G)-1$.

Even-hole-free graphs

Well-understood class of graphs:
Decomposition theorem, recognition algorithm.
Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)
Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if $N(x)$ is the union of two cliques.
\Rightarrow For every even-hole-free graph $G, \chi(G) \leq 2 \omega(G)-1$.

Even-hole-free graphs

Well-understood class of graphs:
Decomposition theorem, recognition algorithm.
Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)
Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if $N(x)$ is the union of two cliques.
\Rightarrow For every even-hole-free graph $G, \chi(G) \leq 2 \omega(G)-1$.

Even-hole-free graphs

Well-understood class of graphs:
Decomposition theorem, recognition algorithm.
Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)
Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if $N(x)$ is the union of two cliques.
\Rightarrow For every even-hole-free graph $G, \chi(G) \leq 2 \omega(G)-1$.

Even-hole-free graphs

Well-understood class of graphs:
Decomposition theorem, recognition algorithm.
Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)
Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if $N(x)$ is the union of two cliques.
\Rightarrow For every even-hole-free graph $G, \chi(G) \leq 2 \omega(G)-1$.

Even-hole-free graphs

Well-understood class of graphs:
Decomposition theorem, recognition algorithm.
Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)
Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if $N(x)$ is the union of two cliques.
\Rightarrow For every even-hole-free graph $G, \chi(G) \leq 2 \omega(G)-1$.

Even-hole-free graphs

Well-understood class of graphs:
Decomposition theorem, recognition algorithm.
Theorem (Addario-Berry, Chudnovsky, Havet, Reed, Seymour 2008)
Every even-hole-free graph has a bisimplicial vertex. x is bisimplicial if $N(x)$ is the union of two cliques.
\Rightarrow For every even-hole-free graph $G, \chi(G) \leq 2 \omega(G)-1$.

Forbidding C_{4} ?

Let k be an integer. Consider the class \mathcal{C}_{k} of graphs with:

- No triangle
- No induced C_{4}
- No induced cycle of length divisible by k

Forbidding C_{4} ?

Let k be an integer. Consider the class \mathcal{C}_{k} of graphs with:

- No triangle
- No induced C_{4}
- No induced cycle of length divisible by k

In particular: no C_{4} subgraphs, even not induced!

Forbidding C_{4} ?

Let k be an integer. Consider the class \mathcal{C}_{k} of graphs with:

- No triangle
- No induced C_{4}
- No induced cycle of length divisible by k

In particular: no C_{4} subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \geq 1$, every graph of large average degree with no $K_{s, s}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.

Forbidding C_{4} ?

Let k be an integer. Consider the class \mathcal{C}_{k} of graphs with:

- No triangle
- No induced C_{4}
- No induced cycle of length divisible by k

In particular: no C_{4} subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \geq 1$, every graph of large average degree with no $K_{2,2}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.

Forbidding C_{4} ?

Let k be an integer. Consider the class \mathcal{C}_{k} of graphs with:

- No triangle
- No induced C_{4}
- No induced cycle of length divisible by k

In particular: no C_{4} subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \geq 1$, every graph of large average degree with no $K_{2,2}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.
G min. counter-ex. to $\chi\left(\mathcal{C}_{k}\right) \leq 10^{10^{k}}$.

Forbidding C_{4} ?

Let k be an integer. Consider the class \mathcal{C}_{k} of graphs with:

- No triangle
- No induced C_{4}
- No induced cycle of length divisible by k

In particular: no C_{4} subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \geq 1$, every graph of large average degree with no $K_{2,2}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.
G min. counter-ex. to $\chi\left(\mathcal{C}_{k}\right) \leq 10^{10^{k}}$.
G has large min. degree.

Forbidding C_{4} ?

Let k be an integer. Consider the class \mathcal{C}_{k} of graphs with:

- No triangle
- No induced C_{4}
- No induced cycle of length divisible by k

In particular: no C_{4} subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \geq 1$, every graph of large average degree with no $K_{2,2}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.
G min. counter-ex. to $\chi\left(\mathcal{C}_{k}\right) \leq 10^{10^{k}}$.
G has large min. degree.
Let $H=K_{t}, t=f(k)$ large.

Forbidding C_{4} ?

Let k be an integer. Consider the class \mathcal{C}_{k} of graphs with:

- No triangle
- No induced C_{4}
- No induced cycle of length divisible by k

In particular: no C_{4} subgraphs, even not induced!

Theorem (Kühn, Osthus 2004)

For every graph H and any $s \geq 1$, every graph of large average degree with no $K_{2,2}$ subgraph contains an induced subdivision of H, where each edge is subdivided at least once.
G min. counter-ex. to $\chi\left(\mathcal{C}_{k}\right) \leq 10^{10^{k}}$.
G has large min. degree.
Let $H=K_{t}, t=f(k)$ large.
G contains an ind. subdiv of K_{t}.
G has no triangle, no ind. C_{4}, no hole of length divisible by k.

Theorem

Every graph with large average degree and no C_{4} subgraph contains an ind. (≥ 1)-subdivision of K_{t}.

G has no triangle, no ind. C_{4}, no hole of length divisible by k.

Theorem

Every graph with large average degree and no C_{4} subgraph contains an ind. (≥ 1)-subdivision of K_{t}.

G has no triangle, no ind. C_{4}, no hole of length divisible by k.

Theorem

Every graph with large average degree and no C_{4} subgraph contains an ind. (≥ 1)-subdivision of K_{t}.

G has no triangle, no ind. C_{4}, no hole of length divisible by k.

Theorem

Every graph with large average degree and no C_{4} subgraph contains an ind. (≥ 1)-subdivision of K_{t}.

1
G has no triangle, no ind. C_{4}, no hole of length divisible by k.

Theorem

Every graph with large average degree and no C_{4} subgraph contains an ind. (≥ 1)-subdivision of K_{t}.

12
G has no triangle, no ind. C_{4}, no hole of length divisible by k.

Theorem

Every graph with large average degree and no C_{4} subgraph contains an ind. (≥ 1)-subdivision of K_{t}.

$$
12
$$

G has no triangle, no ind. C_{4}, no hole of length divisible by k.

Theorem

Every graph with large average degree and no C_{4} subgraph contains an ind. (≥ 1)-subdivision of K_{t}.

1235
G has no triangle, no ind. C_{4}, no hole of length divisible by k.

Theorem

Every graph with large average degree and no C_{4} subgraph contains an ind. (≥ 1)-subdivision of K_{t}.

1) 2 (5
k colors
\Rightarrow Ramsey: \exists monochr. clique of size k
G has no triangle, no ind. C_{4}, no hole of length divisible by k.

Theorem

Every graph with large average degree and no C_{4} subgraph contains an ind. (≥ 1)-subdivision of K_{t}.

\Rightarrow Ramsey: \exists monochr. clique of size k

The Result

Let $\mathcal{C}_{3,2 k \geq 6}$ be the class of graphs with no triangle and no hole of even length at least 6 .

Theorem (L. 2015+ ${ }^{+}$

There exists $c>0$ such that for every graph $G \in \mathcal{C}_{3,2 k \geq 6}$, $\chi(G) \leq c$.

The Result

Let $\mathcal{C}_{3,2 k \geq 6}$ be the class of graphs with no triangle and no hole of even length at least 6 .

Theorem (L. 2015+ ${ }^{+}$

There exists $c>0$ such that for every graph $G \in \mathcal{C}_{3,2 k \geq 6}$, $\chi(G) \leq c$.

Let $\mathcal{C}_{3,5,2 k \geq 6}$ be the class of graphs with no triangle, no C_{5} and no hole of even length at least 6 .

Lemma

There exists $c^{\prime}>0$ such that for every graph $G \in \mathcal{C}_{3,5,2 k \geq 6}$, $\chi(G) \leq c^{\prime}$.

Parity Changing Path

A Parity Changing Path (PCP) of order ℓ is a sequence $\left(G_{1}, P_{1}, \ldots, G_{\ell}, P_{\ell}, H\right)$ such that:

- There is an odd and an even path from x_{i} to $y_{i}, \forall i$.
- P_{i} has length $\geq 2, \forall i$.
- H is connected and $\chi(H)$ is the leftovers.
- $\chi\left(G_{i}\right) \leq 4$
x_{1} is the origin of the PCP.

Sketch of proof

(1) Big $\chi \Rightarrow$ Grow a PCP
(2) $\operatorname{Big} \chi \Rightarrow$ Grow a rooted PCP in N_{k}
(3) Having a neighbor in $H \Rightarrow$ having neighbors everywhere
(9) The active lift (\sim parents of the PCP) has big χ.
(6) Conclusion

Sketch of proof

(1) $\operatorname{Big} \chi \Rightarrow$ Grow a PCP
(2) $\operatorname{Big} \chi \Rightarrow$ Grow a rooted PCP in N_{k}
(3) Having a neighbor in $H \Rightarrow$ having neighbors everywhere
(9) The active lift (\sim parents of the PCP) has big χ.
(5) Conclusion

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

v
\bullet
N_{0}

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

$$
N_{k}: \text { big } \chi
$$

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 1: z is adj. to x or y
Case 1.1: $z y^{\prime} \in E$

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 1: z is adj. to x or y
Case 1.1: $z y^{\prime} \in E$

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 1: z is adj. to x or y
Case 1.1: $z y^{\prime} \in E$

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 1: z is adj. to x or y
Case 1.1: $z y^{\prime} \in E$

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 1: z is adj. to x or y 1.1: $z y^{\prime} \in E$ Case

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 1: z is adj. to x or y

$$
\text { Case 1.2: } z y^{\prime} \notin E
$$

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 2: z is adj. neither to x nor to y

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 2: z is adj. neither to x nor to y

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 2: z is adj. neither to x nor to y

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 2: z is adj. neither to x nor to y

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 2: z is adj. neither to x nor to y Case 2.1: $x^{\prime} y^{\prime} \in E$ neighb. in $\left\{x, y, x^{\prime}, y^{\prime}\right\}$

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 2: z is adj. neither to x nor to y Case 2.1: $x^{\prime} y^{\prime} \in E$ neighb. in $\left\{x, y, x^{\prime}, y^{\prime}\right\}$

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 2: z is adj. neither to x nor to y Case 2.1: $x^{\prime} y^{\prime} \in E$ neighb. in $\left\{x, y, x^{\prime}, y^{\prime}\right\}$

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 2: z is adj. neither to x nor to y Case 2.1: $x^{\prime} y^{\prime} \in E$ neighb. in $\left\{x, y, x^{\prime}, y^{\prime}\right\}$

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 2: z is adj. neither to x nor to y

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 2: z is adj. neither to x nor to y

Lemma

Let $G \in \mathcal{C}_{3,5,2 k \geq 6}$ be connected, $v \in V(G)$ and $\delta=\chi(G)$. Then \exists a PCP of order 1 with origin v and leftovers $\geq h(\delta)=\delta / 2-8$.

Case 2: z is adj. neither to x nor to y

We can iterate the process:

Huge leftovers

We can iterate the process:

Huge leftovers

We can iterate the process:

Huge leftovers
\Rightarrow If χ is large enough, we can grow a PCP of order ℓ with large leftovers from any $v \in V(G)$.

Sketch of proof

(1) $\operatorname{Big} \chi \Rightarrow$ Grow a PCP
(2) $\operatorname{Big} \chi \Rightarrow$ Grow a rooted PCP in N_{k}
(3) Having a neighbor in $H \Rightarrow$ having neighbors everywhere
(9) The active lift (\sim parents of the PCP) has big χ.
(5) Conclusion

Rooted PCP

Rooted PCP

Rooted PCP

The root has exactly one neighbor in the PCP: the origin of the PCP.

Rooted PCP

The root has exactly one neighbor in the PCP: the origin of the PCP.

Rooted PCP: how to grow one?

Want: The root has exactly one neighbor in the PCP: the origin of the PCP.

Rooted PCP: how to grow one?

Want: The root has exactly one neighbor in the PCP: the origin of the PCP.

Rooted PCP: how to grow one?

Want: The root has exactly one neighbor in the PCP: the origin of the PCP.

Rooted PCP: how to grow one?

Want: The root has exactly one neighbor in the PCP: the origin of the PCP.

Rooted PCP: how to grow one?

Want: The root has exactly one neighbor in the PCP: the origin of the PCP.

Rooted PCP: how to grow one?

Want: The root has exactly one neighbor in the PCP: the origin of the PCP.

Rooted PCP: how to grow one?

Want: The root has exactly one neighbor in the PCP: the origin of the PCP.

Rooted PCP: how to grow one?

Want: The root has exactly one neighbor in the PCP: the origin of the PCP.

Sketch of proof

(1) $\operatorname{Big} \chi \Rightarrow$ Grow a PCP
(2) $\operatorname{Big} \chi \Rightarrow$ Grow a rooted PCP in N_{k}
(3) Having a neighbor in $H \Rightarrow$ having neighbors everywhere (9) The active lift (\sim parents of the PCP) has big χ.
(5) Conclusion

Neighbor in $H \Rightarrow$ Neighbors everywhere
Lemma
If u has a neighbor in H or G_{ℓ}, then u has a neighbor in every G_{i}.

Neighbor in $H \Rightarrow$ Neighbors everywhere

Lemma

If u has a neighbor in H or G_{ℓ}, then u has a neighbor in every G_{i}.

Neighbor in $H \Rightarrow$ Neighbors everywhere

Lemma

If u has a neighbor in H or G_{ℓ}, then u has a neighbor in every G_{i}.

Neighbor in $H \Rightarrow$ Neighbors everywhere

Lemma

If u has a neighbor in H or G_{ℓ}, then u has a neighbor in every G_{i}.

Neighbor in $H \Rightarrow$ Neighbors everywhere

Lemma

If u has a neighbor in H or G_{ℓ}, then u has a neighbor in every G_{i}.

Neighbor in $H \Rightarrow$ Neighbors everywhere

Lemma

If u has a neighbor in H or G_{ℓ}, then u has a neighbor in every G_{i}.

Neighbor in $H \Rightarrow$ Neighbors everywhere

Lemma

If u has a neighbor in H or G_{ℓ}, then u has a neighbor in every G_{i}.

Neighbor in $H \Rightarrow$ Neighbors everywhere

Lemma

If u has a neighbor in H or G_{ℓ}, then u has a neighbor in every G_{i}.

Sketch of proof

(1) $\operatorname{Big} \chi \Rightarrow$ Grow a PCP
(2) $\operatorname{Big} \chi \Rightarrow$ Grow a rooted PCP in N_{k}
(3) Having a neighbor in $H \Rightarrow$ having neighbors everywhere
(9) The active lift (\sim parents of the PCP) has big χ.
(5) Conclusion

Stable set has children with small χ

Lemma

Let S be a stable set in N_{k-1}. Then $\chi\left(N(S) \cap N_{k}\right) \leq 52$.

Stable set has children with small χ

Lemma

Let S be a stable set in N_{k-1}. Then $\chi\left(N(S) \cap N_{k}\right) \leq 52$.

Stable set has children with small χ

Lemma

Let S be a stable set in N_{k-1}. Then $\chi\left(N(S) \cap N_{k}\right) \leq 52$.

Stable set has children with small χ

Lemma

Let S be a stable set in N_{k-1}. Then $\chi\left(N(S) \cap N_{k}\right) \leq 52$.

Stable set has children with small χ

Lemma

Let S be a stable set in N_{k-1}. Then $\chi\left(N(S) \cap N_{k}\right) \leq 52$.

Stable set has children with small χ

Lemma

Let S be a stable set in N_{k-1}. Then $\chi\left(N(S) \cap N_{k}\right) \leq 52$.

Stable set has children with small χ

Lemma

Let S be a stable set in N_{k-1}. Then $\chi\left(N(S) \cap N_{k}\right) \leq 52$.

\Rightarrow Creates a C_{5} or a hole of even length ≥ 6.

Lemma

The active lift $N\left(G_{2}\right) \cap N_{k-1}$ has big χ.

Lemma

The active lift $N\left(G_{2}\right) \cap N_{k-1}$ has big χ.

Lemma

The active lift $N\left(G_{2}\right) \cap N_{k-1}$ has big χ.

Lemma

The active lift $N\left(G_{2}\right) \cap N_{k-1}$ has big χ.

Lemma

The active lift $N\left(G_{2}\right) \cap N_{k-1}$ has big χ.

\Rightarrow a contradiction with (3)

Sketch of proof

(1) Big $\chi \Rightarrow$ Grow a PCP
(2) $\operatorname{Big} \chi \Rightarrow$ Grow a rooted PCP in N_{k}
(3) Having a neighbor in $H \Rightarrow$ having neighbors everywhere
(9) The active lift (\sim parents of the PCP) has big χ.
(5) Conclusion

\Rightarrow Creates a C_{5} or a hole of even length ≥ 6.

We just proved:

Lemma

There exists $c^{\prime}>0$ such that for every graph $G \in \mathcal{C}_{3,5,2 k \geq 6}$, $\chi(G) \leq c^{\prime}$.

Where $\mathcal{C}_{3,5,2 k \geq 6}$ is the class of graphs with no triangle, no C_{5} and no hole of even length at least 6 .

When C_{5} is not forbidden

Key lemma
Let S be a stable set dominating a C_{5}.

When C_{5} is not forbidden

Key lemma
Let S be a stable set dominating a C_{5}.

stable dominant

When C_{5} is not forbidden

Key lemma
Let S be a stable set dominating a C_{5}. For every $t \in S$,

When C_{5} is not forbidden

Key lemma

Let S be a stable set dominating a C_{5}. For every $t \in S$, there exists $t^{\prime} \in S$

When C_{5} is not forbidden

Key lemma

Let S be a stable set dominating a C_{5}. For every $t \in S$, there exists $t^{\prime} \in S$ such that there is a $t t^{\prime}$-path of length 4

When C_{5} is not forbidden

Key lemma

Let S be a stable set dominating a C_{5}. For every $t \in S$, there exists $t^{\prime} \in S$ such that there is a $t t^{\prime}$-path of length 4 and a $t t^{\prime}$-path of length 3 or 5 (odd).

Conclusion

Theorem

The class of triangle-free graphs with no hole of even length ≥ 6 has bounded χ.

- Initial goal:

Conclusion

Theorem

The class of triangle-free graphs with no hole of even length ≥ 6 has bounded χ.

- Initial goal:
- Remove triangle-free hypothesis

Conclusion

Theorem
The class of triangle-free graphs with no hole of even length ≥ 6 has bounded χ.

- Initial goal:
- Remove triangle-free hypothesis
- Or change no even hole ≥ 6 into no even hole $\geq k$

Conclusion

Theorem

The class of triangle-free graphs with no hole of even length ≥ 6 has bounded χ.

- Initial goal:
- Remove triangle-free hypothesis
- Or change no even hole ≥ 6 into no even hole $\geq k$
- If Scott \& Seymour result gets confirmed:

Conclusion

Theorem

The class of triangle-free graphs with no hole of even length ≥ 6 has bounded χ.

- Initial goal:
- Remove triangle-free hypothesis
- Or change no even hole ≥ 6 into no even hole $\geq k$
- If Scott \& Seymour result gets confirmed:

Theorem

For every k, there exists ℓ such that every triangle-free graph G with $\chi(G) \geq \ell$ has a sequence of holes of k consecutive lengths.

Only thing left: remove the triangle-free hypothesis.

Conclusion

Theorem

The class of triangle-free graphs with no hole of even length ≥ 6 has bounded χ.

- Initial goal:
- Remove triangle-free hypothesis
- Or change no even hole ≥ 6 into no even hole $\geq k$
- If Scott \& Seymour result gets confirmed:

Theorem

For every k, there exists ℓ such that every triangle-free graph G with $\chi(G) \geq \ell$ has a sequence of holes of k consecutive lengths.

Only thing left: remove the triangle-free hypothesis.
Thank you for your attention!

