Polytopes and extended formulations

Lower bounding techniques on the extension complexity $\verb"ooooo"$

Clique Stable Set Separation

Extended formulations of polytopes and Communication complexity

Aurélie Lagoutte

LIP, ENS Lyon

Joint work with N. Bousquet, S. Thomassé et T. Trunck

Wednesday, november 13, 2014 São Paulo Workshop

1 Polytopes and extended formulations

- Definitions and context
- An example : Stable set polytope in comparability graphs

2 Lower bounding techniques on the extension complexity

- Slack matrix
- Rectangle covering
- Clique Stable Set Separation
 - Stating the problem
 - Results

Polytopes and extended formulations

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k)

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

- *P* can be defined :
 - As the convex hull of a set of points : P = conv(p₁,..., p_k)

 x_2

 $x_2 > 0$

Clique Stable Set Separation

x 1

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k)

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k)

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k)

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k)

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k)

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Well-studied polytopes :

Clique Stable Set Separation

Well-studied polytopes :

Stable Set polytope

$$STAB(G) = \operatorname{conv}(\chi^{S} \in \mathbb{R}^{n} | S \subseteq V \text{ is a stable set of } G)$$

where χ^{S} denotes the characteristic vector of $S \subseteq V$

Clique Stable Set Separation

Well-studied polytopes :

Stable Set polytope

$$STAB(G) = \operatorname{conv}(\chi^{S} \in \mathbb{R}^{n} | S \subseteq V \text{ is a stable set of } G)$$

where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_n = (V_n, E_n)$)

 $TSP(n) = \operatorname{conv}(\chi^F \in \mathbb{R}^{|E_n|} | F \subseteq E_n \text{ is a tour of } K_n)$

Clique Stable Set Separation

Well-studied polytopes :

Stable Set polytope

$$STAB(G) = \operatorname{conv}(\chi^{S} \in \mathbb{R}^{n} | S \subseteq V \text{ is a stable set of } G)$$

where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_n = (V_n, E_n)$)

$$TSP(n) = \operatorname{conv}(\chi^{F} \in \mathbb{R}^{|E_n|} | F \subseteq E_n \text{ is a tour of } K_n)$$

Matching polytope

 $MATCH(G) = \operatorname{conv}(\chi^M \in \mathbb{R}^{|E|} | M \subseteq E \text{ is a matching of } G)$

Clique Stable Set Separation

Well-studied polytopes :

Stable Set polytope

$$STAB(G) = \operatorname{conv}(\chi^{S} \in \mathbb{R}^{n} | S \subseteq V \text{ is a stable set of } G)$$

where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_n = (V_n, E_n)$)

$$TSP(n) = \operatorname{conv}(\chi^F \in \mathbb{R}^{|E_n|} | F \subseteq E_n \text{ is a tour of } K_n)$$

Matching polytope

$$MATCH(G) = \operatorname{conv}(\chi^M \in \mathbb{R}^{|E|} | M \subseteq E \text{ is a matching of } G)$$

Parity polytope

 $PAR(n) = \operatorname{conv}(x \in \{0,1\}^n | x \text{ has an odd number of } 1.$)

Clique Stable Set Separation

Well-studied polytopes :

Stable Set polytope

$$STAB(G) = \operatorname{conv}(\chi^{S} \in \mathbb{R}^{n} | S \subseteq V \text{ is a stable set of } G)$$

where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_n = (V_n, E_n)$)

$$TSP(n) = \operatorname{conv}(\chi^F \in \mathbb{R}^{|E_n|} | F \subseteq E_n \text{ is a tour of } K_n)$$

Matching polytope

$$MATCH(G) = \operatorname{conv}(\chi^M \in \mathbb{R}^{|E|} | M \subseteq E \text{ is a matching of } G)$$

Parity polytope

 $PAR(n) = \operatorname{conv}(x \in \{0,1\}^n | x \text{ has an odd number of } 1.)$

These polytopes have many facets. In order to solve optimization problems with Linear Programming, we need polytopes with a small number of facets.

Clique Stable Set Separation

P: polytope in \mathbb{R}^2 we want to optimize on (8 facets) Q: polytope in \mathbb{R}^3 which projects to P (6 facets) \Rightarrow Easier to optimize on Q and project the solution!

Extended formulation

- P: a polytope in \mathbb{R}^d .
- Q: a polytope in higher dimension \mathbb{R}^r .

Q is an *extension* of P if there exists a linear map π such that $\pi(Q) = P$. The *size* of Q is the number of facets of Q.

Extended formulation

- P: a polytope in \mathbb{R}^d .
- Q: a polytope in higher dimension \mathbb{R}^r .

Q is an *extension* of P if there exists a linear map π such that $\pi(Q) = P$. The *size* of Q is the number of facets of Q.

Extension complexity

 $xc(P) = min\{$ size of $Q \mid Q$ is an extension of $P\}$.

Extended formulation

- P: a polytope in \mathbb{R}^d .
- Q : a polytope in higher dimension \mathbb{R}^r .

Q is an *extension* of P if there exists a linear map π such that $\pi(Q) = P$. The *size* of Q is the number of facets of Q.

Extension complexity

 $xc(P) = min\{$ size of $Q \mid Q$ is an extension of $P\}$.

Equivalently, an *extended formulation* of P of *size* r is a linear system

$$Ex + Fy = g, \quad y \ge 0$$

in variables $(x, y) \in \mathbb{R}^{d+r}$ (E, F, g matrices/vector of suitable size).

Clique Stable Set Separation

Poly-time solvable :

- Matching polytope (Edmond's algorithm)
- Spanning Tree Polytope (Prim's and Kruskal's algorithms)
- Parity Polytope

NP-hard problems :

- Traveling Salesman Polytope
- Stable Set polytope
- Cut polytope
- Knapsack polytope

Clique Stable Set Separation

Poly-time solvable :

- Matching polytope (Edmond's algorithm) [1]
- Spanning Tree Polytope (Prim's and Kruskal's algorithms) [4]
- Parity Polytope [4]

NP-hard problems :

- Traveling Salesman Polytope [2]
- Stable Set polytope [2]
- Cut polytope [2]
- Knapsack polytope [3]

Exponential lower bound on the extension complexity Polynomial upper bound for the extension complexity

- [1] : Rothvoss 13
- [2] : Fiorini, Massar, Pokutta, Tiwary, deWolf 13
- [3] : Pokuta, Van Vyve 13
- [4] : Conforti, Cornuéjols, Zambelli (Survey) 10

Maximum Weighted Stable set

Variables : x_v for every vertex v

Objective function : max $\sum_{v \in V} w_v x_v$ where $w_v :=$ weight of v

 $\begin{aligned} \textbf{Subject to}: \quad x_u + x_v \leq 1 \text{ for every edge } uv \\ x_v \in \{0,1\} \text{ for every vertex } v \end{aligned}$

Maximum Weighted Stable set

Variables : x_v for every vertex v

Objective function : max $\sum_{v \in V} w_v x_v$ where $w_v :=$ weight of v

Subject to : $x_u + x_v \le 1$ for every edge uv $x_v \in \{0, 1\}$ for every vertex v $0 \le x_v \le 1$ for every vertex v

Maximum Weighted Stable set

Variables : x_v for every vertex v

Objective function : max $\sum_{v \in V} w_v x_v$ where $w_v :=$ weight of v

 $\begin{array}{lll} \textbf{Subject to}: & x_u + x_v \leq 1 \text{ for every edge } uv \\ & \frac{x_v \in \{0, 1\} \text{ for every vertex } v}{0 \leq x_v \leq 1 \text{ for every vertex } v} \end{array} \\ \end{array}$

 \Rightarrow On the complete graph K_n with constant weight $w_v = 1$:

Optimal relaxation solution : n/2 (1/2 for every vertex).

Optimal Integer Linear Program solution : 1 (1 for one vertex, 0 for the others).

Maximum Weighted Stable set

Variables : x_v for every vertex v

Objective function : max $\sum_{v \in V} w_v x_v$ where $w_v :=$ weight of v

 $\begin{array}{lll} \textbf{Subject to}: & x_u + x_v \leq 1 \text{ for every edge } uv \\ & \frac{x_v \in \{0, 1\} \text{ for every vertex } v}{0 \leq x_v \leq 1 \text{ for every vertex } v} \end{array} \\ \end{array}$

 \Rightarrow On the complete graph K_n with constant weight $w_v = 1$:

Optimal relaxation solution : n/2 (1/2 for every vertex).

Optimal Integer Linear Program solution : 1 (1 for one vertex, 0 for the others).

 \Rightarrow Bad solution !

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

 $0 \le x_v \le 1$ for every $v \in V$ (1)

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

 $0 \le x_v \le 1$ for every $v \in V$ (1) $x_u + x_v \le 1$ for every $uv \in E$ (2)

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

$$0 \le x_v \le 1$$
 for every $v \in V$ (1)
 $x_u + x_v \le 1$ for every $uv \in E$ (2)
 $\sum_{v \in K} x_v \le 1$ for every clique K (3)

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

$$\begin{array}{l} 0 \leq x_{v} \leq 1 \text{ for every } v \in V \ (1) \\ x_{u} + x_{v} \leq 1 \text{ for every } uv \in E \ (2) \\ \Sigma_{v \in K} x_{v} \leq 1 \text{ for every clique } K \ (3) \\ \Sigma_{c \in C} x_{v} \leq (|\mathcal{C}| - 1)/2 \text{ for every odd cycle } C \ (4) \end{array}$$

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

$$\begin{array}{l} 0 \leq x_{v} \leq 1 \text{ for every } v \in V \ (1) \\ x_{u} + x_{v} \leq 1 \text{ for every } uv \in E \ (2) \\ \Sigma_{v \in K} x_{v} \leq 1 \text{ for every clique } K \ (3) \\ \Sigma_{c \in C} x_{v} \leq (|C| - 1)/2 \text{ for every odd cycle } C \ (4) \\ \dots \end{array}$$

(1) and (2) : enough for bipartite graphs

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

$$\begin{array}{l} 0 \leq x_{v} \leq 1 \text{ for every } v \in V \ (1) \\ x_{u} + x_{v} \leq 1 \text{ for every } uv \in E \ (2) \\ \Sigma_{v \in K} x_{v} \leq 1 \text{ for every clique } K \ (3) \\ \Sigma_{c \in C} x_{v} \leq (|C| - 1)/2 \text{ for every odd cycle } C \ (4) \\ \dots \end{array}$$

(1) and (2) : enough for bipartite graphs(1) and (3) : enough for perfect graphs

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

$$0 \le x_{v} \le 1 \text{ for every } v \in V (1)$$

$$x_{u} + x_{v} \le 1 \text{ for every } uv \in E (2)$$

$$\sum_{v \in K} x_{v} \le 1 \text{ for every clique } K (3)$$

$$\sum_{c \in C} x_{v} \le (|C| - 1)/2 \text{ for every odd cycle } C (4)$$

...

and (2) : enough for bipartite graphs
 and (3) : enough for perfect graphs
 and (4) : enough for *t*-perfect graphs

Clique Stable Set Separation

Extended formulation for comparability graphs

Variables : $x_v \quad \forall v \in V$

Clique Stable Set Separation

Extended formulation for comparability graphs

Variables :
$$x_v \quad \forall v \in V$$

 $b_v, t_v \quad \forall v \in V$
Clique Stable Set Separation

$$\begin{array}{ll} \text{(ariables :} & x_{v} \quad \forall v \in V \\ & b_{v}, t_{v} \quad \forall v \in V \\ & z_{uv} \quad \forall u < v \in V. \end{array}$$

Clique Stable Set Separation

Extended formulation for comparability graphs

Constraints :

$$\begin{aligned} \forall v \in V \quad x_v, b_v, t_v \geq 0 \\ \forall u < v \in V \quad z_{uv} \geq 0 \end{aligned}$$

Clique Stable Set Separation

Extended formulation for comparability graphs

Variables :
$$x_v \quad \forall v \in V$$
 $b_v, t_v \quad \forall v \in V$ $z_{uv} \quad \forall u < v \in V$

Constraints :

$$\begin{aligned} \forall v \in V \quad x_v, b_v, t_v \geq 0 \\ \forall u < v \in V \quad z_{uv} \geq 0 \\ \forall K = v_1 < v_2 < \cdots < v_k \quad \sum_{i=1}^k x_{v_i} + b_{v_1} + t_{v_k} + \sum_{i=1}^{k-1} z_{v_i v_{i+1}} = 1 \end{aligned}$$

Clique Stable Set Separation

Variables :
$$x_v \quad \forall v \in V$$

 $b_v, t_v \quad \forall v \in V$
 $z_{uv} \quad \forall u < v \in V$.
Constraints : $\mathcal{O}(n^2)$ inequalities
 $\forall v \in V \quad x_v, b_v, t_v \ge 0$
 $\forall u < v \in V \quad z_{uv} \ge 0$
 $\forall K = v_1 < v_2 < \cdots < v_k \quad \sum_{i=1}^k x_{v_i} + b_{v_1} + t_{v_k} + \sum_{i=1}^{k-1} z_{v_i v_{i+1}} = 1$

Clique Stable Set Separation

Clique Stable Set Separation

$$\begin{array}{lll} \text{Variables}: & x_{\nu} & \forall \nu \in V \\ & b_{\nu}, t_{\nu} & \forall \nu \in V \\ & z_{u\nu} & \forall u < \nu \in V \\ \text{Constraints}: & \mathcal{O}(n^2) \text{ inequalities} \\ & \forall \nu \in V & x_{\nu}, b_{\nu}, t_{\nu} \geq 0 \\ & \forall u < \nu \in V & z_{u\nu} \geq 0 \\ & \forall K = v_1 < v_2 < \cdots < v_k & \sum_{i=1}^k x_{\nu_i} + b_{\nu_1} + t_{\nu_k} + \sum_{i=1}^{k-1} z_{\nu_i \nu_{i+1}} = 1 \end{array}$$

Clique Stable Set Separation

Clique Stable Set Separation

$$\begin{array}{ll} \text{Variables}: & x_{\nu} \quad \forall \nu \in V \\ & b_{\nu}, t_{\nu} \quad \forall \nu \in V \\ & z_{u\nu} \quad \forall u < \nu \in V \\ \text{Constraints}: & \mathcal{O}(n^2) \text{ inequalities} \\ & \forall \nu \in V \quad x_{\nu}, b_{\nu}, t_{\nu} \geq 0 \\ & \forall u < \nu \in V \quad z_{u\nu} \geq 0 \\ & \forall \mathcal{K} = v_1 < v_2 < \cdots < v_k \quad \sum_{i=1}^k x_{\nu_i} + b_{\nu_1} + t_{\nu_k} + \sum_{i=1}^{k-1} z_{\nu_i \nu_{i+1}} = 1 \end{array}$$

Lower bounding techniques on the extension complexity ${\tt ooooo}$

Clique Stable Set Separation

Extended formulation for comparability graphs

Constraints :

$$\begin{aligned} \forall \mathbf{v} \in V & x_{\mathbf{v}}, b_{\mathbf{v}}, t_{\mathbf{v}} \geq 0 \\ \forall u < \mathbf{v} \in V & z_{uv} \geq 0 \\ \forall K = v_1 < v_2 < \cdots < v_k & \sum_{i=1}^k x_{v_i} + b_{v_1} + t_{v_k} + \sum_{i=1}^{k-1} z_{v_i v_{i+1}} = 1 \end{aligned}$$

Given an integer solution $x = \chi^{S}$:

•
$$b_v = \begin{vmatrix} 1 & \text{iff } \nexists s \in S & v \le s \\ 0 & \text{otherwise} \end{vmatrix}$$

• $t_v = \begin{vmatrix} 1 & \text{iff } \exists s \in S & v < s \\ 0 & \text{otherwise} \end{vmatrix}$
• $z_{uv} = \begin{vmatrix} 1 & \text{iff } \exists s \in S & u < s \\ \& \ \nexists s' & v < s' \& v \notin S \\ 0 & \text{otherwise} \end{vmatrix}$

Lower bounding techniques on the extension complexity $\verb"ooooo"$

Clique Stable Set Separation

Extended formulation for comparability graphs

Constraints :

$$\begin{array}{ll} \forall v \in V & x_{v}, b_{v}, t_{v} \geq 0 \\ \forall u < v \in V & z_{uv} \geq 0 \\ \forall K = v_{1} < v_{2} < \cdots < v_{k} & \sum_{i=1}^{k} x_{v_{i}} + b_{v_{1}} + t_{v_{k}} + \sum_{i=1}^{k-1} z_{v_{i}v_{i+1}} = 1 \end{array}$$

Given an integer solution $x = \chi^{S}$:

Lower bounding techniques on the extension complexity $\verb"ooooo"$

Clique Stable Set Separation

Extended formulation for comparability graphs

Constraints :

$$\begin{array}{l} \forall v \in V \quad x_v, b_v, t_v \geq 0 \\ \forall u < v \in V \quad z_{uv} \geq 0 \\ \forall K = v_1 < v_2 < \cdots < v_k \quad \sum_{i=1}^k x_{v_i} + \frac{b_{v_1}}{v_i} + t_{v_k} + \sum_{i=1}^{k-1} z_{v_i v_{i+1}} = 1 \end{array}$$

Given an integer solution $x = \chi^{S}$:

Clique Stable Set Separation

Extended formulation for comparability graphs

Constraints :

$$\begin{aligned} \forall \mathbf{v} \in V \quad x_{\mathbf{v}}, b_{\mathbf{v}}, t_{\mathbf{v}} \geq 0 \\ \forall u < \mathbf{v} \in V \quad z_{uv} \geq 0 \\ \forall K = v_1 < v_2 < \cdots < v_k \quad \sum_{i=1}^k x_{v_i} + b_{v_1} + t_{v_k} + \sum_{i=1}^{k-1} \mathbf{z}_{v_i v_{i+1}} = 1 \end{aligned}$$

Given an integer solution $x = \chi^{S}$:

•
$$b_{v_1} = \begin{vmatrix} 1 & \text{iff } \nexists s \in S & v \leq s \\ 0 & \text{otherwise} \end{vmatrix}$$

• $t_{v_k} = \begin{vmatrix} 1 & \text{iff } \exists s \in S & v < s \\ 0 & \text{otherwise} \end{vmatrix}$
• $t_{v_k} = \begin{vmatrix} 1 & \text{iff } \exists s \in S & v < s \\ 0 & \text{otherwise} \end{vmatrix}$
• $z_{v_iv_i+1} = \begin{vmatrix} 1 & \text{iff } \exists s \in S & v < s \\ \& \ \nexists s' & v < s' \& v \notin S \\ 0 & \text{otherwise} \end{vmatrix}$

Lower bounding techniques on the extension complexity $\verb"ooooo"$

Clique Stable Set Separation

Extended formulation for comparability graphs

Constraints :

$$\begin{aligned} \forall \mathbf{v} \in \mathbf{V} \quad x_{\mathbf{v}}, b_{\mathbf{v}}, t_{\mathbf{v}} \geq \mathbf{0} \\ \forall u < \mathbf{v} \in \mathbf{V} \quad z_{u\mathbf{v}} \geq \mathbf{0} \\ \forall K = v_1 < v_2 < \cdots < v_k \quad \sum_{i=1}^k x_{v_i} + b_{v_1} + \frac{\mathbf{t}_{\mathbf{v}_k}}{\mathbf{t}_{i=1}} z_{v_i v_{i+1}} = 1 \end{aligned}$$

Given an integer solution $x = \chi^S$:

How to obtain lower bounds?

Three comparable measures on polytope :

- Rectangle covering of the slack matrix $rc(M_{slack})$
- Non-negative rank of the slack matrix $rk_+(M_{slack})$
- The extension complexity of the polytope xc(P)

 $rc(P) \leq rk_+(P) = xc(P)$

Slack matrix :

 p_1, \ldots, p_j, \ldots are vertices of the polytope.

Lower bounding techniques on the extension complexity $\circ \circ \bullet \circ \circ$

Clique Stable Set Separation

Slack matrix of the Stable set polytope :

$$S_1 \quad S_2 \quad \dots \quad S_j \quad \dots$$
Constraint $K_1 : \sum_{v \in K_1} x_v \leq 1$
Constraint $K_2 : \sum_{v \in K_2} x_v \leq 1$

$$\vdots$$
Constraint $K_i : \sum_{v \in K_i} x_v \leq 1$

$$0 \quad 0 \quad 1 - |K_i \cap S_j|$$

$$0$$
Other constraints

 $S_1, ..., S_j, ...$ are stables sets of G.

Lower bounding techniques on the extension complexity $\circ \circ \circ \circ \bullet$

Clique Stable Set Separation

Let us sum up :

Extension complexity

Rectangle covering

Lower bounding techniques on the extension complexity $\circ\circ\circ\circ\bullet$

Clique Stable Set Separation

Let us sum up :

Let us sum up : Stable set polytope for perfect graphs :

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Clique vs Independent Set Problem

log(rc(M)) = Non-det. communication complexity for this pb

$$\begin{array}{c} \text{Constr.} K_1 \\ \text{Constr.} K_2 \\ \text{Constr.} K_2 \\ \text{Constr.} K_3 \\ \text{Constr.} K_4 \end{array} \begin{pmatrix} S_1 & S_2 & S_3 & S_4 & S_5 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ \end{array} \\ \begin{array}{c} \text{Other constraints} \end{array} \end{pmatrix} \\ \begin{array}{c} \text{QSTAB}(G) : M_{i,j} = 1 - |K_i \cap S_j| \end{array}$$

log(rc(M)) = Non-det. communication complexity for this pb

$$\begin{array}{c} \text{Constr.} \mathcal{K}_{1} \\ \text{Constr.} \mathcal{K}_{2} \\ \text{Alice} \rightarrow \text{Constr.} \mathcal{K}_{3} \\ \text{Constr.} \mathcal{K}_{4} \\ \text{Other constraints} \end{array} \begin{pmatrix} S_{1} & S_{2} & S_{3} & S_{4} & S_{5} \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ \end{array} \\ \begin{array}{c} \text{Other constraints} \\ \text{QSTAB}(G) : \mathcal{M}_{i,j} = 1 - |\mathcal{K}_{i} \cap \mathcal{S}_{j}| \end{array}$$
$$\begin{array}{c} \mathsf{Bob} \downarrow \\ \mathsf{Constr.} \mathcal{K}_1 & \begin{pmatrix} S_1 & S_2 & S_3 & S_4 & S_5 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ \mathsf{Alice} \to \mathsf{Constr.} \mathcal{K}_3 \\ \mathsf{Constr.} \mathcal{K}_4 \\ \mathsf{Other \ constraints} & \begin{pmatrix} \mathsf{S_1} & \mathsf{S_2} & \mathsf{S_3} & \mathsf{S_4} & \mathsf{S_5} \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ & & & & \end{pmatrix} \\ \mathcal{QSTAB}(G) : \mathcal{M}_{i,j} = 1 - |\mathcal{K}_i \cap \mathcal{S}_j| \end{array}$$

$$\begin{array}{c} \mathsf{Bob} \downarrow \\ \mathsf{Constr.} K_1 \\ \mathsf{Constr.} K_2 \\ \mathsf{Alice} \to \mathsf{Constr.} K_3 \\ \mathsf{Constr.} K_4 \\ \mathsf{Other \ constraints} \end{array} \begin{pmatrix} S_1 & S_2 & S_3 & S_4 & S_5 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ \\ \mathsf{QSTAB}(G) : M_{i,j} = 1 - |K_i \cap S_j| \end{array}$$

$$\begin{array}{c} \mathsf{Bob} \downarrow \\ \mathsf{Constr.} K_1 \\ \mathsf{Constr.} K_2 \\ \mathsf{Alice} \to \mathsf{Constr.} K_3 \\ \mathsf{Constr.} K_4 \\ \mathsf{Other \ constraints} \end{array} \begin{pmatrix} S_1 & S_2 & S_3 & S_4 & S_5 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ \mathsf{QSTAB}(G) : M_{i,j} = 1 - |K_i \cap S_j| \end{array}$$

$$\begin{array}{c} \mathsf{Bob} \downarrow \\ \mathsf{Constr.} \mathcal{K}_1 & \begin{pmatrix} S_1 & S_2 & S_3 & S_4 & S_5 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ \mathsf{Alice} \to \mathsf{Constr.} \mathcal{K}_3 \\ \mathsf{Constr.} \mathcal{K}_4 \\ \mathsf{Other \ constraints} & \begin{pmatrix} \mathsf{S}_1 & \mathsf{S}_2 & \mathsf{S}_3 & \mathsf{S}_4 & \mathsf{S}_5 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ & & & & \end{pmatrix} \\ \mathcal{QSTAB}(G) : \mathcal{M}_{i,j} = 1 - |\mathcal{K}_i \cap \mathcal{S}_j| \end{array}$$

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Goal [Yannakakis 1991]

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Lower bounding techniques on the extension complexity ${\scriptstyle 00000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Goal [Yannakakis 1991]

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Upper Bound : there exists a CS-separator of size $\mathcal{O}(n^{\log n})$. Lower Bound [Amano, Shigeta 2013] : there exists an infinite family of graphs such that any CS-separator has size $\Omega(n^{2-\varepsilon})$

Lower bounding techniques on the extension complexity ${\scriptstyle 00000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Goal [Yannakakis 1991]

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Upper Bound : there exists a CS-separator of size $\mathcal{O}(n^{\log n})$.

Lower Bound [Amano, Shigeta 2013] : there exists an infinite family of graphs such that any CS-separator has size $\Omega(n^{2-\varepsilon})$

Does there exist for all graph G on n vertices a CS-separator of size poly(n)? Or for which classes of graphs does it exist?

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

In which classes of graphs do we have a polynomial CS-separator?

In which classes of graphs do we have a polynomial CS-separator ? An easy example : if the clique number ω is bounded, say by 3 :

In which classes of graphs do we have a polynomial CS-separator? An easy example : if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3 , take the cut $(T, V \setminus T)$ \Rightarrow CS-separator of size $\mathcal{O}(n^3)$.

In which classes of graphs do we have a polynomial CS-separator? An easy example : if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3 , take the cut $(T, V \setminus T)$ \Rightarrow CS-separator of size $\mathcal{O}(n^3)$. In which classes of graphs do we have a polynomial CS-separator? An easy example : if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3 , take the cut $(T, V \setminus T)$ \Rightarrow CS-separator of size $\mathcal{O}(n^3)$.

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Random graphs [Bousquet, L., Thomassé 2012]

For every $n \in \mathbb{N}$, $p \in [0, 1]$, there exists a set \mathcal{F} of $\mathcal{O}(n^7)$ cuts such that

$$\forall G \in G(n,p) \qquad \Pr(\mathcal{F} \text{ is a CS-sep for } G) \underset{n \to +\infty}{\longrightarrow} 1$$

Lower bounding techniques on the extension complexity ${\tt 00000}$

Clique Stable Set Separation

Random graphs [Bousquet, L., Thomassé 2012]

For every $n \in \mathbb{N}$, $p \in [0, 1]$, there exists a set \mathcal{F} of $\mathcal{O}(n^7)$ cuts such that

$$\forall G \in G(n,p) \qquad \Pr(\mathcal{F} \text{ is a CS-sep for } G) \underset{n \to +\infty}{\longrightarrow} 1$$

Idea : since the edges are all drawn with the same probability p, cliques and stables sets can not both be too big.

Example for $p = 1/2 : \alpha \approx \omega \approx 2 \log n$.

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Split-free

Comparability graphs [Yannakakis 1991]

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Split-free

Comparability graphs [Yannakakis 1991]

Polytopes and extended formulations

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Split-free

Comparability graphs [Yannakakis 1991]

Polytopes and extended formulations

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Split-free

Comparability graphs [Yannakakis 1991]

Lower bounding techniques on the extension complexity ${\tt 00000}$

Clique Stable Set Separation

Split-free

Split graph

A graph (V, E) is *split* if V can be partitioned into a clique and a stable set.

Split-free [Bousquet, L., Thomassé 2012]

Let *H* be a split graph. Then every *H*-free graphs have a CS-separator of size $O(n^{c_H})$.

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Let H be a split graph.

ower bounding techniques on the extension complexity

Clique Stable Set Separation

Let H be a split graph.

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Let H be a split graph.

Key Lemma (using VC-dimension)

 \exists a constant *t* s. t. \forall clique *K* and stable set *S* in a *H*-free :

•
$$\exists S' \subseteq S$$
 s. t. $|S'| = t$ and S' dominates K

• or, $\exists K' \subseteq K$ s. t. |K'| = t and K' antidominates S

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Let H be a split graph.

Key Lemma (using VC-dimension)

 \exists a constant *t* s. t. \forall clique *K* and stable set *S* in a *H*-free :

•
$$\exists S' \subseteq S$$
 s. t. $|S'| = t$ and S' dominates K

• or, $\exists K' \subseteq K$ s. t. |K'| = t and K' antidominates S

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

Let H be a split graph.

Key Lemma (using VC-dimension)

 \exists a constant *t* s. t. \forall clique *K* and stable set *S* in a *H*-free :

•
$$\exists S' \subseteq S$$
 s. t. $|S'| = t$ and S' dominates K

• or, $\exists K' \subseteq K$ s. t. |K'| = t and K' antidominates S

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

$(P_k \text{ and } \overline{P_k})$ -free [Bousquet, L., Thomassé 2013]

There exists a CS-separator of size $\mathcal{O}(n^{c_k})$ for every $(P_k, \overline{P_k})$ -free graph .

Lower bounding techniques on the extension complexity $_{\rm OOOOO}$

Clique Stable Set Separation

$(P_k \text{ and } \overline{P_k})$ -free [Bousquet, L., Thomassé 2013]

There exists a CS-separator of size $\mathcal{O}(n^{c_k})$ for every $(P_k, \overline{P_k})$ -free graph .

Excluding only P_k and not $\overline{P_k}$?

Lower bounding techniques on the extension complexity $\verb"ooooo"$

Clique Stable Set Separation

$(P_k \text{ and } \overline{P_k})$ -free [Bousquet, L., Thomassé 2013]

There exists a CS-separator of size $\mathcal{O}(n^{c_k})$ for every $(P_k, \overline{P_k})$ -free graph .

Excluding only P_k and not $\overline{P_k}$? Yes for k = 5.

*P*₅-free graphs [Bousquet, L., Thomassé 2013], consequence of [Loksthanov, Vatshelle, Villanger 2013]

Every P_5 -free graph has a CS-separator of size $\mathcal{O}(n^8)$.

Lower bounding techniques on the extension complexity $\verb"ooooo"$

Clique Stable Set Separation

$(P_k \text{ and } \overline{P_k})$ -free [Bousquet, L., Thomassé 2013]

There exists a CS-separator of size $\mathcal{O}(n^{c_k})$ for every $(P_k, \overline{P_k})$ -free graph .

Excluding only P_k and not $\overline{P_k}$? Yes for k = 5.

*P*₅-free graphs [Bousquet, L., Thomassé 2013], consequence of [Loksthanov, Vatshelle, Villanger 2013]

Every P_5 -free graph has a CS-separator of size $\mathcal{O}(n^8)$.

Extended formulation for *P*₅-free graphs [Conforti, Di Summa, Faenza, Fiorini, Pashkovich]

For every P_5 -free graph G, STAB(G) has an extended formulation of polynomial size.

Back to perfect graphs :

Decomposition [Chudnovsky, Roberston, Seymour, Thomas]

If a graph is Berge, then for G or \overline{G} , one of the following holds :

- It is a basique graph : bipartite, line graph of bipartite, or double split.
- There is a 2-join
- There is a balanced skew partition.

[L., Trunck, 2013]

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $O(n^2)$. Lower bounding techniques on the extension complexity ${\tt 00000}$

Clique Stable Set Separation

Perspectives

• How to extend the positive results on the CS-separation to extended formulations of the Stable Set polytope?

Perspectives

- How to extend the positive results on the CS-separation to extended formulations of the Stable Set polytope?
- What about the CS-separation in P_k-free graphs for k ≥ 6?
 Extended formulation for the Stable Set polytope?

Perspectives

- How to extend the positive results on the CS-separation to extended formulations of the Stable Set polytope?
- What about the CS-separation in P_k-free graphs for k ≥ 6?
 Extended formulation for the Stable Set polytope?
- Yannakakis question : CS-separation in perfect graphs?

Perspectives

- How to extend the positive results on the CS-separation to extended formulations of the Stable Set polytope?
- What about the CS-separation in P_k-free graphs for k ≥ 6?
 Extended formulation for the Stable Set polytope?
- Yannakakis question : CS-separation in perfect graphs?
- Better lower bound for the CS-separation in general?