Extended formulations of polytopes and Communication complexity

Aurélie Lagoutte

LIP, ENS Lyon

Joint work with N. Bousquet, S. Thomassé et T. Trunck

Wednesday, november 13, 2014
São Paulo Workshop
(1) Polytopes and extended formulations

- Definitions and context
- An example : Stable set polytope in comparability graphs
(2) Lower bounding techniques on the extension complexity
- Slack matrix
- Rectangle covering
(3) Clique Stable Set Separation
- Stating the problem
- Results

A polytope P in \mathbb{R}^{2} :

P can be defined :

A polytope P in \mathbb{R}^{2} :

P can be defined:

- As the convex hull of a set of points : $P=\operatorname{conv}\left(p_{1}, \ldots, p_{k}\right)$

A polytope P in \mathbb{R}^{2} :

- As a bounded polyhedron, by a set of constraints
(=inequalities) :
$x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$
$A x \leq b$
$x \geq 0$

A polytope P in \mathbb{R}^{2} :

P can be defined :

- As the convex hull of a set of points :

$$
P=\operatorname{conv}\left(p_{1}, \ldots, p_{k}\right)
$$

- As a bounded polyhedron, by a set of constraints
(=inequalities) :
$x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$
$A x \leq b$
$x \geq 0$

A polytope P in \mathbb{R}^{2} :

P can be defined :

- As the convex hull of a set of points :

$$
P=\operatorname{conv}\left(p_{1}, \ldots, p_{k}\right)
$$

- As a bounded polyhedron, by a set of constraints
(=inequalities) :
$x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$
$A x \leq b$
$x \geq 0$

A polytope P in \mathbb{R}^{2} :

P can be defined :

- As the convex hull of a set of points :

$$
P=\operatorname{conv}\left(p_{1}, \ldots, p_{k}\right)
$$

- As a bounded polyhedron, by a set of constraints
(=inequalities) :
$x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$
$A x \leq b$
$x \geq 0$

A polytope P in \mathbb{R}^{2} :

P can be defined :

- As the convex hull of a set of points :

$$
P=\operatorname{conv}\left(p_{1}, \ldots, p_{k}\right)
$$

- As a bounded polyhedron, by a set of constraints
(=inequalities) :
$x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$
$A x \leq b$
$x \geq 0$

A polytope P in \mathbb{R}^{2} :

P can be defined :

- As the convex hull of a set of points :

$$
P=\operatorname{conv}\left(p_{1}, \ldots, p_{k}\right)
$$

- As a bounded polyhedron, by a set of constraints
(=inequalities) :
$x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$
$A x \leq b$
$x \geq 0$

Well-studied polytopes :

Well-studied polytopes :
Stable Set polytope
$\operatorname{STAB}(G)=\operatorname{conv}\left(\chi^{S} \in \mathbb{R}^{n} \mid S \subseteq V\right.$ is a stable set of $\left.G\right)$ where χ^{S} denotes the characteristic vector of $S \subseteq V$

Well-studied polytopes :

Stable Set polytope

$\operatorname{STAB}(G)=\operatorname{conv}\left(\chi^{S} \in \mathbb{R}^{n} \mid S \subseteq V\right.$ is a stable set of $\left.G\right)$ where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_{n}=\left(V_{n}, E_{n}\right)$)

$T S P(n)=\operatorname{conv}\left(\chi^{F} \in \mathbb{R}^{\left|E_{n}\right|} \mid F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right)$

Well-studied polytopes :

Stable Set polytope

$\operatorname{STAB}(G)=\operatorname{conv}\left(\chi^{S} \in \mathbb{R}^{n} \mid S \subseteq V\right.$ is a stable set of $\left.G\right)$ where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_{n}=\left(V_{n}, E_{n}\right)$)

$\operatorname{TSP}(n)=\operatorname{conv}\left(\chi^{F} \in \mathbb{R}^{\left|E_{n}\right|} \mid F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right)$

Matching polytope

$\operatorname{MATCH}(G)=\operatorname{conv}\left(\chi^{M} \in \mathbb{R}^{|E|} \mid M \subseteq E\right.$ is a matching of $\left.G\right)$

Well-studied polytopes :

Stable Set polytope

$\operatorname{STAB}(G)=\operatorname{conv}\left(\chi^{S} \in \mathbb{R}^{n} \mid S \subseteq V\right.$ is a stable set of $\left.G\right)$ where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_{n}=\left(V_{n}, E_{n}\right)$)

$\operatorname{TSP}(n)=\operatorname{conv}\left(\chi^{F} \in \mathbb{R}^{\left|E_{n}\right|} \mid F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right)$

Matching polytope

$\operatorname{MATCH}(G)=\operatorname{conv}\left(\chi^{M} \in \mathbb{R}^{|E|} \mid M \subseteq E\right.$ is a matching of $\left.G\right)$
Parity polytope
$\operatorname{PAR}(n)=\operatorname{conv}\left(x \in\{0,1\}^{n} \mid x\right.$ has an odd number of 1 .)

Well-studied polytopes :

Stable Set polytope

$\operatorname{STAB}(G)=\operatorname{conv}\left(\chi^{S} \in \mathbb{R}^{n} \mid S \subseteq V\right.$ is a stable set of $\left.G\right)$ where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_{n}=\left(V_{n}, E_{n}\right)$)

$\operatorname{TSP}(n)=\operatorname{conv}\left(\chi^{F} \in \mathbb{R}^{\left|E_{n}\right|} \mid F \subseteq E_{n}\right.$ is a tour of $\left.K_{n}\right)$

Matching polytope

$$
\operatorname{MATCH}(G)=\operatorname{conv}\left(\chi^{M} \in \mathbb{R}^{|E|} \mid M \subseteq E \text { is a matching of } G\right)
$$

Parity polytope

$\operatorname{PAR}(n)=\operatorname{conv}\left(x \in\{0,1\}^{n} \mid x\right.$ has an odd number of 1 .)
These polytopes have many facets. In order to solve optimization problems with Linear Programming, we need polytopes with a small number of facets.

P : polytope in \mathbb{R}^{2} we want to optimize on (8 facets) Q : polytope in \mathbb{R}^{3} which projects to P (6 facets)
\Rightarrow Easier to optimize on Q and project the solution !

Extended formulation

$P:$ a polytope in \mathbb{R}^{d}.
Q : a polytope in higher dimension \mathbb{R}^{r}.
Q is an extension of P if there exists a linear map π such that $\pi(Q)=P$. The size of Q is the number of facets of Q.

Extended formulation

P : a polytope in \mathbb{R}^{d}.
Q : a polytope in higher dimension \mathbb{R}^{r}.
Q is an extension of P if there exists a linear map π such that $\pi(Q)=P$. The size of Q is the number of facets of Q.

Extension complexity
$x c(P)=\min \{$ size of $Q \mid Q$ is an extension of $P\}$.

Extended formulation

$P:$ a polytope in \mathbb{R}^{d}.
Q : a polytope in higher dimension \mathbb{R}^{r}.
Q is an extension of P if there exists a linear map π such that $\pi(Q)=P$. The size of Q is the number of facets of Q.

Extension complexity

$x c(P)=\min \{$ size of $Q \mid Q$ is an extension of $P\}$.

Equivalently, an extended formulation of P of size r is a linear system

$$
E x+F y=g, \quad y \geq 0
$$

in variables $(x, y) \in \mathbb{R}^{d+r}$
(E, F, g matrices/vector of suitable size).

Poly-time solvable :

- Matching polytope (Edmond's algorithm)
- Spanning Tree Polytope (Prim's and Kruskal's algorithms)
- Parity Polytope

NP-hard problems :

- Traveling Salesman Polytope
- Stable Set polytope
- Cut polytope
- Knapsack polytope

Poly-time solvable :

- Matching polytope (Edmond's algorithm) [1]
- Spanning Tree Polytope (Prim's and Kruskal's algorithms) [4]
- Parity Polytope [4]

NP-hard problems :

- Traveling Salesman Polytope [2]
- Stable Set polytope [2]
- Cut polytope [2]
- Knapsack polytope [3]

Exponential lower bound on the extension complexity
Polynomial upper bound for the extension complexity
[1] : Rothvoss 13
[2] : Fiorini, Massar, Pokutta, Tiwary, deWolf 13
[3] : Pokuta, Van Vyve 13
[4] : Conforti, Cornuéjols, Zambelli (Survey) 10

Maximum Weighted Stable set

Variables: x_{v} for every vertex v
Objective function : $\max \Sigma_{v \in V} w_{v} x_{v}$ where $w_{v}:=$ weight of v
Subject to : $x_{u}+x_{v} \leq 1$ for every edge $u v$
$x_{v} \in\{0,1\}$ for every vertex v

Maximum Weighted Stable set

Variables: x_{v} for every vertex v
Objective function : $\max \Sigma_{v \in V} w_{v} x_{v}$ where $w_{v}:=$ weight of v
Subject to : $x_{u}+x_{v} \leq 1$ for every edge $u v$
$*_{v} \subset\{0,1\}$ for every vertex \forall
$0 \leq x_{v} \leq 1$ for every vertex v

Maximum Weighted Stable set

Variables: x_{v} for every vertex v
Objective function : $\max \Sigma_{v \in V} w_{v} x_{v}$ where $w_{v}:=$ weight of v
Subject to : $x_{u}+x_{v} \leq 1$ for every edge $u v$
$*_{v} \subset\{0,1\}$ for every vertex \forall
$0 \leq x_{v} \leq 1$ for every vertex v
\Rightarrow On the complete graph K_{n} with constant weight $w_{v}=1$:
Optimal relaxation solution : $n / 2$ ($1 / 2$ for every vertex).
Optimal Integer Linear Program solution : 1 (1 for one vertex, 0 for the others).

Maximum Weighted Stable set

Variables: x_{v} for every vertex v
Objective function : $\max \Sigma_{v \in V} w_{v} x_{v}$ where $w_{v}:=$ weight of v
Subject to : $x_{u}+x_{v} \leq 1$ for every edge $u v$
$*_{v} \subset\{0,1\}$ for every vertex \forall
$0 \leq x_{v} \leq 1$ for every vertex v
\Rightarrow On the complete graph K_{n} with constant weight $w_{v}=1$:
Optimal relaxation solution : $n / 2$ ($1 / 2$ for every vertex).
Optimal Integer Linear Program solution : 1 (1 for one vertex, 0 for the others).
\Rightarrow Bad solution !

Stable set polytope : valid inequalities

Stable set polytope

$\operatorname{STAB}(\mathrm{G})=\operatorname{conv}\left(\chi^{S} \mid S\right.$ is a stable set of G$)$

Valid inequalities :

Stable set polytope : valid inequalities

Stable set polytope

$\operatorname{STAB}(\mathrm{G})=\operatorname{conv}\left(\chi^{S} \mid S\right.$ is a stable set of G$)$

Valid inequalities :

$0 \leq x_{v} \leq 1$ for every $v \in V(1)$

Stable set polytope : valid inequalities

Stable set polytope

$\operatorname{STAB}(\mathrm{G})=\operatorname{conv}\left(\chi^{S} \mid S\right.$ is a stable set of G$)$

Valid inequalities :

$$
\begin{aligned}
& 0 \leq x_{v} \leq 1 \text { for every } v \in V(1) \\
& x_{u}+x_{v} \leq 1 \text { for every } u v \in E(2)
\end{aligned}
$$

Stable set polytope : valid inequalities

Stable set polytope

$\operatorname{STAB}(\mathrm{G})=\operatorname{conv}\left(\chi^{S} \mid S\right.$ is a stable set of G$)$

Valid inequalities:

$0 \leq x_{v} \leq 1$ for every $v \in V$ (1)
$x_{u}+x_{v} \leq 1$ for every $u v \in E$ (2)
$\Sigma_{v \in K} x_{v} \leq 1$ for every clique K (3)

Stable set polytope : valid inequalities

Stable set polytope

$\operatorname{STAB}(\mathrm{G})=\operatorname{conv}\left(\chi^{S} \mid S\right.$ is a stable set of G$)$

Valid inequalities:

$0 \leq x_{v} \leq 1$ for every $v \in V$ (1)
$x_{u}+x_{v} \leq 1$ for every $u v \in E$ (2)
$\Sigma_{v \in K} x_{v} \leq 1$ for every clique K (3)
$\Sigma_{c \in C} x_{v} \leq(|C|-1) / 2$ for every odd cycle C (4)

Stable set polytope : valid inequalities

Stable set polytope

$\operatorname{STAB}(\mathrm{G})=\operatorname{conv}\left(\chi^{S} \mid S\right.$ is a stable set of G$)$

Valid inequalities :

$0 \leq x_{v} \leq 1$ for every $v \in V$ (1)
$x_{u}+x_{v} \leq 1$ for every $u v \in E$ (2)
$\Sigma_{v \in K} X_{v} \leq 1$ for every clique K (3)
$\Sigma_{c \in C} x_{v} \leq(|C|-1) / 2$ for every odd cycle C (4)
(1) and (2) : enough for bipartite graphs

Stable set polytope : valid inequalities

Stable set polytope

$\operatorname{STAB}(\mathrm{G})=\operatorname{conv}\left(\chi^{S} \mid S\right.$ is a stable set of G$)$

Valid inequalities :

$$
\begin{aligned}
& 0 \leq x_{v} \leq 1 \text { for every } v \in V(1) \\
& x_{u}+x_{v} \leq 1 \text { for every } u v \in E(2) \\
& \Sigma_{v \in K} x_{v} \leq 1 \text { for every clique } K(3) \\
& \Sigma_{c \in C} \leq(|C|-1) / 2 \text { for every odd cycle } C \text { (4) }
\end{aligned}
$$

(1) and (2) : enough for bipartite graphs
(1) and (3) : enough for perfect graphs

Stable set polytope : valid inequalities

Stable set polytope

$\operatorname{STAB}(\mathrm{G})=\operatorname{conv}\left(\chi^{S} \mid S\right.$ is a stable set of G$)$

Valid inequalities :

$$
\begin{aligned}
& 0 \leq x_{v} \leq 1 \text { for every } v \in V(1) \\
& x_{u}+x_{v} \leq 1 \text { for every } u v \in E(2) \\
& \Sigma_{v \in K} x_{v} \leq 1 \text { for every clique } K(3) \\
& \Sigma_{c \in C} x_{v} \leq(|C|-1) / 2 \text { for every odd cycle } C \text { (4) }
\end{aligned}
$$

(1) and (2) : enough for bipartite graphs
(1) and (3) : enough for perfect graphs
(1) and (4) : enough for t-perfect graphs

Extended formulation for comparability graphs

Variables : $x_{v} \quad \forall v \in V$

Extended formulation for comparability graphs

Variables: $x_{v} \quad \forall v \in V$

$$
b_{v}, t_{v} \quad \forall v \in V
$$

Extended formulation for comparability graphs

Variables: $x_{v} \quad \forall v \in V$

$$
\begin{aligned}
& b_{v}, t_{v} \quad \forall v \in V \\
& z_{u v} \quad \forall u<v \in V .
\end{aligned}
$$

Extended formulation for comparability graphs
Variables: $x_{v} \quad \forall v \in V$

$$
\begin{aligned}
& b_{v}, t_{v} \quad \forall v \in V \\
& z_{u v} \quad \forall u<v \in V .
\end{aligned}
$$

Constraints :

$$
\begin{array}{ll}
\forall v \in V & x_{v}, b_{v}, t_{v} \geq 0 \\
\forall u<v \in V & z_{u v} \geq 0
\end{array}
$$

Extended formulation for comparability graphs
Variables: $x_{v} \quad \forall v \in V$

$$
\begin{aligned}
& b_{v}, t_{v} \quad \forall v \in V \\
& z_{u v} \quad \forall u<v \in V .
\end{aligned}
$$

Constraints :

$$
\begin{aligned}
\forall v \in V & x_{v}, b_{v}, t_{v} \geq 0 \\
\forall u<v \in V & z_{u v} \geq 0 \\
\forall K=v_{1}<v_{2}<\cdots<v_{k} & \sum_{i=1}^{k} x_{v_{i}}+b_{v_{1}}+t_{v_{k}}+\sum_{i=1}^{k-1} z_{v_{i} v_{i+1}}=1
\end{aligned}
$$

Extended formulation for comparability graphs
Variables: $x_{v} \forall v \in V$

$$
\begin{aligned}
& b_{v}, t_{v} \quad \forall v \in V \\
& z_{u v} \quad \forall u<v \in V .
\end{aligned}
$$

Constraints: $\mathcal{O}\left(n^{2}\right)$ inequalities

$$
\forall v \in V \quad x_{v}, b_{v}, t_{v} \geq 0
$$

$$
\forall u<v \in V \quad z_{u v} \geq 0
$$

$$
\forall K=v_{1}<v_{2}<\cdots<v_{k} \quad \sum_{i=1}^{k} x_{v_{i}}+b_{v_{1}}+t_{v_{k}}+\sum_{i=1}^{k-1} z_{v_{i} v_{i+1}}=1
$$

Extended formulation for comparability graphs
Variables : $x_{v} \quad \forall v \in V$

$$
\begin{aligned}
& b_{v}, t_{v} \quad \forall v \in V \\
& z_{u v} \quad \forall u<v \in V .
\end{aligned}
$$

Constraints: $\mathcal{O}\left(n^{2}\right)$ inequalities

$$
\forall v \in V \quad x_{v}, b_{v}, t_{v} \geq 0
$$

$$
\forall u<v \in V \quad z_{u v} \geq 0
$$

$$
\forall K=v_{1}<v_{2}<\cdots<v_{k} \quad \sum_{i=1}^{k} x_{v_{i}}+b_{v_{1}}+t_{v_{k}}+\sum_{i=1}^{k-1} z_{v_{i} v_{i+1}}=1
$$

Extended formulation for comparability graphs
Variables: $x_{v} \quad \forall v \in V$

$$
\begin{aligned}
& b_{v}, t_{v} \quad \forall v \in V \\
& z_{u v} \quad \forall u<v \in V .
\end{aligned}
$$

Constraints: $\mathcal{O}\left(n^{2}\right)$ inequalities

$$
\forall v \in V \quad x_{v}, b_{v}, t_{v} \geq 0
$$

$$
\forall u<v \in V \quad z_{u v} \geq 0
$$

$$
\forall K=v_{1}<v_{2}<\cdots<v_{k} \quad \sum_{i=1}^{k} x_{v_{i}}+b_{v_{1}}+t_{v_{k}}+\sum_{i=1}^{k-1} z_{v_{i} v_{i+1}}=1
$$

Extended formulation for comparability graphs
Variables : $x_{v} \quad \forall v \in V$

$$
\begin{aligned}
& b_{v}, t_{v} \quad \forall v \in V \\
& z_{u v} \quad \forall u<v \in V .
\end{aligned}
$$

Constraints: $\mathcal{O}\left(n^{2}\right)$ inequalities

$$
\forall v \in V \quad x_{v}, b_{v}, t_{v} \geq 0
$$

$$
\forall u<v \in V \quad z_{u v} \geq 0
$$

$$
\forall K=v_{1}<v_{2}<\cdots<v_{k} \quad \sum_{i=1}^{k} x_{v_{i}}+b_{v_{1}}+t_{v_{k}}+\sum_{i=1}^{k-1} z_{v_{i} v_{i+1}}=1
$$

Extended formulation for comparability graphs
Variables: $x_{v} \quad \forall v \in V$

$$
\begin{aligned}
& b_{v}, t_{v} \quad \forall v \in V \\
& z_{u v} \quad \forall u<v \in V .
\end{aligned}
$$

Constraints: $\mathcal{O}\left(n^{2}\right)$ inequalities

$$
\forall v \in V \quad x_{v}, b_{v}, t_{v} \geq 0
$$

$$
\forall u<v \in V \quad z_{u v} \geq 0
$$

$$
\forall K=v_{1}<v_{2}<\cdots<v_{k} \quad \sum_{i=1}^{k} x_{v_{i}}+b_{v_{1}}+t_{v_{k}}+\sum_{i=1}^{k-1} z_{v_{i} v_{i+1}}=1
$$

Extended formulation for comparability graphs

Constraints :

$$
\begin{aligned}
\forall v \in V & x_{v}, b_{v}, t_{v} \geq 0 \\
\forall u<v \in V & z_{u v} \geq 0 \\
\forall K=v_{1}<v_{2}<\cdots<v_{k} & \sum_{i=1}^{k} x_{v_{i}}+b_{v_{1}}+t_{v_{k}}+\sum_{i=1}^{k-1} z_{v_{i} v_{i+1}}=1
\end{aligned}
$$

Given an integer solution $x=\chi^{S}$:

$$
\begin{aligned}
& \text { - } b_{v}=\left\lvert\, \begin{array}{ll}
1 & \text { iff } \exists s \in S \quad v \leq s \\
0 & \text { otherwise }
\end{array}\right. \\
& \text { - } t_{v}=\left\lvert\, \begin{array}{ll}
1 & \text { iff } \exists s \in S \quad v<s \\
0 & \text { otherwise }
\end{array}\right. \\
& \text { - } z_{u v}=\left\lvert\, \begin{array}{ll}
1 & \text { iff } \exists s \in S \quad u<s \\
\text { \& } \exists s^{\prime} v<s^{\prime} \& v \notin S \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Extended formulation for comparability graphs

Constraints :

$$
\begin{array}{cl}
\forall v \in V & x_{v}, b_{v}, t_{v} \geq 0 \\
\forall u<v \in V & z_{u v} \geq 0 \\
\forall K=v_{1}<v_{2}<\cdots<v_{k} & \sum_{i=1}^{k} x_{v_{i}}+b_{v_{1}}+t_{v_{k}}+\sum_{i=1}^{k-1} z_{v_{i} v_{i+1}}=1
\end{array}
$$

Given an integer solution $x=\chi^{S}$:

$$
\begin{aligned}
& \text { - } b_{v_{1}}=\left\lvert\, \begin{array}{ll}
1 & \text { iff } \nexists s \in S \quad v \leq s \\
0 & \text { otherwise }
\end{array}\right. \\
& \text { - } t_{v_{k}}=\left\lvert\, \begin{array}{ll}
1 & \text { iff } \exists s \in S \quad v<s \\
0 & \text { otherwise }
\end{array}\right. \\
& \text { - } z_{v_{i} v_{i}+1}=\left\lvert\, \begin{array}{ll}
1 & \text { iff } \exists s \in S \quad u<s \\
\text { \& } \exists s^{\prime} v<s^{\prime} \& v \notin S \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Extended formulation for comparability graphs

Constraints :

$$
\begin{aligned}
\forall v \in V & x_{v}, b_{v}, t_{v} \geq 0 \\
\forall u<v \in V & z_{u v} \geq 0 \\
\forall K=v_{1}<v_{2}<\cdots<v_{k} & \sum_{i=1}^{k} x_{v_{i}}+b_{v_{1}}+t_{v_{k}}+\sum_{i=1}^{k-1} z_{v_{i} v_{i+1}}=1
\end{aligned}
$$

Given an integer solution $x=\chi^{S}$:

$$
\begin{aligned}
& \text { - } b_{v_{1}}=\left\lvert\, \begin{array}{lll}
1 & \text { iff } \nexists s \in S \quad v \leq s \\
0 & \text { otherwise }
\end{array}\right. \\
& \text { - } t_{v_{k}}=\left\lvert\, \begin{array}{ll}
1 & \text { iff } \exists s \in S \quad v<s \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\text { - } z_{v_{i} v_{i}+1}=\left\lvert\, \begin{array}{ll}
1 & \text { iff } \exists s \in S \quad u<s \\
& \& \nexists s^{\prime} v<s^{\prime} \& v \notin S \\
0 & \text { otherwise }
\end{array}\right.
$$

Extended formulation for comparability graphs

Constraints :

$$
\begin{aligned}
\forall v \in V & x_{v}, b_{v}, t_{v} \geq 0 \\
\forall u<v \in V & z_{u v} \geq 0 \\
\forall K=v_{1}<v_{2}<\cdots<v_{k} & \sum_{i=1}^{k} x_{v_{i}}+b_{v_{1}}+t_{v_{k}}+\sum_{i=1}^{k-1} z_{v_{i} v_{i+1}}=1
\end{aligned}
$$

Given an integer solution $x=\chi^{S}$:

$$
\begin{aligned}
& \text { - } b_{v_{1}}=\left\lvert\, \begin{array}{lll}
1 & \text { iff } \nexists s \in S \quad v \leq s \\
0 & \text { otherwise }
\end{array}\right. \\
& \text { - } t_{v_{k}}=\left\lvert\, \begin{array}{ll}
1 & \text { iff } \exists s \in S \quad v<s \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\text { - } z_{v_{i} v_{i}+1}=\left\lvert\, \begin{array}{ll}
1 & \text { iff } \exists s \in S \quad u<s \\
& \& \nexists s^{\prime} v<s^{\prime} \& v \notin S \\
0 & \text { otherwise }
\end{array}\right.
$$

Extended formulation for comparability graphs

Constraints :

$$
\begin{aligned}
\forall v \in V & x_{v}, b_{v}, t_{v} \geq 0 \\
\forall u<v \in V & z_{u v} \geq 0 \\
\forall K=v_{1}<v_{2}<\cdots<v_{k} & \sum_{i=1}^{k} x_{v_{i}}+b_{v_{1}}+t_{v_{k}}+\sum_{i=1}^{k-1} z_{v_{i} v_{i+1}}=1
\end{aligned}
$$

Given an integer solution $x=\chi^{S}$:

- $b_{v_{1}}=\left\lvert\, \begin{array}{ll}1 & \text { iff } \nexists s \in S \quad v \leq s \\ 0 & \text { otherwise }\end{array}\right.$ - $t_{v_{k}}=\left\lvert\, \begin{array}{ll}1 & \text { iff } \exists s \in S \quad v<s \\ 0 & \text { otherwise }\end{array}\right.$
- $z_{v_{i} v_{i}+1}=\left\lvert\, \begin{array}{ll}1 & \text { iff } \exists s \in S \quad u<s \\ & \& \nexists s^{\prime} v<s^{\prime} \& v \notin S \\ 0 & \text { otherwise }\end{array}\right.$

How to obtain lower bounds?

Three comparable measures on polytope :

- Rectangle covering of the slack matrix rc($\left.M_{\text {slack }}\right)$
- Non-negative rank of the slack matrix $\mathrm{rk}_{+}\left(M_{\text {slack }}\right)$
- The extension complexity of the polytope xc(P)

$$
r c(P) \leq r k_{+}(P)=x c(P)
$$

Slack matrix :

	p_{1}	p	p_{j}	..
Constraint 1: $A_{1} \mathrm{x} \leq b_{1}$	0	2		
Constraint 2 : $A_{2} \mathrm{x} \leq b_{2}$	2	5		
Constraint i : $A_{i} \times \leq b_{i}$	0	0	$b_{i}-A_{i} p_{j}$	

$p_{1}, \ldots, p_{j}, \ldots$ are vertices of the polytope.

Slack matrix of the Stable set polytope :

$$
\begin{array}{lllll}
S_{1} & S_{2} & \ldots & S_{j}
\end{array}
$$

Constraint $K_{1}: \Sigma_{v \in K_{1}} x_{v} \leq 1\left(\begin{array}{ll}0 & 1\end{array}\right.$
Constraint $K_{2}: \Sigma_{v \in K_{2}} x_{v} \leq 1 / 111$

Constraint $K_{i}: \Sigma_{v \in K_{i}} x_{v} \leq 1 ~ \begin{array}{lll}0 & 0 & 1-\left|K_{i} \cap S_{j}\right|\end{array}$:
Other constraints
$S_{1}, \ldots, S_{j}, \ldots$ are stables sets of G.

Another hidden tool in the slack matrix : Rectangle covering

$$
\left(\begin{array}{cccccccc}
- & 1 & 1 & - & - & - & - & - \\
- & 1 & 1 & - & - & - & - & - \\
- & 1 & 1 & 1 & - & - & 1 & - \\
- & - & - & - & - & - & - & - \\
- & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - \\
1 & 1 & - & - & - & - & - & -
\end{array}\right)
$$

$r c(M)=$ minimum number of combinatorial rectangles needed to cover the support of M

Another hidden tool in the slack matrix : Rectangle covering

$$
\left(\begin{array}{cccccccc}
- & 1 & 1 & - & - & - & - & - \\
- & 1 & 1 & - & - & - & - & - \\
- & 1 & 1 & 1 & - & - & 1 & - \\
- & - & - & - & - & - & - & - \\
- & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - \\
1 & 1 & - & - & - & - & - & -
\end{array}\right)
$$

$r c(M)=$ minimum number of combinatorial rectangles needed to cover the support of M

Another hidden tool in the slack matrix : Rectangle covering

$$
\left(\begin{array}{cccccccc}
- & 1 & 1 & - & - & - & - & - \\
- & 1 & 1 & - & - & - & - & - \\
- & 1 & 1 & 1 & - & - & 1 & - \\
- & - & - & - & - & - & - & - \\
- & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - \\
1 & 1 & - & - & - & - & - & -
\end{array}\right)
$$

$r c(M)=$ minimum number of combinatorial rectangles needed to cover the support of M

Another hidden tool in the slack matrix : Rectangle covering

$$
\left(\begin{array}{cccccccc}
- & 1 & 1 & - & - & - & - & - \\
- & 1 & 1 & - & - & - & - & - \\
- & 1 & 1 & 1 & - & - & 1 & - \\
- & - & - & - & - & - & - & - \\
- & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - \\
1 & 1 & - & - & - & - & - & -
\end{array}\right)
$$

$r c(M)=$ minimum number of combinatorial rectangles needed to cover the support of M

Another hidden tool in the slack matrix : Rectangle covering

$$
\left(\begin{array}{cccccccc}
- & 1 & 1 & - & - & - & - & - \\
- & 1 & 1 & - & - & - & - & - \\
- & 1 & 1 & 1 & - & - & 1 & - \\
- & - & - & - & - & - & - & - \\
- & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - \\
1 & 1 & - & - & - & - & - & -
\end{array}\right)
$$

$r c(M)=$ minimum number of combinatorial rectangles needed to cover the support of M
Here : $r c(M)=3$

Let us sum up :

Extension complexity

Rectangle covering

Let us sum up :

Let us sum up :

Stable set polytope for perfect graphs :

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?

Clique vs Independent Set Problem

Do the clique and the stable set intersect?
$\log (r c(M))=$ Non-det. communication complexity for this pb

Constr. K_{1}
Constr. K_{2}
Constr. K_{3}
Constr. K_{4}

1 \& 1 \& 0 \& 0 \& 1

1 \& 1 \& 1 \& 1 \& 0

0 \& 1 \& 1 \& 1 \& 0

1 \& 0 \& 0 \& 0 \& 1\end{array}\right)\)

$Q S T A B(G): M_{i, j}=1-\left|K_{i} \cap S_{j}\right|$
$\log (r c(M))=$ Non-det. communication complexity for this pb

$\log (r c(M))=$ Non-det. communication complexity for this pb

$\log (r c(M))=$ Non-det. communication complexity for this pb

$\log (r c(M))=$ Non-det. communication complexity for this pb

$\log (r c(M))=$ Non-det. communication complexity for this pb

Clique vs Independent Set Problem

Goal [Yannakakis 1991]
Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Clique vs Independent Set Problem

Goal [Yannakakis 1991]

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Upper Bound : there exists a CS-separator of size $\mathcal{O}\left(n^{\log n}\right)$.
Lower Bound [Amano, Shigeta 2013] : there exists an infinite family of graphs such that any CS-separator has size $\Omega\left(n^{2-\varepsilon}\right)$

Clique vs Independent Set Problem

Goal [Yannakakis 1991]

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Upper Bound : there exists a CS-separator of size $\mathcal{O}\left(n^{\log n}\right)$.
Lower Bound [Amano, Shigeta 2013] : there exists an infinite family of graphs such that any CS-separator has size $\Omega\left(n^{2-\varepsilon}\right)$

Does there exist for all graph G on n vertices a CS-separator of size poly (n) ? Or for which classes of graphs does it exist?

In which classes of graphs do we have a polynomial CS-separator?

In which classes of graphs do we have a polynomial CS-separator? An easy example: if the clique number ω is bounded, say by 3 :

In which classes of graphs do we have a polynomial CS-separator? An easy example : if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3, take the cut $(T, V \backslash T)$
\Rightarrow CS-separator of size $\mathcal{O}\left(n^{3}\right)$.

In which classes of graphs do we have a polynomial CS-separator? An easy example : if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3, take the cut $(T, V \backslash T)$
\Rightarrow CS-separator of size $\mathcal{O}\left(n^{3}\right)$.

In which classes of graphs do we have a polynomial CS-separator? An easy example : if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3, take the cut $(T, V \backslash T)$
\Rightarrow CS-separator of size $\mathcal{O}\left(n^{3}\right)$.

Random graphs [Bousquet, L., Thomassé 2012]

For every $n \in \mathbb{N}, p \in[0,1]$, there exists a set \mathcal{F} of $\mathcal{O}\left(n^{7}\right)$ cuts such that

$$
\forall G \in G(n, p) \quad \operatorname{Pr}(\mathcal{F} \text { is a CS-sep for } G) \underset{n \rightarrow+\infty}{\longrightarrow} 1
$$

Random graphs [Bousquet, L., Thomassé 2012]

For every $n \in \mathbb{N}, p \in[0,1]$, there exists a set \mathcal{F} of $\mathcal{O}\left(n^{7}\right)$ cuts such that

$$
\forall G \in G(n, p) \quad \operatorname{Pr}(\mathcal{F} \text { is a CS-sep for } G) \underset{n \rightarrow+\infty}{\longrightarrow} 1
$$

Idea : since the edges are all drawn with the same probability p, cliques and stables sets can not both be too big.

Example for $p=1 / 2: \alpha \approx \omega \approx 2 \log n$.

Split-free

Comparability graphs [Yannakakis 1991]
Comparability graphs have a CS-separator of size $\mathcal{O}\left(n^{2}\right)$.

Split-free

Comparability graphs [Yannakakis 1991]
Comparability graphs have a CS-separator of size $\mathcal{O}\left(n^{2}\right)$.

Split-free

Comparability graphs [Yannakakis 1991]

Comparability graphs have a CS-separator of size $\mathcal{O}\left(n^{2}\right)$.

Split-free

Comparability graphs [Yannakakis 1991]

Comparability graphs have a CS-separator of size $\mathcal{O}\left(n^{2}\right)$.

Split-free

Split graph

A graph (V, E) is split if V can be partitioned into a clique and a stable set.

Split-free [Bousquet, L., Thomassé 2012]

Let H be a split graph. Then every H-free graphs have a CS-separator of size $\mathcal{O}\left(n^{c H}\right)$.

Let H be a split graph.

Let H be a split graph.

Let H be a split graph.

Key Lemma (using VC-dimension)

\exists a constant t s.t. \forall clique K and stable set S in a H-free :

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K
- or, $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S

Let H be a split graph.

Key Lemma (using VC-dimension)

\exists a constant t s.t. \forall clique K and stable set S in a H-free :

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K
- or, $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S

Let H be a split graph.

Key Lemma (using VC-dimension)

\exists a constant t s.t. \forall clique K and stable set S in a H-free :

- $\exists S^{\prime} \subseteq S$ s. t. $\left|S^{\prime}\right|=t$ and S^{\prime} dominates K
- or, $\exists K^{\prime} \subseteq K$ s. t. $\left|K^{\prime}\right|=t$ and K^{\prime} antidominates S

(P_{k} and $\overline{P_{k}}$)-free [Bousquet, L., Thomassé 2013]

There exists a CS-separator of size $\mathcal{O}\left(n^{c_{k}}\right)$ for every $\left(P_{k}, \overline{P_{k}}\right)$-free graph .

(P_{k} and $\overline{P_{k}}$)-free [Bousquet, L., Thomassé 2013]

There exists a CS-separator of size $\mathcal{O}\left(n^{c_{k}}\right)$ for every $\left(P_{k}, \overline{P_{k}}\right)$-free graph .

Excluding only P_{k} and not $\overline{P_{k}}$?

(P_{k} and $\overline{P_{k}}$)-free [Bousquet, L., Thomassé 2013]

There exists a CS-separator of size $\mathcal{O}\left(n^{c_{k}}\right)$ for every $\left(P_{k}, \overline{P_{k}}\right)$-free graph .

Excluding only P_{k} and not $\overline{P_{k}}$? Yes for $k=5$.
P_{5}-free graphs [Bousquet, L., Thomassé 2013], consequence of [Loksthanov, Vatshelle, Villanger 2013]

Every P_{5}-free graph has a CS-separator of size $\mathcal{O}\left(n^{8}\right)$.

(P_{k} and $\overline{P_{k}}$)-free [Bousquet, L., Thomassé 2013]

There exists a CS-separator of size $\mathcal{O}\left(n^{c_{k}}\right)$ for every $\left(P_{k}, \overline{P_{k}}\right)$-free graph .

Excluding only P_{k} and not $\overline{P_{k}}$? Yes for $k=5$.
P_{5}-free graphs [Bousquet, L., Thomassé 2013],
consequence of [Loksthanov, Vatshelle, Villanger 2013]
Every P_{5}-free graph has a CS-separator of size $\mathcal{O}\left(n^{8}\right)$.

Extended formulation for P_{5}-free graphs [Conforti, Di Summa, Faenza, Fiorini, Pashkovich]
For every P_{5}-free graph $G, \operatorname{STAB}(G)$ has an extended formulation of polynomial size.

Back to perfect graphs :

Decomposition [Chudnovsky, Roberston, Seymour, Thomas]

If a graph is Berge, then for G or \bar{G}, one of the following holds :

- It is a basique graph : bipartite, line graph of bipartite, or double split.
- There is a 2-join
- There is a balanced skew partition.
[L., Trunck, 2013]
Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $\mathcal{O}\left(n^{2}\right)$.

Perspectives

- How to extend the positive results on the CS-separation to extended formulations of the Stable Set polytope?

Perspectives

- How to extend the positive results on the CS-separation to extended formulations of the Stable Set polytope?
- What about the CS-separation in P_{k}-free graphs for $k \geq 6$? Extended formulation for the Stable Set polytope?

Perspectives

- How to extend the positive results on the CS-separation to extended formulations of the Stable Set polytope?
- What about the CS-separation in P_{k}-free graphs for $k \geq 6$? Extended formulation for the Stable Set polytope?
- Yannakakis question : CS-separation in perfect graphs?

Perspectives

- How to extend the positive results on the CS-separation to extended formulations of the Stable Set polytope?
- What about the CS-separation in P_{k}-free graphs for $k \geq 6$? Extended formulation for the Stable Set polytope?
- Yannakakis question: CS-separation in perfect graphs?
- Better lower bound for the CS-separation in general ?

