Extended formulations of polytopes and
Communication complexity

Aurélie Lagoutte

LIP, ENS Lyon

Joint work with N. Bousquet, S. Thomassé et T. Trunck

Wednesday, november 13, 2014
S3o Paulo Workshop

1/26



@ Polytopes and extended formulations
@ Definitions and context
@ An example : Stable set polytope in comparability graphs

© Lower bounding techniques on the extension complexity
@ Slack matrix
@ Rectangle covering

© Clique Stable Set Separation
@ Stating the problem
@ Results

2/26



Polytopes and extended formulations
©0000

A polytope P in R? :

zo A

=Y

P can be defined :

3/26



Polytopes and extended formulations
©0000

A polytope P in R? :

zo A

P can be defined :

@ As the convex hull of
a set of points :

P = conv(ps,...,pk)

3/26



Polytopes and extended formulations
©0000

A polytope P in R? :

T2 A z2 A

P can be defined :

@ As a bounded polyhedron,
by a set of constraints
(=inequalities) :

x = (x1,x) € R?
Ax < b
x>0

@ As the convex hull of
a set of points :

P = conv(ps,...,pk)

3/26



Polytopes and extended formulations
©0000

A polytope P in R? :

T2 A T2 A

P can be defined :

@ As a bounded polyhedron,
by a set of constraints
(=inequalities) :

x = (x1,x) € R?
Ax < b
x>0

@ As the convex hull of
a set of points :

P = conv(ps,...,pk)

3/26



Polytopes and extended formulations
©0000

A polytope P in R? :

T2 A T2 A

P can be defined :

@ As a bounded polyhedron,
by a set of constraints
(=inequalities) :

x = (x1,x) € R?
Ax < b
x>0

@ As the convex hull of
a set of points :

P = conv(ps,...,pk)

3/26



Polytopes and extended formulations
©0000

A polytope P in R? :

T2 A \2

x4+ 220 <7

_r1 >0
T N

P can be defined :

@ As a bounded polyhedron,
by a set of constraints
(=inequalities) :

x = (x1,x) € R?
Ax < b
x>0

@ As the convex hull of
a set of points :

P = conv(ps,...,pk)

3/26



Polytopes and extended formulations
©0000

A polytope P in R? :

T2 A \2

x4+ 220 <7

1z >0
T N

29 >0 2xy + 22 <8

P can be defined :

@ As a bounded polyhedron,
by a set of constraints
(=inequalities) :

x = (x1,x) € R?
Ax < b
x>0

@ As the convex hull of
a set of points :

P = conv(ps,...,pk)

3/26



Polytopes and extended formulations

@®0000

A polytope P in R? :

zo A

P can be defined :

@ As the convex hull of

a set of points :

P = conv(ps, ...

7pk)

x4+ 220 <7

1z >0
2

29 >0 2xy + 22 <8

@ As a bounded polyhedron,
by a set of constraints
(=inequalities) :

x = (x1,x) € R?
Ax < b
x>0

3/26



Polytopes and extended formulations
0@000

Well-studied polytopes :

4/26



Polytopes and extended formulations
0@000

Well-studied polytopes :

Stable Set polytope

STAB(G) = conv(x> € R"|S C V is a stable set of G)
where x° denotes the characteristic vector of S C V

4/26



Polytopes and extended formulations
0@000

Well-studied polytopes :

Stable Set polytope

STAB(G) = conv(x> € R"|S C V is a stable set of G)
where x° denotes the characteristic vector of S C V

Traveling Salesman polytope (tours on K, = (V,, Ep))
TSP(n) = conv(xF € RIEI|F C E, is a tour of K),)

A

4/26



Polytopes and extended formulations
0@000

Well-studied polytopes :

Stable Set polytope

STAB(G) = conv(x> € R"|S C V is a stable set of G)
where x° denotes the characteristic vector of S C V

Traveling Salesman polytope (tours on K, = (V,, Ep))
TSP(n) = conv(xF € RIEI|F C E, is a tour of K),)

Matching polytope
MATCH(G) = conv(x™ € RIEI|M C E is a matching of G)

| \

4/26



Polytopes and extended formulations

Oe000

Well-studied polytopes :

Stable Set polytope

STAB(G) = conv(x> € R"|S C V is a stable set of G)
where x° denotes the characteristic vector of S C V

Traveling Salesman polytope (tours on K, = (V,, Ep))
TSP(n) = conv(xF € RIEI|F C E, is a tour of K),)

A

Matching polytope
MATCH(G) = conv(x™ € RIEI|M C E is a matching of G)

Parity polytope
PAR(n) = conv(x € {0,1}"|x has an odd number of 1. )

4/26



Polytopes and extended formulations
0@000

Well-studied polytopes :

Stable Set polytope

STAB(G) = conv(x> € R"|S C V is a stable set of G)
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Matching polytope
MATCH(G) = conv(x™ € RIEI|M C E is a matching of G)

Parity polytope
PAR(n) = conv(x € {0,1}"|x has an odd number of 1. )

These polytopes have many facets. In order to solve optimization
problems with Linear Programming, we need polytopes with a
small number of facets.
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Polytopes and extended formulations
[eeX Yolo)

P : polytope in R? we want to optimize on (8 facets)
Q : polytope in R3 which projects to P (6 facets)
= Easier to optimize on @ and project the solution !
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Extended formulation

P : a polytope in RY.
Q : a polytope in higher dimension R".

Q is an extension of P if there exists a linear map 7 such that
m(Q) = P. The size of Q is the number of facets of Q. J

Extension complexity

xc(P) = min{size of Q | Q is an extension of P} .

Equivalently, an extended formulation of P of size r is a linear
system

Ex+Fy=g, y=0

in variables (x,y) € R9*r
(E, F, g matrices/vector of suitable size).
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Poly-time solvable : NP-hard problems :
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(Edmond’s algorithm) [1] Polytope [2]
@ Spanning Tree Polytope @ Stable Set polytope [2]
(Prim’s and Kruskal's e Cut polytope [2]

algorithms) [4]

e Knapsack polytope [3]
e Parity Polytope [4]

Exponential lower bound on the extension complexity
Polynomial upper bound for the extension complexity

[1] : Rothvoss 13

[2] : Fiorini, Massar, Pokutta, Tiwary, deWolf 13
[3] : Pokuta, Van Vyve 13

[4] : Conforti, Cornuéjols, Zambelli (Survey) 10
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Polytopes and extended formulations
©000

Maximum Weighted Stable set
Variables : x, for every vertex v

Objective function : max ¥ ,cyw,x, where w, := weight of v

Subject to : x, + x, < 1 for every edge uv
xy, € {0, 1} for every vertex v
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= On the complete graph Kj, with constant weight w, =1 :
Optimal relaxation solution : n/2 (1/2 for every vertex).

Optimal Integer Linear Program solution : 1 (1 for one vertex, 0
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Extended formulation for comparability graphs

Constraints :
YveV x,,by,,t, >0
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° 7z, = &Ps'v<s&veS
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Lower bounding techniques on the extension complexity
®00

How to obtain lower bounds?

Three comparable measures on polytope :
@ Rectangle covering of the slack matrix rc(Msjck)
e Non-negative rank of the slack matrix rk(Msck)

@ The extension complexity of the polytope xc(P)

rc(P) < rky(P) = xc(P)
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Lower bounding techniques on the extension complexity
oeo

Slack matrix :

pr p2 ... pj
Constraint 1 : Aixx<b; /0 2
Constraint 2 : Aox < b, | 2 5

Constraint i : A;x < b; 0 O bi — Aip;

P1; ... Pj, ... are vertices of the polytope.
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Lower bounding techniques on the extension complexity
ocoe

Slack matrix of the Stable set polytope :

55 S .. S;
Constraint K; : Xci;x, <1 /0 1
Constraint K> : X cix, <1 1 1
Constraint K; : L, cix, <1 | 0 0 1—-|KinSj

Other constraints

S1,...,Sj, ... are stables sets of G.
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Lower bounding techniques on the extension complexity
®0

Another hidden tool in the slack matrix : Rectangle covering

-1 1 - - - - _
-1 1 - - - - _
- 111 - — 1 —
1111 - — 1 —
1 1 - - - - - -

rc(M)= minimum number of combinatorial rectangles needed to
cover the support of M
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Lower bounding techniques on the extension complexity
®0

Another hidden tool in the slack matrix : Rectangle covering

|
[ e S
—
|
|
|
|
|

rc(M)= minimum number of combinatorial rectangles needed to
cover the support of M
Here : re(M) =3
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Lower bounding techniques on the extension complexity
oce

Let us sum up :
Stable set polytope for perfect graphs :

Extension complexity

| Rectangle covering I_@

| Communication complexity |

S

CS-separation
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I, %
G
,
)
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Clique Stable Set Separation
oe0

log(rc(M)) = Non-det. communication complexity for this pb

S51 S S S Ss

ConstrKiy | 1 1 O 0 1

ConstrKo | 1 1 1 1 0

ConstrK3| 0 1 1 1 0

ConstrK4 1 1 0 O 0 1
Other-constraints

QSTAB(G) . M,"j =1- |K, N SJ‘
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Clique Stable Set Separation
ooe

Clique vs Independent Set Problem

Goal [Yannakakis 1991]

Find a CS-separator : a family of cuts that can separate all the
pairs Clique-Stable set.
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Clique Stable Set Separation
ooe

Clique vs Independent Set Problem

Goal [Yannakakis 1991]

Find a CS-separator : a family of cuts that can separate all the
pairs Clique-Stable set.

Upper Bound : there exists a CS-separator of size O(n'°8").

Lower Bound [Amano, Shigeta 2013] : there exists an infinite
family of graphs such that any CS-separator has size Q(n?~¢)

Does there exist for all graph G on n vertices a CS-separator
of size poly(n)? Or for which classes of graphs does it exist ?
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Clique Stable Set Separation
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Random graphs [Bousquet, L., Thomassé 2012]

For every n € N, p € [0, 1], there exists a set F of O(n") cuts such
that

VG € G(n,p) Pr( Fis a CS-sep for G) — 1

n——+00

n vertices
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Random graphs [Bousquet, L., Thomassé 2012]

For every n € N, p € [0, 1], there exists a set F of O(n") cuts such
that

VG € G(n,p) Pr( Fis a CS-sep for G) — 1

n——+00

n vertices

Idea : since the edges are all drawn with the same probability p,
cliques and stables sets can not both be too big.

Example for p=1/2 : o =~ w ~ 2log n.
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Comparability graphs have a CS-separator of size O(n?).
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Split-free

Split graph

A graph (V, E) is split if V can be partitioned into a clique and a
stable set.

—\
|

=

Split-free [Bousquet, L., Thomassé 2012]

Let H be a split graph. Then every H-free graphs have a
CS-separator of size O(nH).

22/26



Clique Stable Set Separation
000e®000

Let H be a split graph.

23/26



Clique Stable Set Separation
000e®000

Let H be a split graph.

23/26



Clique Stable Set Separation
000e®000

Let H be a split graph.

Key Lemma (using VC-dimension)

J a constant t s. t. V clique K and stable set S in a H-free :

@ 315 C Ss. t. |S| =t and S’ dominates K
e or, IK' C K s. t. |K'| =t and K’ antidominates S
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graph .
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graph .

Excluding only Py and not P, ? Yes for k = 5.

Ps-free graphs [Bousquet, L., Thomassé 2013],

consequence of [Loksthanov, Vatshelle, Villanger 2013]
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(Px and Py)-free [Bousquet, L., Thomassé 2013]

There exists a CS-separator of size O(n) for every (Py, Py)-free
graph .

Excluding only Py and not P, ? Yes for k = 5.

Ps-free graphs [Bousquet, L., Thomassé 2013],

consequence of [Loksthanov, Vatshelle, Villanger 2013]
Every Ps-free graph has a CS-separator of size O(n®) .

Extended formulation for Ps-free graphs [Conforti, Di Summa,

Faenza, Fiorini, Pashkovich]

For every Ps-free graph G, STAB(G) has an extended formulation
of polynomial size.
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Back to perfect graphs :

Decomposition [Chudnovsky, Roberston, Seymour, Thomas]

If a graph is Berge, then for G or G, one of the following holds :
@ It is a basique graph : bipartite, line graph of bipartite, or
double split.
@ There is a 2-join

@ There is a balanced skew partition.

[L., Trunck, 2013]

Let G be a Berge graph with no balanced skew partition, then
there exists a CS-separator for G of size O(n?).
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@ How to extend the positive results on the CS-separation to
extended formulations of the Stable Set polytope ?
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Perspectives

@ How to extend the positive results on the CS-separation to
extended formulations of the Stable Set polytope ?

@ What about the CS-separation in Py-free graphs for k > 67
Extended formulation for the Stable Set polytope ?

@ Yannakakis question : CS-separation in perfect graphs?

@ Better lower bound for the CS-separation in general ?
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