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A polytope P in R2 :

x1

x2

P can be defined :

As the convex hull of
a set of points :
P = conv(p1, . . . , pk)

As a bounded polyhedron,
by a set of constraints
(=inequalities) :
x = (x1, x2) ∈ R2

Ax ≤ b
x ≥ 0
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Well-studied polytopes :

Stable Set polytope
STAB(G) = conv(χS ∈ Rn|S ⊆ V is a stable set of G)
where χS denotes the characteristic vector of S ⊆ V

Traveling Salesman polytope (tours on Kn = (Vn,En))

TSP(n) = conv(χF ∈ R|En||F ⊆ En is a tour of Kn)

Matching polytope
MATCH(G) = conv(χM ∈ R|E ||M ⊆ E is a matching of G)

Parity polytope
PAR(n) = conv(x ∈ {0, 1}n|x has an odd number of 1. )

These polytopes have many facets. In order to solve optimization
problems with Linear Programming, we need polytopes with a
small number of facets.

4/26



Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

Well-studied polytopes :
Stable Set polytope
STAB(G) = conv(χS ∈ Rn|S ⊆ V is a stable set of G)
where χS denotes the characteristic vector of S ⊆ V

Traveling Salesman polytope (tours on Kn = (Vn,En))

TSP(n) = conv(χF ∈ R|En||F ⊆ En is a tour of Kn)

Matching polytope
MATCH(G) = conv(χM ∈ R|E ||M ⊆ E is a matching of G)

Parity polytope
PAR(n) = conv(x ∈ {0, 1}n|x has an odd number of 1. )

These polytopes have many facets. In order to solve optimization
problems with Linear Programming, we need polytopes with a
small number of facets.

4/26



Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

Well-studied polytopes :
Stable Set polytope
STAB(G) = conv(χS ∈ Rn|S ⊆ V is a stable set of G)
where χS denotes the characteristic vector of S ⊆ V

Traveling Salesman polytope (tours on Kn = (Vn,En))

TSP(n) = conv(χF ∈ R|En||F ⊆ En is a tour of Kn)

Matching polytope
MATCH(G) = conv(χM ∈ R|E ||M ⊆ E is a matching of G)

Parity polytope
PAR(n) = conv(x ∈ {0, 1}n|x has an odd number of 1. )

These polytopes have many facets. In order to solve optimization
problems with Linear Programming, we need polytopes with a
small number of facets.

4/26



Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

Well-studied polytopes :
Stable Set polytope
STAB(G) = conv(χS ∈ Rn|S ⊆ V is a stable set of G)
where χS denotes the characteristic vector of S ⊆ V

Traveling Salesman polytope (tours on Kn = (Vn,En))

TSP(n) = conv(χF ∈ R|En||F ⊆ En is a tour of Kn)

Matching polytope
MATCH(G) = conv(χM ∈ R|E ||M ⊆ E is a matching of G)

Parity polytope
PAR(n) = conv(x ∈ {0, 1}n|x has an odd number of 1. )

These polytopes have many facets. In order to solve optimization
problems with Linear Programming, we need polytopes with a
small number of facets.

4/26



Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

Well-studied polytopes :
Stable Set polytope
STAB(G) = conv(χS ∈ Rn|S ⊆ V is a stable set of G)
where χS denotes the characteristic vector of S ⊆ V

Traveling Salesman polytope (tours on Kn = (Vn,En))

TSP(n) = conv(χF ∈ R|En||F ⊆ En is a tour of Kn)

Matching polytope
MATCH(G) = conv(χM ∈ R|E ||M ⊆ E is a matching of G)

Parity polytope
PAR(n) = conv(x ∈ {0, 1}n|x has an odd number of 1. )

These polytopes have many facets. In order to solve optimization
problems with Linear Programming, we need polytopes with a
small number of facets.

4/26



Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

Well-studied polytopes :
Stable Set polytope
STAB(G) = conv(χS ∈ Rn|S ⊆ V is a stable set of G)
where χS denotes the characteristic vector of S ⊆ V

Traveling Salesman polytope (tours on Kn = (Vn,En))

TSP(n) = conv(χF ∈ R|En||F ⊆ En is a tour of Kn)

Matching polytope
MATCH(G) = conv(χM ∈ R|E ||M ⊆ E is a matching of G)

Parity polytope
PAR(n) = conv(x ∈ {0, 1}n|x has an odd number of 1. )

These polytopes have many facets. In order to solve optimization
problems with Linear Programming, we need polytopes with a
small number of facets.

4/26



Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

P : polytope in R2 we want to optimize on (8 facets)
Q : polytope in R3 which projects to P (6 facets)
⇒ Easier to optimize on Q and project the solution !

5/26



Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

Extended formulation
P : a polytope in Rd .
Q : a polytope in higher dimension Rr .

Q is an extension of P if there exists a linear map π such that
π(Q) = P. The size of Q is the number of facets of Q.

Extension complexity
xc(P) = min{size of Q | Q is an extension of P} .

Equivalently, an extended formulation of P of size r is a linear
system

Ex + Fy = g , y ≥ 0
in variables (x , y) ∈ Rd+r

(E ,F , g matrices/vector of suitable size).
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Poly-time solvable :

Matching polytope
(Edmond’s algorithm)

[1]

Spanning Tree Polytope
(Prim’s and Kruskal’s
algorithms)

[4]

Parity Polytope

[4]

NP-hard problems :

Traveling Salesman
Polytope

[2]

Stable Set polytope

[2]

Cut polytope

[2]

Knapsack polytope

[3]

Exponential lower bound on the extension complexity
Polynomial upper bound for the extension complexity

[1] : Rothvoss 13
[2] : Fiorini, Massar, Pokutta, Tiwary, deWolf 13
[3] : Pokuta, Van Vyve 13
[4] : Conforti, Cornuéjols, Zambelli (Survey) 10
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Maximum Weighted Stable set
Variables : xv for every vertex v

Objective function : max Σv∈V wv xv where wv := weight of v

Subject to : xu + xv ≤ 1 for every edge uv
xv ∈ {0, 1} for every vertex v

0 ≤ xv ≤ 1 for every vertex v

⇒ On the complete graph Kn with constant weight wv = 1 :

Optimal relaxation solution : n/2 (1/2 for every vertex).

Optimal Integer Linear Program solution : 1 (1 for one vertex, 0
for the others).

⇒ Bad solution !
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Stable set polytope : valid inequalities

Stable set polytope
STAB(G)=conv(χS |S is a stable set of G)

Valid inequalities :

0 ≤ xv ≤ 1 for every v ∈ V (1)
xu + xv ≤ 1 for every uv ∈ E (2)
Σv∈K xv ≤ 1 for every clique K (3)
Σc∈Cxv ≤ (|C | − 1)/2 for every odd cycle C (4)
...

(1) and (2) : enough for bipartite graphs
(1) and (3) : enough for perfect graphs
(1) and (4) : enough for t-perfect graphs
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Extended formulation for comparability graphs
Variables : xv ∀v ∈ V

bv , tv ∀v ∈ V
zuv ∀u < v ∈ V .

Constraints :

O(n2) inequalities

∀v ∈ V xv , bv , tv ≥ 0
∀u < v ∈ V zuv ≥ 0

∀K = v1 < v2 < · · · < vk Σk
i=1xvi + bv1 + tvk + Σk−1

i=1 zvi vi+1=1

K
S

v1

vk
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Extended formulation for comparability graphs
Constraints :

∀v ∈ V xv , bv , tv ≥ 0
∀u < v ∈ V zuv ≥ 0

∀K = v1 < v2 < · · · < vk Σk
i=1xvi + bv1 + tvk + Σk−1

i=1 zvi vi+1 = 1

Given an integer solution x = χS :

K
S

v1

vk

bv =

∣∣∣∣∣ 1 iff @s ∈ S v ≤ s
0 otherwise

tv =

∣∣∣∣∣ 1 iff ∃s ∈ S v < s
0 otherwise

zuv =

∣∣∣∣∣∣∣
1 iff ∃s ∈ S u < s

& @s ′ v < s ′& v /∈ S
0 otherwise
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How to obtain lower bounds ?

Three comparable measures on polytope :
Rectangle covering of the slack matrix rc(Mslack)
Non-negative rank of the slack matrix rk+(Mslack)
The extension complexity of the polytope xc(P)

rc(P) ≤ rk+(P) = xc(P)
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Slack matrix :



p1 p2 ... pj ...

Constraint 1 : A1x ≤ b1 0 2
Constraint 2 : A2x ≤ b2 2 5
...
Constraint i : Aix ≤ bi 0 0 bi − Aipj
...


p1, ..., pj , ... are vertices of the polytope.
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Slack matrix of the Stable set polytope :



S1 S2 ... Sj ...

Constraint K1 : Σv∈K1xv ≤ 1 0 1
Constraint K2 : Σv∈K2xv ≤ 1 1 1
...
Constraint Ki : Σv∈Ki xv ≤ 1 0 0 1− |Ki ∩ Sj |
...
Other constraints


S1, ...,Sj , ... are stables sets of G .
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Another hidden tool in the slack matrix : Rectangle covering

− 1 1 − − − − −
− 1 1 − − − − −
− 1 1 1 − − 1 −
− − − − − − − −
− − − − − − − −
1 1 1 1 − − 1 −
1 1 − − − − − −


rc(M)= minimum number of combinatorial rectangles needed to
cover the support of M

Here : rc(M) = 3
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Let us sum up :

Stable set polytope for perfect graphs :

Extension complexity

Rectangle covering
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Let us sum up :
Stable set polytope for perfect graphs :

Communication complexity

Extension complexity

Non-neg rankRectangle covering

CS-separation

=

=

≤

=
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Clique vs Independent Set Problem

G

Alice Bob

Prover
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Do the clique and the stable set intersect?
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G
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Prover

Do the clique and the stable set intersect?
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log(rc(M)) = Non-det. communication complexity for this pb



S1 S2 S3 S4

Bob ↓

S5

Constr.K1 1 1 0 0 1
Constr.K2 1 1 1 1 0

Alice →

Constr.K3 0 1 1 1 0
Constr.K4 1 0 0 0 1

Other constraints


QSTAB(G) : Mi ,j = 1− |Ki ∩ Sj |
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Clique vs Independent Set Problem

Goal [Yannakakis 1991]
Find a CS-separator : a family of cuts that can separate all the
pairs Clique-Stable set.

Upper Bound : there exists a CS-separator of size O(nlog n).

Lower Bound [Amano, Shigeta 2013] : there exists an infinite
family of graphs such that any CS-separator has size Ω(n2−ε)

Does there exist for all graph G on n vertices a CS-separator
of size poly(n) ? Or for which classes of graphs does it exist ?
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In which classes of graphs do we have a polynomial CS-separator ?

An easy example : if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3, take the cut (T ,V \ T )
⇒ CS-separator of size O(n3).
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Random graphs [Bousquet, L., Thomassé 2012]
For every n ∈ N, p ∈ [0, 1], there exists a set F of O(n7) cuts such
that

∀G ∈ G(n, p) Pr( F is a CS-sep for G) −→
n→+∞

1

(1− p) · np · n

n vertices

p

Idea : since the edges are all drawn with the same probability p,
cliques and stables sets can not both be too big.

Example for p = 1/2 : α ≈ ω ≈ 2 log n.
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Split-free

Comparability graphs [Yannakakis 1991]
Comparability graphs have a CS-separator of size O(n2).

Split-free [Bousquet, L., Thomassé 2012]
Let H be a split graph. Then every H-free graphs have a
CS-separator of size O(ncH ).
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Split-free

Split graph
A graph (V ,E ) is split if V can be partitioned into a clique and a
stable set.

Split-free [Bousquet, L., Thomassé 2012]
Let H be a split graph. Then every H-free graphs have a
CS-separator of size O(ncH ).
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Let H be a split graph.

K
S

Key Lemma (using VC-dimension)
∃ a constant t s. t. ∀ clique K and stable set S in a H-free :

∃S ′ ⊆ S s. t. |S ′| = t and S ′ dominates K
or, ∃K ′ ⊆ K s. t. |K ′| = t and K ′ antidominates S
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(Pk and Pk)-free [Bousquet, L., Thomassé 2013]
There exists a CS-separator of size O(nck ) for every (Pk ,Pk)-free
graph .

Excluding only Pk and not Pk ? Yes for k = 5.

P5-free graphs [Bousquet, L., Thomassé 2013],
consequence of [Loksthanov, Vatshelle, Villanger 2013]
Every P5-free graph has a CS-separator of size O(n8) .

Extended formulation for P5-free graphs [Conforti, Di Summa,
Faenza, Fiorini, Pashkovich]
For every P5-free graph G , STAB(G) has an extended formulation
of polynomial size.
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Back to perfect graphs :

Decomposition [Chudnovsky, Roberston, Seymour, Thomas]
If a graph is Berge, then for G or G , one of the following holds :

It is a basique graph : bipartite, line graph of bipartite, or
double split.
There is a 2-join
There is a balanced skew partition.

[L., Trunck, 2013]
Let G be a Berge graph with no balanced skew partition, then
there exists a CS-separator for G of size O(n2).
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Perspectives

How to extend the positive results on the CS-separation to
extended formulations of the Stable Set polytope ?

What about the CS-separation in Pk -free graphs for k ≥ 6 ?
Extended formulation for the Stable Set polytope ?
Yannakakis question : CS-separation in perfect graphs ?
Better lower bound for the CS-separation in general ?
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