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Parity polytope
PAR(n) = conv(x € {0,1}"|x has an odd number of 1. )

These polytopes have many facets. In order to solve optimization
problems with Linear Programming, we need polytopes with a
small number of facets.
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Polytopes and extended formulations
[eeX Yolo)

P : polytope in R? we want to optimize on (8 facets)
Q : polytope in R3 which projects to P (6 facets)
= Easier to optimize on @ and project the solution !
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Extended formulation

P : a polytope in RY.
Q® : a polytope in higher dimension R".

Q is an extension of P if there exists a linear map 7 such that
m(Q) = P. The size of Q is the number of facets of Q. J

Extension complexity

xc(P) = min{size of Q | Q is an extension of P} .

Equivalently, an extended formulation of P of size r is a linear
system

Ex+Fy=g, y=0

in variables (x,y) € R9*r
(E, F, g matrices/vector of suitable size).
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Poly-time solvable : NP-hard problems :
@ Matching polytope @ Traveling Salesman
(Edmond’s algorithm) [1] Polytope [2]
@ Spanning Tree Polytope @ Stable Set polytope [2]
(Prim’s and Kruskal's e Cut polytope [2]

algorithms) [4]

e Knapsack polytope [3]
e Parity Polytope [4]

Exponential lower bound on the extension complexity
Polynomial upper bound for the extension complexity

[1] : Rothvoss 13

[2] : Fiorini, Massar, Pokutta, Tiwary, deWolf 13
[3] : Pokuta, Van Vyve 13

[4] : Conforti, Cornuéjols, Zambelli (Survey) 10
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Polytopes and extended formulations
[ I}

Maximum Weighted Stable set
Variables : x, for every vertex v

Objective function : max ¥ ,cyw,x, where w, := weight of v

Subject to : x, + x, < 1 for every edge uv
xy, € {0, 1} for every vertex v
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Optimal relaxation solution : n/2 (1/2 for every vertex).

Optimal Integer Linear Program solution : 1 (1 for one vertex, 0
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Maximum Weighted Stable set

Variables : x, for every vertex v
Objective function : max ¥ ,cyw,x, where w, := weight of v

Subject to : x, + x, < 1 for every edge uv

x—{0;forevery-vertex—v

0 < x, <1 for every vertex v

= On the complete graph Kj, with constant weight w, =1 :
Optimal relaxation solution : n/2 (1/2 for every vertex).

Optimal Integer Linear Program solution : 1 (1 for one vertex, 0
for the others).

= Bad solution !
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Lower bounding techniques on the extension complexity
90000

How to obtain lower bounds?

Three comparable measures on polytope :
@ Rectangle covering of the slack matrix rc(Msjck)
@ Non-negative rank of the slack matrix rk(Msck)

@ The extension complexity of the polytope xc(P)

rc(P) < rky(P) = xc(P)
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Lower bounding techniques on the extension complexity
0®000

Slack matrix :

pr p2 ... pj
Constraint 1 : Aixx<b; /0 2
Constraint 2 : Aox < b,| 2 5

Constraint i : Ajx < b; 0 O bi — Aip;

P1; ... Pj, ... are vertices of the polytope.
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Lower bounding techniques on the extension complexity
00®00

Slack matrix of the Stable set polytope :

S5 S .. S;
Constraint K; : Xci;x, <1 /0 1
Constraint K> : X cix, <1 1 1
Constraint K; : L,cx, <1 | 0 0 1—-|KinSj|

Other constraints

S1,...,Sj, ... are stables sets of G.
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Lower bounding techniques on the extension complexity
000®0

Non-negative rank of a matrix :

_ Xo - - - - - _
r columns — X3 - - - - - =
—_——~

- Y3 xy - - - - — _
yi Y2 y3 i=1XiYi

with Vi x;,yi > 0.

Equivalently : rk; (M) is the smallest integer such that
M = X!_; R; with R; rank-1 matrices with non-negative entries.
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Lower bounding techniques on the extension complexity
ooooe

Factorization theorem :

Theorem [Yannakakis 91]

For any polytope P and any of its slack matrix M, the following
equality holds :

xc(P) = rky (M)
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Lower bounding techniques on the extension complexity
®00

Another hidden tool in the slack matrix : Rectangle covering

-1 1 - - - - _
-1 1 - - - - _
- 111 - — 1 —
1111 - — 1 —
11 - - - - - -

rc(M)= minimum number of combinatorial rectangles needed to
cover the support of M1

1. From now on, | will consider only 0/1 slack matrix, so supp(M)=M.
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Lower bounding techniques on the extension complexity
®00

Another hidden tool in the slack matrix : Rectangle covering

|
[ = S =

[l

|

|

|

|

|

rc(M)= minimum number of combinatorial rectangles needed to
cover the support of M1
Here : rc(M) =3

1. From now on, | will consider only 0/1 slack matrix, so supp(M)=M.
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Lower bounding techniques on the extension complexity
ooe

Let us sum up :
Stable set polytope for perfect graphs :

Extension complexity

| Rectangle covering I_@

| Communication complexity |

S

CS-separation
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Clique Stable Set Separation
oe0

log(rc(M)) = Non-det. communication complexity for this pb

S1 S S S Ss

ConstrKiy | 1 1 O 0 1

ConstrKo | 1 1 1 1 0

ConstrK3| 0 1 1 1 0

ConstrK41 1 0 O 0 1
Other-constraints

QSTAB(G) . M,"j =1- |K, N SJ‘
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ooe

Clique vs Independent Set Problem

Goal [Yannakakis 1991]

Find a CS-separator : a family of cuts that can separate all the
pairs Clique-Stable set.

Upper Bound : there exists a CS-separator of size O(n'°8").

Lower Bound [Amano, Shigeta 2013] : there exists an infinite
family of graphs such that any CS-separator has size Q(n?~¢)

Does there exist for all graph G on n vertices a CS-separator
of size poly(n)? Or for which classes of graphs does it exist ?
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In which classes of graphs do we have a polynomial CS-separator ?
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Class of Poly Poly Poly
graphs CS-sep | rky(MgstaB) | rki+(Mstag)
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Clique Stable Set Separation
0®00000000000

Class of Poly Poly Poly
graphs CS-sep | rky(MgstaB) | rki+(Mstag)
H-free, H split Yes ? ?
H-free

: ?
H : Py-free split Yes Yes (det)
P4-free Yes Yes
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Clique Stable Set Separation
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Split-free

Comparability graphs [Yannakakis 1991]
Comparability graphs have a CS-separator of size O(n?).
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Comparability graphs [Yannakakis 1991]
Comparability graphs have a CS-separator of size O(n?).

N
=
=
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Clique Stable Set Separation
00®0000000000

Split-free

Split graph

A graph (V, E) is split if V can be partitioned into a clique and a
stable set.

—\
|

=

Split-free [Bousquet, L., Thomassé 2012]

Let H be a split graph. Then every H-free graphs have a
CS-separator of size O(nH).

22/32
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Let H be a split graph.
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Clique Stable Set Separation
000@000000000

Let H be a split graph.

Key Lemma (using VC-dimension)

3 a constant t s. t. V clique K and stable set S in a H-free :

e 315 C Ss. t. |S| =t and S’ dominates K
e or, IK' C K s. t. |K'| =t and K’ antidominates S
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Strong Erdés-Hajnal prop. - (P, Px)-free [Bousquet, L., Thomassé]

For every k, there exists a constant ¢ > 0 such that every graph G
with no Py nor Pj has two subsets of vertices A and B of size
> c.n, with A complete to B or anticomplete to B.
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For every k, there exists a constant ¢ > 0 such that every graph G
with no Py nor Pj has two subsets of vertices A and B of size
> c.n, with A complete to B or anticomplete to B.

G

or

[Al > cn |B| > cn [Al > cen |B] > ¢
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Strong Erd8s-Hajnal prop. - (Px, Px)-free

dec >0

Al > e.n |B| > cn

(5

[Al > cn |B| > c.n

or

Erdés-Hajnal - (Px, Px)-free [Bousquet, L., Thomassé 2013]

There exists ¢ > 0 such that every (Py, Px)-free graph G has a
clique or a stable set of size n®.

CS-separation - (Py, Py )-free [Bousquet, L., Thomassé 2013]

There exists a CS-separator of size O(n) for every (Py, Py)-free
graph .
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G\Aoi
A4| NB[UCl

G \ Bo :
Al W B{UC

G \ (Ag,Bl) .
A x1 BoUCY
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Strong EH = Deterministic protocol

Let C be a hereditary class of graphs satisfying the Strong
Erd6s-Hajnal prop. Then there exists a deterministic protocol for
Alice and Bob to decide whether K N'S = () or not.

Level 0: size n

G\ Ap:

height A < BiUC,

O(logn)

Level 1: size < (1—c¢)-n

G\ (Ao, B1):

As 1 BoUC, Level 2: size < (1—¢)?-n

At each step : Alice (for & nodes) or Bob (for b nodes) sends 1 bit.
Number of steps : Height of the tree O(log n).
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Let C be a hereditary class of graphs satisfying the Strong
Erd6s-Hajnal prop. Then there exists a deterministic protocol for
Alice and Bob to decide whether K N'S = () or not.

Level 0: size n

G\ Ap:

height A < BiUC,

O(logn)

Level 1: size < (1—c¢)-n

G\ (Ao, B1):

As 1 BoUC, Level 2: size < (1—¢)?-n

At each step : Alice (for & nodes) or Bob (for b nodes) sends 1 bit.
Number of steps : Height of the tree O(log n).
Excluding only Py and not P, ?
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Ps-free graphs [Loksthanov, Vatshelle, Villanger 2013]

Max. Weighted Stable Set is polytime solvable in Ps-free graphs.
(They actually proved a stronger statement.)
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Ps-free graphs [Loksthanov, Vatshelle, Villanger 2013]

Max. Weighted Stable Set is polytime solvable in Ps-free graphs.
(They actually proved a stronger statement.)

Consequences from the stronger statement :

Ps-free graphs [Bousquet, L., Thomassé 2013]

Every Ps-free graph has a CS-separator of size O(n®) .

Extended formulation for Ps-free graphs [Conforti, Di Summa,

Faenza, Fiorini, Pashkovich]

For every Ps-free graph G, STAB(G) has an extended formulation
of polynomial size.
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Random graphs [Bousquet, L., Thomassé 2012]

For every n € N, p € [0, 1], there exists a set F of O(n") cuts such
that

VG € G(n,p) Pr( Fis a CS-sep for G) — 1

n——+00

n vertices
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Random graphs [Bousquet, L., Thomassé 2012]

For every n € N, p € [0, 1], there exists a set F of O(n") cuts such
that

VG € G(n,p) Pr( Fis a CS-sep for G) — 1

n——+00

n vertices

Idea : since the edges are all drawn with the same probability p,
cliques and stables sets can not both be too big.

Example for p=1/2 : o =~ w ~ 2log n.
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: ?
H : Py-free split Yes Yes (det)
P4-free Yes Yes
(Py, Py)-free -
(Strong EH) Yes Yes (det) :
Ps-free Yes Yes Yes
Random Yes (7 (7
Perfect with no Yes Not hereditary
bal. skew part.
Perfect ? ?
All graphs ? ? No
Pi-free ? ? ?
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