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A polytope P in R2 :

x1

x2

P can be defined :

As the convex hull of
a set of points :
P = conv(p1, . . . , pk)

As a bounded polyhedron,
by a set of constraints
(=inequalities) :
x = (x1, x2) ∈ R2

Ax ≤ b
x ≥ 0
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Well-studied polytopes :

Stable Set polytope
STAB(G) = conv(χS ∈ Rn|S ⊆ V is a stable set of G)
where χS denotes the characteristic vector of S ⊆ V

Traveling Salesman polytope (tours on Kn = (Vn,En))

TSP(n) = conv(χF ∈ R|En||F ⊆ En is a tour of Kn)

Matching polytope
MATCH(G) = conv(χM ∈ R|E ||M ⊆ E is a matching of G)

Parity polytope
PAR(n) = conv(x ∈ {0, 1}n|x has an odd number of 1. )

These polytopes have many facets. In order to solve optimization
problems with Linear Programming, we need polytopes with a
small number of facets.
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P : polytope in R2 we want to optimize on (8 facets)
Q : polytope in R3 which projects to P (6 facets)
⇒ Easier to optimize on Q and project the solution !
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Extended formulation
P : a polytope in Rd .
Q : a polytope in higher dimension Rr .

Q is an extension of P if there exists a linear map π such that
π(Q) = P. The size of Q is the number of facets of Q.

Extension complexity
xc(P) = min{size of Q | Q is an extension of P} .

Equivalently, an extended formulation of P of size r is a linear
system

Ex + Fy = g , y ≥ 0
in variables (x , y) ∈ Rd+r

(E ,F , g matrices/vector of suitable size).
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Poly-time solvable :

Matching polytope
(Edmond’s algorithm)

[1]

Spanning Tree Polytope
(Prim’s and Kruskal’s
algorithms)

[4]

Parity Polytope

[4]

NP-hard problems :

Traveling Salesman
Polytope

[2]

Stable Set polytope

[2]

Cut polytope

[2]

Knapsack polytope

[3]

Exponential lower bound on the extension complexity
Polynomial upper bound for the extension complexity

[1] : Rothvoss 13
[2] : Fiorini, Massar, Pokutta, Tiwary, deWolf 13
[3] : Pokuta, Van Vyve 13
[4] : Conforti, Cornuéjols, Zambelli (Survey) 10
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Maximum Weighted Stable set
Variables : xv for every vertex v

Objective function : max Σv∈V wv xv where wv := weight of v

Subject to : xu + xv ≤ 1 for every edge uv
xv ∈ {0, 1} for every vertex v

0 ≤ xv ≤ 1 for every vertex v

⇒ On the complete graph Kn with constant weight wv = 1 :

Optimal relaxation solution : n/2 (1/2 for every vertex).

Optimal Integer Linear Program solution : 1 (1 for one vertex, 0
for the others).

⇒ Bad solution !
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Stable set polytope : valid inequalities

Stable set polytope
STAB(G)=conv(χS |S is a stable set of G)

Valid inequalities :

0 ≤ xv ≤ 1 for every v ∈ V (1)
xu + xv ≤ 1 for every uv ∈ E (2)
Σv∈K xv ≤ 1 for every clique K (3)
Σc∈Cxv ≤ (|C | − 1)/2 for every odd cycle C (4)
...

(1) and (2) : enough for bipartite graphs
(1) and (3) : enough for perfect graphs
(1) and (4) : enough for t-perfect graphs
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How to obtain lower bounds ?

Three comparable measures on polytope :
Rectangle covering of the slack matrix rc(Mslack)
Non-negative rank of the slack matrix rk+(Mslack)
The extension complexity of the polytope xc(P)

rc(P) ≤ rk+(P) = xc(P)
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Slack matrix :



p1 p2 ... pj ...

Constraint 1 : A1x ≤ b1 0 2
Constraint 2 : A2x ≤ b2 2 5
...
Constraint i : Aix ≤ bi 0 0 bi − Aipj
...


p1, ..., pj , ... are vertices of the polytope.
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Slack matrix of the Stable set polytope :



S1 S2 ... Sj ...

Constraint K1 : Σv∈K1xv ≤ 1 0 1
Constraint K2 : Σv∈K2xv ≤ 1 1 1
...
Constraint Ki : Σv∈Ki xv ≤ 1 0 0 1− |Ki ∩ Sj |
...
Other constraints


S1, ...,Sj , ... are stables sets of G .
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Non-negative rank of a matrix :

r columns︷ ︸︸ ︷
− x1 − − − − − −
− x2 − − − − − −
− x3 − − − − − −

− − −
y1 y2 y3
− − −
− − −
− − −
− − −
− − −



− − − − − − − −
− Σ3

i=1xiyi − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −


with ∀i xi , yi ≥ 0.

Equivalently : rk+(M) is the smallest integer such that
M = Σr

i=1Ri with Ri rank-1 matrices with non-negative entries.
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Factorization theorem :

Theorem [Yannakakis 91]
For any polytope P and any of its slack matrix M, the following
equality holds :

xc(P) = rk+(M)
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Another hidden tool in the slack matrix : Rectangle covering

− 1 1 − − − − −
− 1 1 − − − − −
− 1 1 1 − − 1 −
− − − − − − − −
− − − − − − − −
1 1 1 1 − − 1 −
1 1 − − − − − −


rc(M)= minimum number of combinatorial rectangles needed to
cover the support of M 1

Here : rc(M) = 3

1. From now on, I will consider only 0/1 slack matrix, so supp(M)=M.
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rc(M) ≤ rk+(M)

r columns︷ ︸︸ ︷
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0 1 0
0 1 0
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Let us sum up :

Stable set polytope for perfect graphs :

Extension complexity

Rectangle covering
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Let us sum up :
Stable set polytope for perfect graphs :

Communication complexity

Extension complexity

Non-neg rankRectangle covering

CS-separation

=

=

≤

=
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Clique vs Independent Set Problem

G

Alice Bob

Prover
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log(rc(M)) = Non-det. communication complexity for this pb



S1 S2 S3 S4

Bob ↓

S5

Constr.K1 1 1 0 0 1
Constr.K2 1 1 1 1 0

Alice →

Constr.K3 0 1 1 1 0
Constr.K4 1 0 0 0 1

Other constraints


QSTAB(G) : Mi ,j = 1− |Ki ∩ Sj |
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Clique vs Independent Set Problem

Goal [Yannakakis 1991]
Find a CS-separator : a family of cuts that can separate all the
pairs Clique-Stable set.

Upper Bound : there exists a CS-separator of size O(nlog n).

Lower Bound [Amano, Shigeta 2013] : there exists an infinite
family of graphs such that any CS-separator has size Ω(n2−ε)

Does there exist for all graph G on n vertices a CS-separator
of size poly(n) ? Or for which classes of graphs does it exist ?
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In which classes of graphs do we have a polynomial CS-separator ?

An easy example : if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3, take the cut (T ,V \ T )
⇒ CS-separator of size O(n3).
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Class of Poly Poly Poly
graphs CS-sep rk+(MQSTAB) rk+(MSTAB)

H-free, H split Yes ? ?
H-free,
H : P4-free split Yes Yes (det) ?

P4-free Yes Yes
(Pk ,Pk)-free
(Strong EH) Yes Yes (det) ?

P5-free Yes Yes Yes
Random Yes ( ?) ( ?)
Perfect with no
bal. skew part. Yes Not hereditary

Perfect ? ?
All graphs ? ? No
Pk -free ? ? ?
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Split-free

Comparability graphs [Yannakakis 1991]
Comparability graphs have a CS-separator of size O(n2).

Split-free [Bousquet, L., Thomassé 2012]
Let H be a split graph. Then every H-free graphs have a
CS-separator of size O(ncH ).

22/32



Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

Split-free

Comparability graphs [Yannakakis 1991]
Comparability graphs have a CS-separator of size O(n2).

Split-free [Bousquet, L., Thomassé 2012]
Let H be a split graph. Then every H-free graphs have a
CS-separator of size O(ncH ).

22/32



Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

Split-free

Comparability graphs [Yannakakis 1991]
Comparability graphs have a CS-separator of size O(n2).

Split-free [Bousquet, L., Thomassé 2012]
Let H be a split graph. Then every H-free graphs have a
CS-separator of size O(ncH ).

22/32



Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

Split-free

Comparability graphs [Yannakakis 1991]
Comparability graphs have a CS-separator of size O(n2).

Split-free [Bousquet, L., Thomassé 2012]
Let H be a split graph. Then every H-free graphs have a
CS-separator of size O(ncH ).

22/32



Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

Split-free

Split graph
A graph (V ,E ) is split if V can be partitioned into a clique and a
stable set.

Split-free [Bousquet, L., Thomassé 2012]
Let H be a split graph. Then every H-free graphs have a
CS-separator of size O(ncH ).
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Let H be a split graph.

K
S

Key Lemma (using VC-dimension)
∃ a constant t s. t. ∀ clique K and stable set S in a H-free :

∃S ′ ⊆ S s. t. |S ′| = t and S ′ dominates K
or, ∃K ′ ⊆ K s. t. |K ′| = t and K ′ antidominates S
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(k vertices)

Strong Erdős-Hajnal prop. - (Pk ,Pk)-free [Bousquet, L., Thomassé]
For every k, there exists a constant c > 0 such that every graph G
with no Pk nor Pk has two subsets of vertices A and B of size
≥ c.n, with A complete to B or anticomplete to B.

A B

G

|A| ≥ c.n |B| ≥ c.n

or
A B

G

|A| ≥ c.n |B| ≥ c.n
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Strong Erdős-Hajnal prop. - (Pk ,Pk)-free
∃c > 0

A B

G

|A| ≥ c.n |B| ≥ c.n

or
A B

G

|A| ≥ c.n |B| ≥ c.n

Erdős-Hajnal - (Pk ,Pk)-free [Bousquet, L., Thomassé 2013]
There exists ε > 0 such that every (Pk ,Pk)-free graph G has a
clique or a stable set of size nε.

CS-separation - (Pk ,Pk)-free [Bousquet, L., Thomassé 2013]
There exists a CS-separator of size O(nck ) for every (Pk ,Pk)-free
graph .
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Strong EH ⇒ Deterministic protocol
Let C be a hereditary class of graphs satisfying the Strong
Erdős-Hajnal prop. Then there exists a deterministic protocol for
Alice and Bob to decide whether K ∩ S = ∅ or not.
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1 ]B′
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A′
1 ]B′

1∪C ′
1

G \ (A0, B1) :
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. . .
. . . . . .

. . . . . .

Level 0: size n

Level 1: size ≤ (1− c) · n

Level 2: size ≤ (1− c)2 · n

height

O(log n)

0 1

0 0 1

0 1

1

At each step : Alice (for ] nodes) or Bob (for ./ nodes) sends 1 bit.
Number of steps : Height of the tree O(log n).

Excluding only Pk and not Pk ?
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Number of steps : Height of the tree O(log n).
Excluding only Pk and not Pk ?
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Polytopes and extended formulations Lower bounding techniques on the extension complexity Clique Stable Set Separation

Class of Poly Poly Poly
graphs CS-sep rk+(MQSTAB) rk+(MSTAB)

H-free, H split Yes ? ?
H-free,
H : P4-free split Yes Yes (det) ?

P4-free Yes Yes
(Pk ,Pk)-free
(Strong EH) Yes Yes (det) ?

P5-free Yes Yes Yes
Random Yes ( ?) ( ?)
Perfect with no
bal. skew part. Yes Not hereditary

Perfect ? ?
All graphs ? ? No
Pk -free ? ? ?
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P5-free graphs [Loksthanov, Vatshelle, Villanger 2013]
Max. Weighted Stable Set is polytime solvable in P5-free graphs.
(They actually proved a stronger statement.)

Consequences from the stronger statement :

P5-free graphs [Bousquet, L., Thomassé 2013]
Every P5-free graph has a CS-separator of size O(n8) .

Extended formulation for P5-free graphs [Conforti, Di Summa,
Faenza, Fiorini, Pashkovich]
For every P5-free graph G , STAB(G) has an extended formulation
of polynomial size.
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Random graphs [Bousquet, L., Thomassé 2012]
For every n ∈ N, p ∈ [0, 1], there exists a set F of O(n7) cuts such
that

∀G ∈ G(n, p) Pr( F is a CS-sep for G) −→
n→+∞

1

(1− p) · np · n

n vertices

p

Idea : since the edges are all drawn with the same probability p,
cliques and stables sets can not both be too big.

Example for p = 1/2 : α ≈ ω ≈ 2 log n.
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