Clique Stable Set Separation

From extended formulations of polytopes to the Clique-Stable Set Separation

Aurélie Lagoutte

LIP, ENS Lyon

Joint work with N. Bousquet, S. Thomassé et T. Trunck

Thursday, December 4, 2014 G-SCOP Seminar Polytopes and extended formulations ••••••• Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k)

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

- *P* can be defined :
 - As the convex hull of a set of points : P = conv(p₁,..., p_k)

 As a bounded polyhedron, by a set of constraints (=inequalities) : x = (x₁, x₂) ∈ ℝ² Ax ≤ b x > 0

 x_2

 $x_2 > 0$

Clique Stable Set Separation

x 1

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k) As a bounded polyhedron, by a set of constraints (=inequalities) : x = (x₁, x₂) ∈ ℝ² Ax ≤ b x > 0

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k) As a bounded polyhedron, by a set of constraints (=inequalities) : x = (x₁, x₂) ∈ ℝ² Ax ≤ b x > 0

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k) As a bounded polyhedron, by a set of constraints (=inequalities) : x = (x₁, x₂) ∈ ℝ² Ax ≤ b x > 0

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k)

 As a bounded polyhedron, by a set of constraints (=inequalities) : x = (x₁, x₂) ∈ ℝ² Ax ≤ b x ≥ 0

Clique Stable Set Separation

A polytope P in \mathbb{R}^2 :

P can be defined :

 As the convex hull of a set of points : P = conv(p₁,..., p_k) As a bounded polyhedron, by a set of constraints (=inequalities) : x = (x₁, x₂) ∈ ℝ² Ax ≤ b x > 0 Polytopes and extended formulations $0 \bullet 00000$

ower bounding techniques on the extension complexity

Clique Stable Set Separation

Well-studied polytopes :

Clique Stable Set Separation

Well-studied polytopes :

Stable Set polytope

$$STAB(G) = \operatorname{conv}(\chi^{S} \in \mathbb{R}^{n} | S \subseteq V \text{ is a stable set of } G)$$

where χ^{S} denotes the characteristic vector of $S \subseteq V$

Clique Stable Set Separation

Well-studied polytopes :

Stable Set polytope

$$STAB(G) = \operatorname{conv}(\chi^{S} \in \mathbb{R}^{n} | S \subseteq V \text{ is a stable set of } G)$$

where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_n = (V_n, E_n)$)

 $TSP(n) = \operatorname{conv}(\chi^{F} \in \mathbb{R}^{|E_n|} | F \subseteq E_n \text{ is a tour of } K_n)$

Clique Stable Set Separation

Well-studied polytopes :

Stable Set polytope

$$STAB(G) = \operatorname{conv}(\chi^{S} \in \mathbb{R}^{n} | S \subseteq V \text{ is a stable set of } G)$$

where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_n = (V_n, E_n)$)

$$TSP(n) = \operatorname{conv}(\chi^{F} \in \mathbb{R}^{|E_n|} | F \subseteq E_n \text{ is a tour of } K_n)$$

Matching polytope

 $MATCH(G) = \operatorname{conv}(\chi^M \in \mathbb{R}^{|E|} | M \subseteq E \text{ is a matching of } G)$

Clique Stable Set Separation

Well-studied polytopes :

Stable Set polytope

$$STAB(G) = \operatorname{conv}(\chi^{S} \in \mathbb{R}^{n} | S \subseteq V \text{ is a stable set of } G)$$

where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_n = (V_n, E_n)$)

$$TSP(n) = \operatorname{conv}(\chi^{F} \in \mathbb{R}^{|E_n|} | F \subseteq E_n \text{ is a tour of } K_n)$$

Matching polytope

$$MATCH(G) = \operatorname{conv}(\chi^M \in \mathbb{R}^{|E|} | M \subseteq E \text{ is a matching of } G)$$

Parity polytope

 $PAR(n) = \operatorname{conv}(x \in \{0,1\}^n | x \text{ has an odd number of } 1.$)

Clique Stable Set Separation

Well-studied polytopes :

Stable Set polytope

$$STAB(G) = \operatorname{conv}(\chi^{S} \in \mathbb{R}^{n} | S \subseteq V \text{ is a stable set of } G)$$

where χ^{S} denotes the characteristic vector of $S \subseteq V$

Traveling Salesman polytope (tours on $K_n = (V_n, E_n)$)

$$TSP(n) = \operatorname{conv}(\chi^F \in \mathbb{R}^{|E_n|} | F \subseteq E_n \text{ is a tour of } K_n)$$

Matching polytope

$$MATCH(G) = \operatorname{conv}(\chi^M \in \mathbb{R}^{|E|} | M \subseteq E \text{ is a matching of } G)$$

Parity polytope

 $PAR(n) = \operatorname{conv}(x \in \{0,1\}^n | x \text{ has an odd number of } 1.)$

These polytopes have many facets. In order to solve optimization problems with Linear Programming, we need polytopes with a small number of facets.

Clique Stable Set Separation

P: polytope in \mathbb{R}^2 we want to optimize on (8 facets) Q: polytope in \mathbb{R}^3 which projects to P (6 facets) \Rightarrow Easier to optimize on Q and project the solution!

Extended formulation

- P: a polytope in \mathbb{R}^d .
- Q: a polytope in higher dimension \mathbb{R}^r .

Q is an *extension* of P if there exists a linear map π such that $\pi(Q) = P$. The *size* of Q is the number of facets of Q.

Extended formulation

- P: a polytope in \mathbb{R}^d .
- Q: a polytope in higher dimension \mathbb{R}^r .

Q is an *extension* of P if there exists a linear map π such that $\pi(Q) = P$. The *size* of Q is the number of facets of Q.

Extension complexity

 $xc(P) = min\{$ size of $Q \mid Q$ is an extension of $P\}$.

Extended formulation

- P: a polytope in \mathbb{R}^d .
- Q: a polytope in higher dimension \mathbb{R}^r .

Q is an *extension* of P if there exists a linear map π such that $\pi(Q) = P$. The *size* of Q is the number of facets of Q.

Extension complexity

 $xc(P) = min\{$ size of $Q \mid Q$ is an extension of $P\}$.

Equivalently, an *extended formulation* of P of *size* r is a linear system

$$Ex + Fy = g, y \ge 0$$

in variables $(x, y) \in \mathbb{R}^{d+r}$ (E, F, g matrices/vector of suitable size).

Clique Stable Set Separation

Poly-time solvable :

- Matching polytope (Edmond's algorithm)
- Spanning Tree Polytope (Prim's and Kruskal's algorithms)
- Parity Polytope

NP-hard problems :

- Traveling Salesman Polytope
- Stable Set polytope
- Cut polytope
- Knapsack polytope

Clique Stable Set Separation

Poly-time solvable :

- Matching polytope (Edmond's algorithm) [1]
- Spanning Tree Polytope (Prim's and Kruskal's algorithms) [4]
- Parity Polytope [4]

NP-hard problems :

- Traveling Salesman Polytope [2]
- Stable Set polytope [2]
- Cut polytope [2]
- Knapsack polytope [3]

Exponential lower bound on the extension complexity Polynomial upper bound for the extension complexity

- [1] : Rothvoss 13
- [2] : Fiorini, Massar, Pokutta, Tiwary, deWolf 13
- [3] : Pokuta, Van Vyve 13
- [4] : Conforti, Cornuéjols, Zambelli (Survey) 10

Clique Stable Set Separation

Maximum Weighted Stable set

Variables : x_v for every vertex v

Objective function : max $\sum_{v \in V} w_v x_v$ where $w_v :=$ weight of v

Subject to : $x_u + x_v \le 1$ for every edge uv $x_v \in \{0, 1\}$ for every vertex v

Maximum Weighted Stable set

Variables : x_v for every vertex v

Objective function : max $\sum_{v \in V} w_v x_v$ where $w_v :=$ weight of v

Subject to : $x_u + x_v \le 1$ for every edge uv $x_v \in \{0, 1\}$ for every vertex v $0 \le x_v \le 1$ for every vertex v

Maximum Weighted Stable set

Variables : x_v for every vertex v

Objective function : max $\sum_{v \in V} w_v x_v$ where $w_v :=$ weight of v

 $\begin{array}{lll} \textbf{Subject to}: & x_u + x_v \leq 1 \text{ for every edge } uv \\ & \frac{x_v \in \{0, 1\} \text{ for every vertex } v}{0 \leq x_v \leq 1 \text{ for every vertex } v} \\ \end{array}$

 \Rightarrow On the complete graph K_n with constant weight $w_v = 1$:

Optimal relaxation solution : n/2 (1/2 for every vertex).

Optimal Integer Linear Program solution : 1 (1 for one vertex, 0 for the others).

Maximum Weighted Stable set

Variables : x_v for every vertex v

Objective function : max $\sum_{v \in V} w_v x_v$ where $w_v :=$ weight of v

 $\begin{array}{lll} \textbf{Subject to}: & x_u + x_v \leq 1 \text{ for every edge } uv \\ & \frac{x_v \in \{0, 1\} \text{ for every vertex } v}{0 \leq x_v \leq 1 \text{ for every vertex } v} \\ \end{array}$

 \Rightarrow On the complete graph K_n with constant weight $w_v = 1$:

Optimal relaxation solution : n/2 (1/2 for every vertex).

Optimal Integer Linear Program solution : 1 (1 for one vertex, 0 for the others).

 \Rightarrow Bad solution !

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

 $0 \le x_v \le 1$ for every $v \in V$ (1)

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

 $0 \le x_v \le 1$ for every $v \in V$ (1) $x_u + x_v \le 1$ for every $uv \in E$ (2)

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

$$\begin{array}{l} 0 \leq x_{v} \leq 1 \text{ for every } v \in V \ (1) \\ x_{u} + x_{v} \leq 1 \text{ for every } uv \in E \ (2) \\ \Sigma_{v \in K} x_{v} \leq 1 \text{ for every clique } K \ (3) \end{array}$$

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

$$\begin{array}{l} 0 \leq x_{v} \leq 1 \text{ for every } v \in V \ (1) \\ x_{u} + x_{v} \leq 1 \text{ for every } uv \in E \ (2) \\ \Sigma_{v \in K} x_{v} \leq 1 \text{ for every clique } K \ (3) \\ \Sigma_{c \in C} x_{v} \leq (|\mathcal{C}| - 1)/2 \text{ for every odd cycle } C \ (4) \end{array}$$

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

$$\begin{array}{l} 0 \leq x_{v} \leq 1 \text{ for every } v \in V \ (1) \\ x_{u} + x_{v} \leq 1 \text{ for every } uv \in E \ (2) \\ \Sigma_{v \in K} x_{v} \leq 1 \text{ for every clique } K \ (3) \\ \Sigma_{c \in C} x_{v} \leq (|C| - 1)/2 \text{ for every odd cycle } C \ (4) \\ \dots \end{array}$$

(1) and (2) : enough for bipartite graphs

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

$$0 \le x_{v} \le 1 \text{ for every } v \in V (1)$$

$$x_{u} + x_{v} \le 1 \text{ for every } uv \in E (2)$$

$$\sum_{v \in K} x_{v} \le 1 \text{ for every clique } K (3)$$

$$\sum_{c \in C} x_{v} \le (|C| - 1)/2 \text{ for every odd cycle } C (4)$$

...

(1) and (2) : enough for bipartite graphs(1) and (3) : enough for perfect graphs

Clique Stable Set Separation

Stable set polytope : valid inequalities

Stable set polytope

 $STAB(G) = conv(\chi^{S}|S \text{ is a stable set of } G)$

Valid inequalities :

$$0 \le x_{v} \le 1 \text{ for every } v \in V (1)$$

$$x_{u} + x_{v} \le 1 \text{ for every } uv \in E (2)$$

$$\sum_{v \in K} x_{v} \le 1 \text{ for every clique } K (3)$$

$$\sum_{c \in C} x_{v} \le (|C| - 1)/2 \text{ for every odd cycle } C (4)$$

...

(1) and (2) : enough for bipartite graphs
(1) and (3) : enough for perfect graphs
(1) and (4) : enough for *t*-perfect graphs

How to obtain lower bounds?

Three comparable measures on polytope :

- Rectangle covering of the slack matrix $rc(M_{slack})$
- Non-negative rank of the slack matrix $rk_+(M_{slack})$
- The extension complexity of the polytope xc(P)

$$rc(P) \leq rk_+(P) = xc(P)$$

Clique Stable Set Separation

Slack matrix :

 $p_1, ..., p_j, ...$ are vertices of the polytope.

Clique Stable Set Separation

Slack matrix of the Stable set polytope :

$$S_1 \quad S_2 \quad \dots \quad S_j \quad \dots$$
Constraint $K_1 : \sum_{v \in K_1} x_v \leq 1$
Constraint $K_2 : \sum_{v \in K_2} x_v \leq 1$
Constraint $K_i : \sum_{v \in K_i} x_v \leq 1$
Constraint $K_i : \sum_{v \in K_i} x_v \leq 1$
Constraint $K_i : \sum_{v \in K_i} x_v \leq 1$
Constraint $K_i : \sum_{v \in K_i} x_v \leq 1$
Constraint $K_i : \sum_{v \in K_i} x_v \leq 1$
Constraint $K_i : \sum_{v \in K_i} x_v \leq 1$
Constraint $K_i : \sum_{v \in K_i} x_v \leq 1$
Constraint $K_i : \sum_{v \in K_i} x_v \leq 1$
Constraint $K_i : \sum_{v \in K_i} x_v \leq 1$
Constraint $K_i : \sum_{v \in K_i} x_v \leq 1$

 $S_1, ..., S_j, ...$ are stables sets of G.
Lower bounding techniques on the extension complexity $\tt 000\bullet0000$

Clique Stable Set Separation

Non-negative rank of a matrix :

with $\forall i \quad x_i, y_i \geq 0$.

Equivalently : $rk_+(M)$ is the smallest integer such that $M = \sum_{i=1}^{r} R_i$ with R_i rank-1 matrices with non-negative entries.

Factorization theorem :

Theorem [Yannakakis 91]

For any polytope ${\cal P}$ and any of its slack matrix ${\cal M},$ the following equality holds :

 $xc(P) = rk_+(M)$

^{1.} From now on, I will consider only 0/1 slack matrix, so supp(M)=M.

^{1.} From now on, I will consider only 0/1 slack matrix, so supp(M)=M.

^{1.} From now on, I will consider only 0/1 slack matrix, so supp(M)=M.

^{1.} From now on, I will consider only 0/1 slack matrix, so supp(M)=M.

^{1.} From now on, I will consider only 0/1 slack matrix, so supp(M)=M.

Clique Stable Set Separation

$$rc(M) \le rk_{+}(M)$$

$$(M) \le rc(M) \le rc$$

Clique Stable Set Separation

$$rc(M) \le rk_{+}(M)$$

$$(M) \le rc(M) \le rc(M) \le rc(M) \le rc(M) \le rc(M)$$

$$(M) = (M) = (M) = (M) = (M) \le rc(M) \le rc(M$$

Clique Stable Set Separation

$$rc(M) \le rk_{+}(M)$$

$$(M) \le rc(M) \le rc$$

Clique Stable Set Separation

Let us sum up :

Extension complexity

Rectangle covering

Clique Stable Set Separation

Let us sum up :

Clique Stable Set Separation

Let us sum up : Stable set polytope for perfect graphs :

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Clique vs Independent Set Problem

$$\begin{array}{c} \text{Constr.} \mathcal{K}_{1} \\ \text{Constr.} \mathcal{K}_{2} \\ \text{Constr.} \mathcal{K}_{3} \\ \text{Constr.} \mathcal{K}_{3} \\ \text{Constr.} \mathcal{K}_{4} \end{array} \begin{pmatrix} S_{1} & S_{2} & S_{3} & S_{4} & S_{5} \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ \end{array} \end{pmatrix}$$

$$\begin{array}{c} \text{Other constraints} \\ \text{Other constraints} \\ \text{QSTAB}(G) : \mathcal{M}_{i,j} = 1 - |\mathcal{K}_{i} \cap \mathcal{S}_{j}| \end{array}$$

$$\begin{array}{c} \text{Constr.} \mathcal{K}_{1} \\ \text{Constr.} \mathcal{K}_{2} \\ \text{Alice} \rightarrow \text{Constr.} \mathcal{K}_{3} \\ \text{Constr.} \mathcal{K}_{4} \\ \text{Other constraints} \end{array} \begin{pmatrix} S_{1} & S_{2} & S_{3} & S_{4} & S_{5} \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ \end{array} \\ \begin{array}{c} \text{Other constraints} \\ \text{QSTAB}(G) : \mathcal{M}_{i,j} = 1 - |\mathcal{K}_{i} \cap \mathcal{S}_{j}| \end{array}$$

$$\begin{array}{c} \mathsf{Bob} \downarrow \\ \mathsf{Constr.} \mathcal{K}_1 & \begin{pmatrix} S_1 & S_2 & S_3 & S_4 & S_5 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ \mathsf{Alice} \to \mathsf{Constr.} \mathcal{K}_3 \\ \mathsf{Constr.} \mathcal{K}_4 \\ \mathsf{Other \ constraints} & \begin{pmatrix} \mathsf{S}_1 & \mathsf{S}_2 & \mathsf{S}_3 & \mathsf{S}_4 & \mathsf{S}_5 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ \end{pmatrix} \\ \mathcal{QSTAB}(G) : \mathcal{M}_{i,j} = 1 - |\mathcal{K}_i \cap \mathcal{S}_j| \end{array}$$

$$\begin{array}{c} \mathsf{Bob} \downarrow \\ \mathsf{Constr.} \mathcal{K}_1 & \begin{pmatrix} S_1 & S_2 & S_3 & S_4 & S_5 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ \mathsf{Alice} \to \mathsf{Constr.} \mathcal{K}_3 \\ \mathsf{Constr.} \mathcal{K}_4 \\ \mathsf{Other \ constraints} & \begin{pmatrix} \mathsf{S}_1 & \mathsf{S}_2 & \mathsf{S}_3 & \mathsf{S}_4 & \mathsf{S}_5 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ & & & & \end{pmatrix} \\ \mathcal{QSTAB}(G) : \mathcal{M}_{i,j} = 1 - |\mathcal{K}_i \cap \mathcal{S}_j| \end{array}$$

Lower bounding techniques on the extension complexity 00000000

Clique Stable Set Separation

Clique vs Independent Set Problem

Goal [Yannakakis 1991]

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Lower bounding techniques on the extension complexity 00000000

Clique Stable Set Separation

Clique vs Independent Set Problem

Goal [Yannakakis 1991]

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Upper Bound : there exists a CS-separator of size $\mathcal{O}(n^{\log n})$. Lower Bound [Amano, Shigeta 2013] : there exists an infinite family of graphs such that any CS-separator has size $\Omega(n^{2-\varepsilon})$

Lower bounding techniques on the extension complexity 00000000

Clique Stable Set Separation

Clique vs Independent Set Problem

Goal [Yannakakis 1991]

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Upper Bound : there exists a CS-separator of size $\mathcal{O}(n^{\log n})$.

Lower Bound [Amano, Shigeta 2013] : there exists an infinite family of graphs such that any CS-separator has size $\Omega(n^{2-\varepsilon})$

Does there exist for all graph G on n vertices a CS-separator of size poly(n)? Or for which classes of graphs does it exist?

Lower bounding techniques on the extension complexity ${\tt ococococo}$

Clique Stable Set Separation

In which classes of graphs do we have a polynomial CS-separator?

Lower bounding techniques on the extension complexity ${\tt oooooooo}$

Clique Stable Set Separation

In which classes of graphs do we have a polynomial CS-separator ? An easy example : if the clique number ω is bounded, say by 3 :

In which classes of graphs do we have a polynomial CS-separator? An easy example : if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3 , take the cut $(T, V \setminus T)$ \Rightarrow CS-separator of size $\mathcal{O}(n^3)$.

Lower bounding techniques on the extension complexity $\verb"oooooooo"$

Clique Stable Set Separation

In which classes of graphs do we have a polynomial CS-separator? An easy example : if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3 , take the cut $(T, V \setminus T)$ \Rightarrow CS-separator of size $\mathcal{O}(n^3)$.
In which classes of graphs do we have a polynomial CS-separator? An easy example : if the clique number ω is bounded, say by 3 :

For every subset T of size ≤ 3 , take the cut $(T, V \setminus T)$ \Rightarrow CS-separator of size $\mathcal{O}(n^3)$.

Lower bounding techniques on the extension complexity

Class of	Poly	Poly	Poly
graphs	CS-sep	$rk_+(M_{QSTAB})$	$rk_+(M_{STAB})$
<i>H</i> -free, <i>H</i> split	Yes	?	?
<i>H</i> -free, <i>H</i> : <i>P</i> ₄ -free split	Yes	Yes (det)	?
P ₄ -free	Yes	Ye	S
$(P_k, \overline{P_k})$ -free (Strong EH)	Yes	Yes (det)	?
P_5 -free	Yes	Yes	Yes
Random	Yes	(?)	(?)
Perfect with no bal. skew part.	Yes	Not her	editary
Perfect	?	?	
All graphs	?	?	No
P_k -free	?	?	?

Lower bounding techniques on the extension complexity

Class of	Poly	Poly	Poly
graphs	CS-sep	$rk_+(M_{QSTAB})$	$rk_+(M_{STAB})$
<i>H</i> -free, <i>H</i> split	Yes	?	?
H-free, H : P ₄ -free split	Yes	Yes (det)	?
P ₄ -free	Yes	Yes	
$(P_k, \overline{P_k})$ -free (Strong EH)	Yes	Yes (det)	?
P_5 -free	Yes	Yes	Yes
Random	Yes	(?)	(?)
Perfect with no bal. skew part.	Yes	Not her	editary
Perfect	?	?	
All graphs	?	?	No
P_k -free	?	?	?

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Split-free

Comparability graphs [Yannakakis 1991]

Polytopes and extended formulations 0000000

Clique Stable Set Separation

Split-free

Comparability graphs [Yannakakis 1991]

Polytopes and extended formulations 0000000

Clique Stable Set Separation

Split-free

Comparability graphs [Yannakakis 1991]

Polytopes and extended formulations 0000000

Clique Stable Set Separation

Split-free

Comparability graphs [Yannakakis 1991]

Polytopes and extended formulations

Lower bounding techniques on the extension complexity 00000000

Clique Stable Set Separation

Split-free

Split graph

A graph (V, E) is *split* if V can be partitioned into a clique and a stable set.

Split-free [Bousquet, L., Thomassé 2012]

Let *H* be a split graph. Then every *H*-free graphs have a CS-separator of size $O(n^{c_H})$.

ower bounding techniques on the extension complexity

Clique Stable Set Separation

Let H be a split graph.

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Let H be a split graph.

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Let H be a split graph.

Key Lemma (using VC-dimension)

 \exists a constant *t* s. t. \forall clique *K* and stable set *S* in a *H*-free :

•
$$\exists S' \subseteq S$$
 s. t. $|S'| = t$ and S' dominates K

• or, $\exists K' \subseteq K$ s. t. |K'| = t and K' antidominates S

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Let H be a split graph.

Key Lemma (using VC-dimension)

 \exists a constant *t* s. t. \forall clique *K* and stable set *S* in a *H*-free :

•
$$\exists S' \subseteq S$$
 s. t. $|S'| = t$ and S' dominates K

• or, $\exists K' \subseteq K$ s. t. |K'| = t and K' antidominates S

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Let H be a split graph.

Key Lemma (using VC-dimension)

 \exists a constant *t* s. t. \forall clique *K* and stable set *S* in a *H*-free :

•
$$\exists S' \subseteq S$$
 s. t. $|S'| = t$ and S' dominates K

• or, $\exists K' \subseteq K$ s. t. |K'| = t and K' antidominates S

Lower bounding techniques on the extension complexity $\underbrace{\text{oooooooo}}$

Class of	Poly	Poly	Poly
graphs	CS-sep	$rk_+(M_{QSTAB})$	$rk_+(M_{STAB})$
<i>H</i> -free, <i>H</i> split	Yes	?	?
H-free, H : P ₄ -free split	Yes	Yes (det)	?
P ₄ -free	Yes	Ye	s
$(P_k, \overline{P_k})$ -free (Strong EH)	Yes	Yes (det)	?
P_5 -free	Yes	Yes	Yes
Random	Yes	(?)	(?)
Perfect with no bal. skew part.	Yes	Not her	editary
Perfect	?	?	?
All graphs	?	(?)	(?)
P_k -free	?	?	?

Lower bounding techniques on the extension complexity

Class of	Poly	Poly	Poly
graphs	CS-sep	$rk_+(M_{QSTAB})$	$rk_+(M_{STAB})$
<i>H</i> -free, <i>H</i> split	Yes	?	?
H-free, H : P ₄ -free split	Yes	Yes (det)	?
P ₄ -free	Yes	Yes	
$(P_k, \overline{P_k})$ -free (Strong EH)	Yes	Yes (det)	?
P_5 -free	Yes	Yes	Yes
Random	Yes	(?)	(?)
Perfect with no bal. skew part.	Yes	Not her	editary
Perfect	?	?	?
All graphs	?	(?)	(?)
P_k -free	?	?	?

Clique Stable Set Separation

Strong Erdős-Hajnal prop. - $(P_k, \overline{P_k})$ -free [Bousquet, L., Thomassé]

For every k, there exists a constant c > 0 such that every graph G with no P_k nor $\overline{P_k}$ has two subsets of vertices A and B of size $\geq c.n$, with A complete to B or anticomplete to B.

Lower bounding techniques on the extension complexity 00000000

Clique Stable Set Separation

Strong Erdős-Hajnal prop. - $(P_k, \overline{P_k})$ -free [Bousquet, L., Thomassé]

For every k, there exists a constant c > 0 such that every graph G with no P_k nor $\overline{P_k}$ has two subsets of vertices A and B of size $\geq c.n$, with A complete to B or anticomplete to B.

or

Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Strong Erdős-Hajnal prop. - $(P_k, \overline{P_k})$ -free

 $\exists c > 0$

Clique Stable Set Separation

Strong Erdős-Hajnal prop. - $(P_k, \overline{P_k})$ -free

 $\exists c > 0$

Erdős-Hajnal - $(P_k, \overline{P_k})$ -free [Bousquet, L., Thomassé 2013]

There exists $\varepsilon > 0$ such that every $(P_k, \overline{P_k})$ -free graph G has a clique or a stable set of size n^{ε} .

Clique Stable Set Separation

Strong Erdős-Hajnal prop. - $(P_k, \overline{P_k})$ -free

 $\exists c > 0$

Erdős-Hajnal - $(P_k, \overline{P_k})$ -free [Bousquet, L., Thomassé 2013]

There exists $\varepsilon > 0$ such that every $(P_k, \overline{P_k})$ -free graph G has a clique or a stable set of size n^{ε} .

CS-separation - $(P_k, \overline{P_k})$ -free [Bousquet, L., Thomassé 2013]

There exists a CS-separator of size $\mathcal{O}(n^{c_k})$ for every $(P_k, \overline{P_k})$ -free graph.

Clique Stable Set Separation

Strong EH \Rightarrow Deterministic protocol

Clique Stable Set Separation

Strong EH \Rightarrow Deterministic protocol

Clique Stable Set Separation

Strong EH \Rightarrow Deterministic protocol

$$G:$$

$$A_0 \uplus B_0$$

Clique Stable Set Separation

Strong EH \Rightarrow Deterministic protocol

$$G:$$

$$A_0 \uplus B_0 \cup C_0$$

Clique Stable Set Separation

Strong EH \Rightarrow Deterministic protocol

Clique Stable Set Separation

Strong EH \Rightarrow Deterministic protocol

Clique Stable Set Separation

Strong EH \Rightarrow Deterministic protocol

Lower bounding techniques on the extension complexity 00000000

Clique Stable Set Separation

Strong EH \Rightarrow Deterministic protocol

Let C be a hereditary class of graphs satisfying the Strong Erdős-Hajnal prop. Then there exists a *deterministic* protocol for Alice and Bob to decide whether $K \cap S = \emptyset$ or not.

At each step : Alice (for \uplus nodes) or Bob (for \bowtie nodes) sends 1 bit. Number of steps : Height of the tree $\mathcal{O}(\log n)$. Lower bounding techniques on the extension complexity 00000000

Clique Stable Set Separation

Strong EH \Rightarrow Deterministic protocol

Let C be a hereditary class of graphs satisfying the Strong Erdős-Hajnal prop. Then there exists a *deterministic* protocol for Alice and Bob to decide whether $K \cap S = \emptyset$ or not.

At each step : Alice (for \uplus nodes) or Bob (for \bowtie nodes) sends 1 bit. Number of steps : Height of the tree $\mathcal{O}(\log n)$. Excluding only P_k and not $\overline{P_k}$?

Lower bounding techniques on the extension complexity

Class of	Poly	Poly	Poly
graphs	CS-sep	$rk_+(M_{QSTAB})$	$rk_+(M_{STAB})$
<i>H</i> -free, <i>H</i> split	Yes	?	?
H-free, H : P ₄ -free split	Yes	Yes (det)	?
P ₄ -free	Yes	Yes	
$(P_k, \overline{P_k})$ -free (Strong EH)	Yes	Yes (det)	?
P_5 -free	Yes	Yes	Yes
Random	Yes	(?)	(?)
Perfect with no bal. skew part.	Yes	Not hereditary	
Perfect	?	?	
All graphs	?	?	No
P_k -free	?	?	?

Lower bounding techniques on the extension complexity

Class of	Poly	Poly	Poly
graphs	CS-sep	$rk_+(M_{QSTAB})$	$rk_+(M_{STAB})$
<i>H</i> -free, <i>H</i> split	Yes	?	?
H-free, H : P ₄ -free split	Yes	Yes (det)	?
P ₄ -free	Yes	Yes	
$(P_k, \overline{P_k})$ -free (Strong EH)	Yes	Yes (det)	?
P_5 -free	Yes	Yes	Yes
Random	Yes	(?)	(?)
Perfect with no bal. skew part.	Yes	Not her	editary
Perfect	?	?	
All graphs	?	?	No
P_k -free	?	?	?

Clique Stable Set Separation

P₅-free graphs [Loksthanov, Vatshelle, Villanger 2013]

Max. Weighted Stable Set is polytime solvable in P_5 -free graphs. (They actually proved a stronger statement.)

Clique Stable Set Separation

P₅-free graphs [Loksthanov, Vatshelle, Villanger 2013]

Max. Weighted Stable Set is polytime solvable in P_5 -free graphs. (They actually proved a stronger statement.)

Consequences from the stronger statement :

*P*₅-free graphs [Bousquet, L., Thomassé 2013]

Every P_5 -free graph has a CS-separator of size $\mathcal{O}(n^8)$.

Clique Stable Set Separation

P₅-free graphs [Loksthanov, Vatshelle, Villanger 2013]

Max. Weighted Stable Set is polytime solvable in P_5 -free graphs. (They actually proved a stronger statement.)

Consequences from the stronger statement :

P₅-free graphs [Bousquet, L., Thomassé 2013]

Every P_5 -free graph has a CS-separator of size $\mathcal{O}(n^8)$.

Extended formulation for *P*₅-free graphs [Conforti, Di Summa, Faenza, Fiorini, Pashkovich]

For every P_5 -free graph G, STAB(G) has an extended formulation of polynomial size.

Lower bounding techniques on the extension complexity

Class of	Poly	Poly	Poly
graphs	CS-sep	$rk_+(M_{QSTAB})$	$rk_+(M_{STAB})$
<i>H</i> -free, <i>H</i> split	Yes	?	?
H-free, H : P ₄ -free split	Yes	Yes (det)	?
P ₄ -free	Yes	Yes	
$(P_k, \overline{P_k})$ -free (Strong EH)	Yes	Yes (det)	?
P_5 -free	Yes	Yes	Yes
Random	Yes	(?)	(?)
Perfect with no bal. skew part.	Yes	Not her	editary
Perfect	?	?	
All graphs	?	?	No
P_k -free	?	?	?

Lower bounding techniques on the extension complexity

Class of	Poly	Poly	Poly
graphs	CS-sep	$rk_+(M_{QSTAB})$	$rk_+(M_{STAB})$
<i>H</i> -free, <i>H</i> split	Yes	?	?
H-free, H : P ₄ -free split	Yes	Yes (det)	?
P ₄ -free	Yes	Yes	
$(P_k, \overline{P_k})$ -free (Strong EH)	Yes	Yes (det)	?
P_5 -free	Yes	Yes	Yes
Random	Yes	(?)	(?)
Perfect with no bal. skew part.	Yes	Not her	editary
Perfect	?	?	
All graphs	?	?	No
P_k -free	?	?	?
Lower bounding techniques on the extension complexity ${\tt 00000000}$

Clique Stable Set Separation

Random graphs [Bousquet, L., Thomassé 2012]

For every $n \in \mathbb{N}$, $p \in [0, 1]$, there exists a set \mathcal{F} of $\mathcal{O}(n^7)$ cuts such that

$$\forall G \in G(n,p) \qquad \Pr(\mathcal{F} \text{ is a CS-sep for } G) \underset{n \to +\infty}{\longrightarrow} 1$$

Lower bounding techniques on the extension complexity $\verb"oooooooo"$

Clique Stable Set Separation

Random graphs [Bousquet, L., Thomassé 2012]

For every $n \in \mathbb{N}$, $p \in [0, 1]$, there exists a set \mathcal{F} of $\mathcal{O}(n^7)$ cuts such that

$$\forall G \in G(n,p) \qquad \Pr(\mathcal{F} \text{ is a CS-sep for } G) \underset{n \to +\infty}{\longrightarrow} 1$$

Idea : since the edges are all drawn with the same probability p, cliques and stables sets can not both be too big.

Example for p = 1/2 : $\alpha \approx \omega \approx 2 \log n$.

Polytopes and extended formulations 0000000

Lower bounding techniques on the extension complexity $\underbrace{\text{oooooooo}}$

Clique Stable Set Separation

Class of	Poly	Poly	Poly
graphs	CS-sep	$rk_+(M_{QSTAB})$	$rk_+(M_{STAB})$
<i>H</i> -free, <i>H</i> split	Yes	?	?
H-free, H : P ₄ -free split	Yes	Yes (det)	?
P ₄ -free	Yes	Yes	
$(P_k, \overline{P_k})$ -free (Strong EH)	Yes	Yes (det)	?
P_5 -free	Yes	Yes	Yes
Random	Yes	(?)	(?)
Perfect with no bal. skew part.	Yes	Not hereditary	
Perfect	?	?	
All graphs	?	?	No
P_k -free	?	?	?

Polytopes and extended formulations 0000000

Lower bounding techniques on the extension complexity

Clique Stable Set Separation

Class of	Poly	Poly	Poly
graphs	CS-sep	$rk_+(M_{QSTAB})$	$rk_+(M_{STAB})$
<i>H</i> -free, <i>H</i> split	Yes	?	?
H-free, H : P ₄ -free split	Yes	Yes (det)	?
P ₄ -free	Yes	Yes	
$(P_k, \overline{P_k})$ -free (Strong EH)	Yes	Yes (det)	?
P_5 -free	Yes	Yes	Yes
Random	Yes	(?)	(?)
Perfect with no bal. skew part.	Yes	Not hereditary	
Perfect	?	?	
All graphs	?	?	No
P_k -free	?	?	?

Polytopes and extended formulations

Lower bounding techniques on the extension complexity

Clique Stable Set Separation

Class of	Poly	Poly	Poly
graphs	CS-sep	$rk_+(M_{QSTAB})$	$rk_+(M_{STAB})$
<i>H</i> -free, <i>H</i> split	Yes	?	?
H-free, H : P ₄ -free split	Yes	Yes (det)	?
P ₄ -free	Yes	Yes	
$(P_k, \overline{P_k})$ -free (Strong EH)	Yes	Yes (det)	?
P_5 -free	Yes	Yes	Yes
Random	Yes	(?)	(?)
Perfect with no bal. skew part.	Yes	Not hereditary	
Perfect	?	?	
All graphs	?	?	No
P_k -free	?	?	?