
Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Lower bounds
JCRAA 2017

Aurélie Lagoutte
According to Linear-in-∆ Lower bounds in the LOCAL model

[Göös, Hirvonen, Suomela]
and No sublog-time approx scheme for Bipartite Vertex Cover

[Göös, Suomela]

LIMOS, Univ. Clermont Auvergne

October 3, 2017
Grenoble

1/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Locality of a distributed algorithm

In LOCAL model with run-time t:
Graph G = (V ,E) a network
Nodes synchronously send messages to their neighbours
In t rounds: the output at node v depends only on the
t-neighborhood of v
/!\Edge e incident to v : at distance 1
Could be deterministic, randomized....

2/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Different models of networks

ID model: each node has a unique identifier from N.
OI model (Order-invariance): total order < on the nodes
PO model (Port numbering and Orientation): each node has
a numbering of its incident edges + edges are oriented
EC model (Edge-Colouring): proper edge-colouring

PO and EC models are anonymous

ID OI PO

a < b < c < d 1
2

2
1

2

1 13

EC

3
2

1

2
3

5

2 8

b

c

a d

Figure 1: Deterministic models that are discussed in this work.

2.2 Proof outline

In short, our proof is an application of techniques that were introduced in two of our
earlier works [10, 13]. Accordingly, our proof is in two steps.

A weak lower bound. In our prior work [13] we showed that maximal matchings
cannot be computed in time o(�) in the weak EC model. The lower-bound construction
there is a regular graph, and as such, tells us very little about the fractional matching
problem, since maximal fractional matchings are trivial to compute in regular graphs.

Nevertheless, we use a similar unfold-and-mix argument on what will be called
loopy EC-graphs to prove the following intermediate result in Section 4:

Step 1. The maximal FM problem cannot be solved in time o(�) on loopy EC-graphs.

The proof heavily exploits the limited symmetry breaking capabilities of the EC

model. To continue, we need to argue that similar limitations exist in the ID model.

Strengthening the lower bound. To extend the lower bound to the ID model, we
give a series of local simulation results

EC ; PO ; OI ; ID,

which state that a local algorithm for the maximal fractional matching problem in one
model can be simulated fast in the model preceding it. That is, even though the models
EC, PO, OI, and ID are generally very di↵erent, we show that the models are roughly
equally powerful for computing a maximal fractional matching.

This part of the argument applies ideas from another prior work [10]. There,
we showed that, for a large class of optimisation problems, a run-time preserving
simulation PO ; ID exists. Unfortunately, the maximal fractional matching problem is
not included in the scope of this result (fractional matchings are not simple in the sense
of [10]), so we may not apply this result directly in a black-box fashion. In addition,
this general result does not hold for the EC model.

Nevertheless, we spend Section 5 extending the methods of [10] and show that they
can be tailored to the case of fractional matchings:

Step 2. If the maximal FM problem can be solved in time t(�) on ID-graphs, then it
can be solved in time t(⇥(�)) on loopy EC-graphs.

In combination with Step 1, this proves Theorem 1.

3 Tools of the Trade

Before we dive into the lower-bound proof, we recall the definitions of the four models
mentioned in Section 2.1, and describe the standard tools that are used in their analysis.

4

3/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

PO can be seen as "special" edge-colouring:

2

1
3

1 121

2
a a = (1, 2)

b = (3, 1)

a
a

b

1
1

1
2

2

2
2

1 131

1

(a)

(b)

PO1 PO2

Figure 2: Two equivalent definitions of PO-graphs: (PO1) a node of degree d can
refer to incident edges with labels 1, 2, . . . , d; (PO2) edges are coloured so that
incoming edges have distinct colours and outgoing edges have distinct colours.

We find it convenient to treat PO-graphs as edge-coloured digraphs, even if this view
is nonstandard. Usually, PO-graphs are defined as digraphs with a port numbering, i.e.,
each node is given an ordering of its neighbours. This is equivalent to our definition: A
port numbering gives rise to an edge colouring where an edge (u, v) is coloured with
(i, j) if v is the i-th neighbour of u and u is the j-th neighbour of v (see Figure 2a).
Conversely, we can derive a port numbering from an edge colouring—first take all
outgoing edges ordered by the edge colours, and then take all incoming edges ordered
by the edge colours (Figure 2b).

We are not done with defining EC and PO algorithms. We still need to restrict their
power by requiring that their outputs are invariant under graph lifts, as defined next.

3.4 Lifts

A graph H is said to be a lift of another graph G if there exists an onto graph
homomorphism ↵ : V (H) ! V (G) that is a covering map, i.e., ↵ preserves node degrees,
degH(v) = degG(↵(v)). Our discussion of lifts always takes place in either EC or PO; in
this context we require that a covering map preserves edge colours.

1
1

1
2H G

1
11

21 1

1
2

α

The defining characteristic of anonymous models is that the output of an algorithm
is invariant under taking lifts. That is, if ↵ : V (H) ! V (G) is a covering map, then

A(H, v) = A(G,↵(v)), for each v 2 V (H). (2)

Since an isomorphism between H and G is a special case of a covering map, the
condition (2) generalises the discussion in Section 3.3. We will be exploiting this
limitation extensively in analysing the models EC and PO.

Graphs are partially ordered by the lift relation. For any connected graph G, there
are two graphs UG and FG of special interest that are related to G via lifts.

6

4/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Lifts

2

1
3

1 121

2
a a = (1, 2)

b = (3, 1)

a
a

b

1
1

1
2

2

2
2

1 131

1

(a)

(b)

PO1 PO2

Figure 2: Two equivalent definitions of PO-graphs: (PO1) a node of degree d can
refer to incident edges with labels 1, 2, . . . , d; (PO2) edges are coloured so that
incoming edges have distinct colours and outgoing edges have distinct colours.

We find it convenient to treat PO-graphs as edge-coloured digraphs, even if this view
is nonstandard. Usually, PO-graphs are defined as digraphs with a port numbering, i.e.,
each node is given an ordering of its neighbours. This is equivalent to our definition: A
port numbering gives rise to an edge colouring where an edge (u, v) is coloured with
(i, j) if v is the i-th neighbour of u and u is the j-th neighbour of v (see Figure 2a).
Conversely, we can derive a port numbering from an edge colouring—first take all
outgoing edges ordered by the edge colours, and then take all incoming edges ordered
by the edge colours (Figure 2b).

We are not done with defining EC and PO algorithms. We still need to restrict their
power by requiring that their outputs are invariant under graph lifts, as defined next.

3.4 Lifts

A graph H is said to be a lift of another graph G if there exists an onto graph
homomorphism ↵ : V (H) ! V (G) that is a covering map, i.e., ↵ preserves node degrees,
degH(v) = degG(↵(v)). Our discussion of lifts always takes place in either EC or PO; in
this context we require that a covering map preserves edge colours.

1
1

1
2H G

1
11

21 1

1
2

α

The defining characteristic of anonymous models is that the output of an algorithm
is invariant under taking lifts. That is, if ↵ : V (H) ! V (G) is a covering map, then

A(H, v) = A(G,↵(v)), for each v 2 V (H). (2)

Since an isomorphism between H and G is a special case of a covering map, the
condition (2) generalises the discussion in Section 3.3. We will be exploiting this
limitation extensively in analysing the models EC and PO.

Graphs are partially ordered by the lift relation. For any connected graph G, there
are two graphs UG and FG of special interest that are related to G via lifts.

6

H is a lift of G via covering map α: α preserves degree and
edge-colours

G
H

v v1

v2

α

Figure 4: EC-graph G is loopy. Assume that an EC-algorithm A produces an
output in which node v is unsaturated. Then we can construct a simple EC-graph
H that is a lift of G via ↵ : V (H) ! V (G) such that ↵(v1) = ↵(v2) = v and
{v1, v2} 2 E(H). If we apply A to H, both v1 and v2 are unsaturated; hence A
fails to produce a maximal FM.

The loop count on a node v 2 V (G) measures the inability of v to break local
symmetries. Indeed, if v has ` loops, then in any simple lift H of G each node u 2 V (H)
that is mapped to v by the covering map will have ` distinct neighbours w1, . . . , w`

that, too, get mapped to v. Thus, an anonymous algorithm is forced to output the
same on u as on each of w1, . . . , w`.

We consider loops as an important resource.

Definition 1 (Loopiness). An edge-coloured graph G is called k-loopy if each node in
FG has at least k loops. A graph is simply loopy if it is 1-loopy.

When computing maximal fractional matchings on a loopy graph G, an anonymous
algorithm must saturate all the nodes. For suppose not. If v 2 V (G) is a node that does
not get saturated, the loopiness of G implies that v has a neighbour u (can be u = v
via a loop) that produces the same output as v. But now neither endpoint of {u, v} is
saturated, which contradicts maximality; see Figure 4. We record this observation.

Lemma 2. Any EC-algorithm for the maximal FM problem computes a fully saturated
FM on a loopy EC-graph.

4 Lower Bound in EC

In this section we carry out Step 1 of our lower-bound plan. To do this we extend the
previous lower bound result [13] to the case of maximal fractional matchings.

4.1 Strategy

Let A be any EC-algorithm computing a maximal fractional matching. We construct
inductively a sequence of EC-graph pairs

(Gi, Hi), i = 0, 1, . . . , � � 2,

that witness A having run-time greater than i. Each of the graphs Gi and Hi will have
maximum degree at most �, so for i = � � 2, we will have the desired lower bound.
More precisely, we show that there are nodes gi 2 V (Gi) and hi 2 V (Hi) satisfying the
following property:

(P1) The i-neighbourhoods ⌧i(Gi, gi) and ⌧i(Hi, hi) are isomorphic—yet,

A(Gi, gi) 6= A(Hi, hi).

Moreover, there is a loop of some colour ci adjacent to both gi and hi such that
the outputs disagree on its weight.

8

d(v) =1+1=2

Universal cover UG. The universal cover UG of G is an unfolded tree-like version
of G. More precisely, UG is the unique tree that is a lift of G. Thus, if G is a tree,
UG = G; if G has cycles, UG is infinite. In passing from G to UG we lose all the
cycle structure that is present in G. The universal cover is often used to model the
information that a distributed algorithm—even with unlimited running time—is able
to collect on an anonymous network [2].

1
1

1
2 UGG

1 1

1

21 1

1

2 1

Factor graph FG. The factor graph FG of G is the smallest graph F such that G is
a lift of F ; see Figure 3. In general, FG is a multigraph with loops and parallel edges.
It is the most concise representation of all the global symmetry breaking information
available in G. For example, in the extreme case when G is vertex-transitive, FG

consists of just one node and some loops.
Even though we want our input graphs always to be simple, we may still analyse

EC and PO-algorithms A on multigraphs F with the understanding that the output
A(F, v) is interpreted according to (2). That is, to determine A(F, v), do the following:

1. Lift F to a simple graph G (e.g., take G = UF) via some ↵ : V (G) ! V (F).
2. Execute A on (G, u) for some u 2 ↵�1(v).
3. Interpret the output of u as an output of v.

In what follows we refer to multigraphs simply as graphs.

3.5 Loops

In EC-graphs, a single loop on a node contributes +1 to its degree, whereas in PO-graphs,
a single (directed) loop contributes +2 to the degree, once for the tail and once for the
head. This is reflected in the way we draw loops—see Figure 3.

PO:

EC:
2 1 2 FGG

2 1

1

1 1

2

H

1 2

2 2

2 1FH

u

v

u’

v’

Figure 3: Factor graphs and loops. We follow the convention that undirected loops
in EC-graphs count as a single incident edge, while directed loops in PO-graphs
count as two incident edges: an incoming edge and an outgoing edge. In this
example, both u and its preimage u0 are nodes of degree 2; they are incident to
one edge of colour 1 and one edge of colour 2. Both v and its preimage v0 are
nodes of degree 3; they are incident to two outgoing edges of colours 1 and 2, and
one incoming edge of colour 1.

7

d+(v) =1+1 d−(v)=1

In an anonymous model: an algorithm cannot distinguish between
a graph and its lifts.

5/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Two special lifts

Universal cover UG

→

G

→

Factor graph FG

6/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Maximal vs maximum Fractional Matching

Fractional matching: weight function w : E (G)→ [0, 1] such that:

∀v ∈ V (G)
∑
e∈E :

v incid. to e

w(e) ≤ 1

A vertex v is saturated if its inequality is tight (=1).

The function y is called a fractional matching, or an FM for short, if y[v]  1 for each
node v. A node v is saturated if y[v] = 1.

There are two interesting varieties of fractional matchings.

� Maximum weight. An FM y is of maximum weight, if its total weight
P

e2E y(e)
is the maximum over all fractional matchings on G.

� Maximality. An FM y is maximal, if each edge e has at least one saturated
endpoint v 2 e.

See below for examples of (a) a maximum-weight FM, and (b) a maximal FM; the
saturated nodes are highlighted.

0.2

0.3

0.5

0.5

0.0

(a)

0.5

0.5

0.0

0.5

0.5

(b)

Distributed complexity. The distributed complexity of computing maximum-
weight FMs is completely understood. It is easy to see that computing an exact
solution requires time ⌦(n) already on odd-length path graphs. If one settles for an
approximate solution, then FMs whose total weight is at least a (1 � ✏)-fraction of
the maximum can be computed in time O(✏�1 log �) by the well-known results of
Kuhn et al. [16–18]. This is optimal: Kuhn et al. also show that any constant-factor
approximation of maximum-weight FMs requires time ⌦(log �).

By contrast, the complexity of computing maximal FMs has not been understood.
A maximal FM is a 1/2-approximation of a maximum-weight FM, so the results of
Kuhn et al. imply that finding a maximal FM requires time ⌦(log �), but this lower
bound is exponentially small in comparison to the O(�) upper bound [3].

1.3 Contributions

We prove that the O(�)-time algorithm [3] for maximal fractional matchings is optimal:

Theorem 1. There is no LOCAL algorithm that finds a maximal FM in o(�) rounds.

To our knowledge, this is the first linear-in-� lower bound in the LOCAL model for
a classical graph problem. Indeed, prior lower bounds have typically fallen in one of
the following categories:

� they are logarithmic in � [16–18],
� they analyse the complexity as a function of n for a fixed � [7–10, 19, 20, 23],
� they only hold in a model that is strictly weaker than LOCAL [13, 15].

We hope that our methods can eventually be extended to analyse algorithms (e.g.,
for maximal matching) whose running times depend mildly on n.

1.4 The LOCAL model

Our result holds in the standard LOCAL model of distributed computing [20, 26]. For
now, we only recall the basic setting; see Section 3 for precise definitions.

In the LOCAL model an input graph G = (V, E) defines both the problem instance
and the structure of the communication network. Each node v 2 V is a computer

2

Maximum:
total weight=2

Maximal:
every edge has ≥ 1
endpoint saturated

7/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Maximal Frac. Matching and Loopiness

Definition: loopiness
G is k-loopy if every node has ≥ k loops.
loopy=1-loopy

Observation:
If a node v has a loop: it must be saturated by any EC -algo.

8/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Maximal Frac. Matching and Loopiness

Definition: loopiness
G is k-loopy if every node has ≥ k loops.
loopy=1-loopy

Observation:
If a node v has a loop: it must be saturated by any EC -algo.

8/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Lower bound

Theorem
There is no LOCAL algorithm that finds a maximal fractional
matching in o(∆) rounds (where ∆ is the max. degree).

1 The maximal FM problem cannot be solved in time o(∆) on
loopy EC-graphs of maximum degree ∆.

2 ID OI PO EC

9/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Lower bound

Theorem
There is no LOCAL algorithm that finds a maximal fractional
matching in o(∆) rounds (where ∆ is the max. degree).

1 The maximal FM problem cannot be solved in time o(∆) on
loopy EC-graphs of maximum degree ∆.

2 ID OI PO EC

9/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Lower bound in EC

Theorem: step 1
The maximal FM problem cannot be solved in time o(∆) on loopy
EC-graphs of maximum degree ∆.

Proof:
Let A be an EC-algo computing maximal FM.
For i = 0, . . . ,∆− 2, exhibit a pair (Gi ,Hi) such that:

∃ gi ∈ V (Gi) and hi ∈ V (Hi) having the same
i-neighbourhood...
... but gi and hi must have an incident loop e on which A
disagrees
Gi ,Hi are trees apart from loops, and ∆− 1− i loopy

10/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Base case

0.5

0.2

0 0.3

G0: H0:

0.4

0.2 0.4

e

same colour c0,
different weight

Figure 5: Base case. By removing a loop e with a non-zero weight, we force the
algorithm to change the weight of at least one edge that is present in both G0

and H0.

We will also make use of the following additional properties in the construction:

(P2) The graphs Gi and Hi are (� � 1 � i)-loopy—consequently, A will saturate all
their nodes by Lemma 2.

(P3) When the loops are ignored, both Gi and Hi are trees.

4.2 Base case (i = 0)

Let G0 consist of a single node v that has � di↵erently coloured loops. When A is run
on G0, it saturates v by assigning at least one loop e a non-zero weight; see Figure 5.
Letting H0 := G0 � e it is now easy to check that the pair (G0, H0) satisfies (P1–P3)
for g0 = h0 = v. For example, ⌧0(G0, v) ⇠= ⌧0(H0, v) only because we consider the loops
to be at distance 1 from v.

4.3 Inductive step

Suppose (Gi, Hi) is a pair satisfying (P1–P3). For convenience, we write G, H, g, h,
and c in place of Gi, Hi, gi, hi, and ci. Also, we let e 2 E(G) and f 2 E(H) be the
colour-c loops adjacent to g and h to which A assigns di↵erent weights.

To construct the pair (Gi+1, Hi+1) we unfold and mix; see Figure 6

Unfolding. First, we unfold the loop e in G to obtain a 2-lift GG of G. That is,
GG consists of two disjoint copies of G � e and a new edge of colour c (which we
still call e) that connects the two copies of g in GG. For notational purposes, we fix
some identification V (G) ✓ V (GG) so that we can easily talk about one of the copies.
Similarly, we construct a 2-lift HH of H by unfolding the loop f .

Recall that A cannot tell apart G from GG, or H from HH. In particular A
continues to assign unequal weights to e and f in these lifts.

Mixing. Next, we mix together the graphs GG and HH to obtain a graph GH defined
as follows: GH contains a copy of G� e, a copy of H � f , and a new colour-c edge that
connects the nodes g and h. For notational purposes, we let V (GH) := V (G) [V (H),
where we tacitly assume that V (G) \ V (H) = ?.

Analysis. Consider the weight that A assigns to the colour-c edge {g, h} in GH.
Since A gives the edges e and f di↵erent weights in GG and HH, we must have that the

9

∆ loops ∆− 1 loops

⇒ G0,H0 are trees apart from loops, and ∆− 1 loopy
⇒ g0 and h0 have the same 0-neighborhood
⇒ g0 and h0 have an incident loop e on which A disagrees

11/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Inductive case

0.5

0.2

0 0.3

G: H:

0.4

0.2 0.4

0.5

0.2

0 0.3

0.4

0.2 0.4

0.5

0 0.3 0.2 0.4

GG: HH:GH:

e f

e f
g

h

Figure 6: Unfold and mix. The weights of e and f di↵er; hence the weight of
{g, h} is di↵erent from the weight of e or f .

weight of {g, h} di↵ers from the weight of e or the weight of f (or both). We assume
the former (the latter case is analogous), and argue that the pair

(Gi+1, Hi+1) := (GG, GH)

satisfies the properties (P1–P3). It is easy to check that (P2) and (P3) are satisfied by
the construction; it remains is to find the nodes gi+1 2 V (GG) and hi+1 2 V (GH) that
satisfy (P1).

To this end, we exploit the following property of fractional matchings:

Fact 3 (Propagation principle). Let y and y0 be fractional matchings that saturate a
node v. If y and y0 disagree on some edge incident to v, there must be another edge
incident to v where y and y0 disagree.

Our idea is to apply this principle in a fully saturated graph, where the disagreements
propagate until they are resolved at a loop; this is where we locate gi+1 and hi+1. See
Figure 7 for an example.

We consider the following fully saturated fractional matchings on G:

y = the FM determined by A’s output on the nodes V (G) in GG,
y0 = the FM determined by A’s output on the nodes V (G) in GH.

Starting at the node g 2 V (G) we already know by assumption that y and y0 disagree
on the colour-c edge incident to g. Thus, by the propagation principle, y and y0 disagree
on some other edge incident to g. If this edge is not a loop, it connects to a neighbour
g0 2 V (G) of g and the argument can be continued: because y and y0 disagree on
{g, g0}, there must be another edge incident to g0 where y and y0 disagree, and so on.
Since G does not have any cycles (apart from the loops), this process has to terminate
at some node g⇤ 2 V (G) such that y and y0 disagree on a loop e⇤ 6= e incident to g⇤.
Note that e⇤ is a loop in both GG and GH, too. Thus, we have found our candidate
gi+1 = hi+1 = g⇤.

10

Unfold G → GG , unfold H → HH
Unfold & mix G ,H → GH
Choose to keep GH and one of GG , HH

⇒ Gi+1,Hi+1 are trees apart from loops, and ∆− 1− (i +1) loopy

12/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Inductive case

Find gi+1 and hi+1

with same i + 1 neighborhood
but incident loop e on which A disagrees

Push from gi towards copy of G following edge disagreement.

0.5

0.2

0 0.3

G: H:

0.4

0.2 0.4

0.5

0.2

0 0.3

0.4

0.2 0.4

0.5

0 0.3 0.2 0.4

GG: HH:GH:

e f

e f
g

h

Figure 6: Unfold and mix. The weights of e and f di↵er; hence the weight of
{g, h} is di↵erent from the weight of e or f .

weight of {g, h} di↵ers from the weight of e or the weight of f (or both). We assume
the former (the latter case is analogous), and argue that the pair

(Gi+1, Hi+1) := (GG, GH)

satisfies the properties (P1–P3). It is easy to check that (P2) and (P3) are satisfied by
the construction; it remains is to find the nodes gi+1 2 V (GG) and hi+1 2 V (GH) that
satisfy (P1).

To this end, we exploit the following property of fractional matchings:

Fact 3 (Propagation principle). Let y and y0 be fractional matchings that saturate a
node v. If y and y0 disagree on some edge incident to v, there must be another edge
incident to v where y and y0 disagree.

Our idea is to apply this principle in a fully saturated graph, where the disagreements
propagate until they are resolved at a loop; this is where we locate gi+1 and hi+1. See
Figure 7 for an example.

We consider the following fully saturated fractional matchings on G:

y = the FM determined by A’s output on the nodes V (G) in GG,
y0 = the FM determined by A’s output on the nodes V (G) in GH.

Starting at the node g 2 V (G) we already know by assumption that y and y0 disagree
on the colour-c edge incident to g. Thus, by the propagation principle, y and y0 disagree
on some other edge incident to g. If this edge is not a loop, it connects to a neighbour
g0 2 V (G) of g and the argument can be continued: because y and y0 disagree on
{g, g0}, there must be another edge incident to g0 where y and y0 disagree, and so on.
Since G does not have any cycles (apart from the loops), this process has to terminate
at some node g⇤ 2 V (G) such that y and y0 disagree on a loop e⇤ 6= e incident to g⇤.
Note that e⇤ is a loop in both GG and GH, too. Thus, we have found our candidate
gi+1 = hi+1 = g⇤.

10

≠ 0.2

13/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Inductive case

Find gi+1 and hi+1

with same i + 1 neighborhood
but incident loop e on which A disagrees

Push from gi towards copy of G following edge disagreement.

0.5

0.2

0 0.3

G: H:

0.4

0.2 0.4

0.5

0.2

0 0.3

0.4

0.2 0.4

0.5

0 0.3 0.2 0.4

GG: HH:GH:

e f

e f
g

h

Figure 6: Unfold and mix. The weights of e and f di↵er; hence the weight of
{g, h} is di↵erent from the weight of e or f .

weight of {g, h} di↵ers from the weight of e or the weight of f (or both). We assume
the former (the latter case is analogous), and argue that the pair

(Gi+1, Hi+1) := (GG, GH)

satisfies the properties (P1–P3). It is easy to check that (P2) and (P3) are satisfied by
the construction; it remains is to find the nodes gi+1 2 V (GG) and hi+1 2 V (GH) that
satisfy (P1).

To this end, we exploit the following property of fractional matchings:

Fact 3 (Propagation principle). Let y and y0 be fractional matchings that saturate a
node v. If y and y0 disagree on some edge incident to v, there must be another edge
incident to v where y and y0 disagree.

Our idea is to apply this principle in a fully saturated graph, where the disagreements
propagate until they are resolved at a loop; this is where we locate gi+1 and hi+1. See
Figure 7 for an example.

We consider the following fully saturated fractional matchings on G:

y = the FM determined by A’s output on the nodes V (G) in GG,
y0 = the FM determined by A’s output on the nodes V (G) in GH.

Starting at the node g 2 V (G) we already know by assumption that y and y0 disagree
on the colour-c edge incident to g. Thus, by the propagation principle, y and y0 disagree
on some other edge incident to g. If this edge is not a loop, it connects to a neighbour
g0 2 V (G) of g and the argument can be continued: because y and y0 disagree on
{g, g0}, there must be another edge incident to g0 where y and y0 disagree, and so on.
Since G does not have any cycles (apart from the loops), this process has to terminate
at some node g⇤ 2 V (G) such that y and y0 disagree on a loop e⇤ 6= e incident to g⇤.
Note that e⇤ is a loop in both GG and GH, too. Thus, we have found our candidate
gi+1 = hi+1 = g⇤.

10

0.4

13/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Inductive case

Find gi+1 and hi+1

with same i + 1 neighborhood
but incident loop e on which A disagrees

Push from gi towards copy of G following edge disagreement.

0.5

0.2

0 0.3

G: H:

0.4

0.2 0.4

0.5

0.2

0 0.3

0.4

0.2 0.4

0.5

0 0.3 0.2 0.4

GG: HH:GH:

e f

e f
g

h

Figure 6: Unfold and mix. The weights of e and f di↵er; hence the weight of
{g, h} is di↵erent from the weight of e or f .

weight of {g, h} di↵ers from the weight of e or the weight of f (or both). We assume
the former (the latter case is analogous), and argue that the pair

(Gi+1, Hi+1) := (GG, GH)

satisfies the properties (P1–P3). It is easy to check that (P2) and (P3) are satisfied by
the construction; it remains is to find the nodes gi+1 2 V (GG) and hi+1 2 V (GH) that
satisfy (P1).

To this end, we exploit the following property of fractional matchings:

Fact 3 (Propagation principle). Let y and y0 be fractional matchings that saturate a
node v. If y and y0 disagree on some edge incident to v, there must be another edge
incident to v where y and y0 disagree.

Our idea is to apply this principle in a fully saturated graph, where the disagreements
propagate until they are resolved at a loop; this is where we locate gi+1 and hi+1. See
Figure 7 for an example.

We consider the following fully saturated fractional matchings on G:

y = the FM determined by A’s output on the nodes V (G) in GG,
y0 = the FM determined by A’s output on the nodes V (G) in GH.

Starting at the node g 2 V (G) we already know by assumption that y and y0 disagree
on the colour-c edge incident to g. Thus, by the propagation principle, y and y0 disagree
on some other edge incident to g. If this edge is not a loop, it connects to a neighbour
g0 2 V (G) of g and the argument can be continued: because y and y0 disagree on
{g, g0}, there must be another edge incident to g0 where y and y0 disagree, and so on.
Since G does not have any cycles (apart from the loops), this process has to terminate
at some node g⇤ 2 V (G) such that y and y0 disagree on a loop e⇤ 6= e incident to g⇤.
Note that e⇤ is a loop in both GG and GH, too. Thus, we have found our candidate
gi+1 = hi+1 = g⇤.

10

0.4

0

0.3

0.3

13/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Inductive case

Find gi+1 and hi+1

with same i + 1 neighborhood
but incident loop e on which A disagrees

Push from gi towards copy of G following edge disagreement.

0.5

0.2

0 0.3

0.5

0 0.3

0.3

0.2

0.1

0.3 0.4

GG: 0.5

0.2

0

0.5

0.3 0

GH: 0.5

0.3

0 0.4

0.4

0 0.3

eg g h

e* e*

ĝ

g* g*

Figure 7: Propagation. The weights of e and {g, h} di↵er. We apply the propaga-
tion principle towards the common part G that is shared by GG and GH. The
graphs are loopy and hence all nodes are saturated by A; we will eventually find a
loop e⇤ that is present in both GG and GH, with di↵erent weights.

To finish the proof, we need to show that

⌧i+1(GG, g⇤) ⇠= ⌧i+1(GH, g⇤). (3)

The critical case is when g⇤ = g as this node is the closest among V (G) to seeing the
topological di↵erences between the graphs GG and GH. Starting from g and stepping
along the colour-c edge towards the di↵erences, we arrive, in GG, at a node ĝ that is a
copy of g 2 V (G), and in GH, at the node h. But these nodes satisfy

⌧i(GG, ĝ) ⇠= ⌧i(GH, h)

by our induction assumption. Using this, (3) follows.

5 Local Simulations

Now that we have an ⌦(�) time lower bound in the EC model, our next goal is to
extend this result to the ID model. In this section we implement Step 2 of our plan and
give a series of local simulations

EC ; PO ; OI ; ID.

Here, each simulation preserves the running time of an algorithm up to a constant
factor. In particular, together with Step 1, this will imply the ⌦(�) time lower bound
in the ID model.

5.1 Simulation EC ; PO

We start with the easiest simulation. Suppose there is a t-time PO-algorithm for the
maximal fractional matching problem on graphs of maximum degree �; we describe a
t-time EC-algorithm for graphs of maximum degree �/2.

The local simulation is simple; see Figure 8. On input an EC-graph G we interpret
each edge {u, v} of colour c as two directed edges (u, v) and (v, u), both of colour c;
this interpretation makes G into a PO-graph G⌧. We can now locally simulate the
PO-algorithm on G⌧ to obtain an FM y as output. Finally, we transform y back to an
FM of G: the edge {u, v} is assigned weight y(u, v) + y(v, u).

11

13/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Reductions

ID OI PO EC

Theorem: step 2
If ∃ AID running in t-time for max FM on any graph of max.
degree ∆ ⇒ ∃ AEC running in t-time computing max. FM on any
loopy EC-graph of max. degree ∆/2.

PO EC

PO

3

1

2

EC

3

1

2

1
2

3

PO EC

0.50.3

0.2

input output

Figure 8: EC ; PO. Mapping an EC-graph G into a PO-graph G⌧, and mapping
the output of a PO-algorithm back to the original graph.

5.2 Tricky identifiers

When we are computing a maximal fractional matching y : E(G) ! [0, 1], we have,
a priori, infinitely many choices for the weight y(e) of an edge. For example, in a
path on nodes v1, v2, and v3, we can freely choose y({v1, v2}) 2 [0, 1] provided we set
y({v2, v3}) = 1 � y({v1, v2}). In particular, an ID-algorithm can output edge weights
that depend on the node identifiers whose magnitude is not bounded.

Unbounded outputs are tricky from the perspective of proving lower bounds. The
main result of the recent work [10] is a run-time preserving local simulation PO ; ID,
but the result only holds under the assumption that the solution can be encoded using
finitely many values per node on graphs of maximum degree �. This restriction has
its source in an earlier local simulation OI ; ID due to Naor and Stockmeyer [23]
that is crucially using Ramsey’s theorem. In fact, these two local simulation results
fail if unbounded outputs are allowed; counterexamples include even natural graph
problems [12].

In conclusion, we need an ad hoc argument to establish that an ID-algorithm cannot
benefit from unique identifiers in case of the maximal fractional matching problem.

5.3 Simulation PO ; OI

Before we address the question of simulating ID-algorithms, we first salvage one part
of the result in [10]: there is local simulation PO ; OI that applies to many locally
checkable problems, regardless of the size of the output encoding. Even though this
simulation works o↵-the-shelf in our present setting, we cannot use this result in a
black-box fashion, as we need to access its inner workings later in the analysis. Thus,
we proceed with a self-contained proof.

The following presentation is considerably simpler than that in [10], since we are
only interested in a simulation that produces a locally maximal fractional matching,
not in a simulation that also provides approximation guarantees on the total weight, as
does the original result.

PO-checkability. Maximal fractional matchings are not only locally checkable, but
also PO-checkable: there is a local PO-algorithm that can check whether a given y is a
maximal FM. An important consequence of PO-checkability is that if H is a lift of G
then any PO-algorithm produces a feasible solution on H if and only if it produces a
feasible solution on G.

12

14/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Reductions

ID OI PO EC

Theorem: step 2
If ∃ AID running in t-time for max FM on any graph of max.
degree ∆ ⇒ ∃ AEC running in t-time computing max. FM on any
loopy EC-graph of max. degree ∆/2.

PO EC

PO

3

1

2

EC

3

1

2

1
2

3

PO EC

0.50.3

0.2

input output

Figure 8: EC ; PO. Mapping an EC-graph G into a PO-graph G⌧, and mapping
the output of a PO-algorithm back to the original graph.

5.2 Tricky identifiers

When we are computing a maximal fractional matching y : E(G) ! [0, 1], we have,
a priori, infinitely many choices for the weight y(e) of an edge. For example, in a
path on nodes v1, v2, and v3, we can freely choose y({v1, v2}) 2 [0, 1] provided we set
y({v2, v3}) = 1 � y({v1, v2}). In particular, an ID-algorithm can output edge weights
that depend on the node identifiers whose magnitude is not bounded.

Unbounded outputs are tricky from the perspective of proving lower bounds. The
main result of the recent work [10] is a run-time preserving local simulation PO ; ID,
but the result only holds under the assumption that the solution can be encoded using
finitely many values per node on graphs of maximum degree �. This restriction has
its source in an earlier local simulation OI ; ID due to Naor and Stockmeyer [23]
that is crucially using Ramsey’s theorem. In fact, these two local simulation results
fail if unbounded outputs are allowed; counterexamples include even natural graph
problems [12].

In conclusion, we need an ad hoc argument to establish that an ID-algorithm cannot
benefit from unique identifiers in case of the maximal fractional matching problem.

5.3 Simulation PO ; OI

Before we address the question of simulating ID-algorithms, we first salvage one part
of the result in [10]: there is local simulation PO ; OI that applies to many locally
checkable problems, regardless of the size of the output encoding. Even though this
simulation works o↵-the-shelf in our present setting, we cannot use this result in a
black-box fashion, as we need to access its inner workings later in the analysis. Thus,
we proceed with a self-contained proof.

The following presentation is considerably simpler than that in [10], since we are
only interested in a simulation that produces a locally maximal fractional matching,
not in a simulation that also provides approximation guarantees on the total weight, as
does the original result.

PO-checkability. Maximal fractional matchings are not only locally checkable, but
also PO-checkable: there is a local PO-algorithm that can check whether a given y is a
maximal FM. An important consequence of PO-checkability is that if H is a lift of G
then any PO-algorithm produces a feasible solution on H if and only if it produces a
feasible solution on G.

12

14/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Let T be the infinite 2d-regular d-edge-coloured PO-tree
where d denote the maximum number of edge colours appearing in
the input PO-graphs that have max. degree ∆.
Lemma
There is a total order ≺ on V (T) such that all the ordered
neighborhoods (T ,≺, v) for v ∈ V (T) are pairwise isomorphic (up
to any radius). UGG

v

T τ

v

u u

Figure 9: Given a PO-graph G, algorithm APO simulates the execution of AOI on
OI-graph ⌧ . The linear order on V (⌧) is inherited from the regular tree T . As T is
homogeneous, the linear order does not depend on the choice of node u in T .

Order homogeneity. The key to the simulation PO ; OI is a canonical linear order
that can be computed for any tree-like PO-neighbourhood. To define this ordering,
let d denote the maximum number of edge colours appearing in the input PO-graphs
that have maximum degree �, and let T denote the infinite 2d-regular d-edge-coloured
PO-tree. We fix a homogeneous linear order for T :

Lemma 4. There is a linear order � on V (T) such that all the ordered neighbourhoods
(T,�, v), v 2 V (T), are pairwise isomorphic (i.e., up to any radius).

For a proof, see Appendix A.

Simulation. Let AOI be any t-time OI-algorithm solving a PO-checkable problem; we
describe a t-time PO-algorithm APO solving the same problem.

The algorithm APO operates on a PO-graph G as follows; see Figure 9. Given a
PO-neighbourhood ⌧ := ⌧t(UG, v), we first embed ⌧ in T : we choose an arbitrary node
u 2 V (T), identify v with u, and let the rest of the embedding ⌧ ✓ (T, u) be dictated
uniquely by the edge colours. We then use the ordering � inherited from T to order
the nodes of ⌧ . By Lemma 4, the resulting structure (⌧,�) is independent of the choice
of u, i.e., the isomorphism type of (⌧,�) is only a function of ⌧ . Finally, we simulate

APO(⌧) := AOI(⌧,�). (4)

To see that the output of APO is feasible, we argue as follows. Embed the universal
cover UG as a subgraph of (T,�) in a way that respects edge colours. Again, all possible
embeddings are isomorphic; we call the inherited ordering (UG,�) the canonical ordering
of UG. Our definition of APO and the order homogeneity of (T,�) now imply that

APO(UG, v) = AOI(UG,�, v) for all v 2 V (UG).

13

15/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

+
−

+−

+

+ −

−
+

−+

−

− +

�v:

�e:

v

u

e

1

2

3

4
v

1 2

v

u

Figure 10: In this example, Ju vK = +1, Jv uK = �1, and hence u � v.

A Proof of Lemma 4

We give two proofs for Lemma 4, the second one of which we have not seen in print.

A.1 Algebraic proof

The tree T can be thought of as a Cayley graph of the free group on d generators, and
the free group admits a linear order that is invariant under the group acting on itself
by multiplication; for details, see Neumann [24] and the discussion in [10, §5].

A.2 Combinatorial proof

In T there is a unique simple directed path x y between any two nodes x, y 2 V (T).
We use V (x y) and E(x y) to denote the nodes and edges of the path. Also, we set
Vin(x y) := V (x y) r {x, y}. We will assign to each path x y an integer value,
denoted Jx yK, which will determine the relative order of the endpoints.

By definition, in the PO model, we are given the following linear orders:

� Each node v 2 V (T) has a linear order �v on its incident edges.
� Each edge e 2 E(T) has a linear order �e on its incident nodes.

For notational convenience, we extend these relations a little: for v 2 Vin(x y) we
define x �v y () e �v e0, where e is the last edge on the path x v and e0 is the first
edge on the path v y; similarly, for e 2 E(x y), we define x �e y () x0 �e y0,
where e = {x0, y0} and x0 and y0 appear on the path x y in this order.

For any statement P , we will use the following type of Iverson bracket notation:

[P] :=

(
+1 if P is true,

�1 if P is false.

We can now define

Jx yK :=
X

e2E(x y)

[x �e y] +
X

v2Vin(x y)

[x �v y]. (6)

In particular, Jx xK = 0. The linear order � on V (T) is now defined by setting

x � y () Jx yK > 0.

See Figure 10. Next, we show that this is indeed a linear order.

19

u ≺ v ⇔ Ju vK > 0

Clearly antisymmetric and total
Also transitive

16/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

OI PO

UGG
v

T τ

v

u u

Figure 9: Given a PO-graph G, algorithm APO simulates the execution of AOI on
OI-graph ⌧ . The linear order on V (⌧) is inherited from the regular tree T . As T is
homogeneous, the linear order does not depend on the choice of node u in T .

Order homogeneity. The key to the simulation PO ; OI is a canonical linear order
that can be computed for any tree-like PO-neighbourhood. To define this ordering,
let d denote the maximum number of edge colours appearing in the input PO-graphs
that have maximum degree �, and let T denote the infinite 2d-regular d-edge-coloured
PO-tree. We fix a homogeneous linear order for T :

Lemma 4. There is a linear order � on V (T) such that all the ordered neighbourhoods
(T,�, v), v 2 V (T), are pairwise isomorphic (i.e., up to any radius).

For a proof, see Appendix A.

Simulation. Let AOI be any t-time OI-algorithm solving a PO-checkable problem; we
describe a t-time PO-algorithm APO solving the same problem.

The algorithm APO operates on a PO-graph G as follows; see Figure 9. Given a
PO-neighbourhood ⌧ := ⌧t(UG, v), we first embed ⌧ in T : we choose an arbitrary node
u 2 V (T), identify v with u, and let the rest of the embedding ⌧ ✓ (T, u) be dictated
uniquely by the edge colours. We then use the ordering � inherited from T to order
the nodes of ⌧ . By Lemma 4, the resulting structure (⌧,�) is independent of the choice
of u, i.e., the isomorphism type of (⌧,�) is only a function of ⌧ . Finally, we simulate

APO(⌧) := AOI(⌧,�). (4)

To see that the output of APO is feasible, we argue as follows. Embed the universal
cover UG as a subgraph of (T,�) in a way that respects edge colours. Again, all possible
embeddings are isomorphic; we call the inherited ordering (UG,�) the canonical ordering
of UG. Our definition of APO and the order homogeneity of (T,�) now imply that

APO(UG, v) = AOI(UG,�, v) for all v 2 V (UG).

13

17/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

ID OI

Lemma [Naor and Stockmeyer]
If A is an ID-algo that outputs finitely many values, there is an
infinite set I ⊆ N such that A is an OI-algo when restricted to
graphs whose identifiers are in I.

Problem: A any ID-algo for maximal FM → infinitely many
possible outputs.
Trick: let A∗ simulate A and outputs 1 if v is saturated, 0
otherwise.

18/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Conclusion

Theorem: step 1
The maximal FM problem cannot be solved in time o(∆) on loopy
EC-graphs of maximum degree ∆.

Theorem: step 2
If ∃ AID running in t-time for max FM on any graph of max.
degree ∆ ⇒ ∃ AEC running in t-time computing max. FM on any
loopy EC-graph of max. degree ∆/2.

Theorem
There is no LOCAL algorithm that finds a maximal fractional
matching in o(∆) rounds (where ∆ is the max. degree).

19/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Another problem, another lower bound

2-Vertex-Cover
Input: a 2-coloured graph G
Output: a minimum-size vertex cover

Model: LOCAL randomised
Theorem: Inapproximability of 2-VC
There exists a δ > 0 such that no randomised distributed algorithm
with run-time o(log n) can find an expected (1 + δ)-approx of
2-Vertex-Cover on graphs of maximum degree ∆ = 3.

20/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Context

Max matching

max
∑
e∈E

xe

subj. to:
∑

e:v∈e xe ≤ 1,∀v
x ≥ 0

Vertex cover

min
∑
v∈V

yv

subj. to:
∑

v :v∈e yv ≥ 1, ∀e
y ≥ 0

Primal and Dual LP admit local (1 + ε)-approximation in time
Oε(1)
The integral primal problem admits a local constant-time
approximation scheme when ∆ is bounded.
Here: Ω(log n) lower bound for dual integral problem even
with ∆ = 3

21/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Toy model & Auxiliary problem

Deterministic LOCAL
but anonymous.
Edges are oriented (not for communication)

RECUT problem
Input: Each node has a color `(v) ∈ {red, blue}
Output: An output labelling `out such that

∂`out = nb of edges crossing red-blue
|E |

is minimized subject to:
an all-red (resp. all-blue) ` must lead to all-red (resp. all blue) `out

22/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

RECUT problem

Input

4 Mika Göös, Jukka Suomela

Put otherwise, the only available symmetry-breaking infor-
mation is the radius-r neighbourhood topology—the nodes
do not have unique identifiers.

We will also consider graphs that may be associated with
some additional symmetry-breaking structure:

– Node labels: A node v 2V is supplied with a label `(v).
In the context of property (2), we must now require that
the isomorphism f : V ! V 0 between labelled graphs
(G, `) and (G0, `0) preserves the labels in the sense that
`(v) = `0(f (v)) for all v 2V .

– Directed edges: The edges E may be directed. Here, the
directions are merely additional data; they do not restrict
communication.

2.2 Recut Problem

In the RECUT problem we will be interested in partitions of V
into red and blue colour classes as determined by a labelling

` : V ! {red,blue}.

We write ∂` for the fraction of edges crossing the red/blue
cut:

∂` :=
e(`�1(red), `�1(blue))

|E| ,

where e(U,U 0) denotes the number of edges with one end-
point in U and another in U 0. As usual, we also write `(V) :=
{`(v) : v 2V} for the image of `.

Definition 2 In the RECUT problem we are given a labelled
graph (G, `) as input and the objective is to compute an output
labelling (a recut) `out that minimises ∂`out subject to the
following constraints: (a) If `(V) = {red}, then `out(V) =

{red}. (b) If `(V) = {blue}, then `out(V) = {blue}.

In words, if we have an all-red input, we have to produce
an all-red output, and if we have an all-blue input, we have
to produce an all-blue output. Otherwise the output can be
arbitrary. See Fig. 1 for an illustration.

Needless to say, the global optimum for an algorithm A
would be to produce a constant output labelling `A (either
all red or all blue) having ∂`A = 0. However, a distributed
algorithm A can only access the values of the input labelling
` in its local radius-r neighbourhood: when encountering a
neighbourhood v 2U ✓V with `(U) = {red}, the algorithm
is forced to output red at v to guarantee satisfying the global
constraint (a), and when encountering a neighbourhood v 2
U ✓V with `(U) = {blue}, the algorithm is forced to output
blue at v to satisfy (b). Thus, if a connected graph G has two
disjoint r-neighbourhoods U,U 0 ✓V with `(U) = {red} and
`(U 0) = {blue}, algorithm A cannot avoid producing at least
some red/blue edge boundary.

RECUT input

RECUT output

simple algorithm:

optimum:

Fig. 1 The RECUT problem. In this example, we have used a simple
distributed algorithm A to find a recut `out with a small boundary ∂`out:
a node outputs red iff there is a red node within distance r = 3 in the
input. While the solution is not optimal, in a grid graph the boundary
will be relatively small. However, our lower bound shows that any fast
distributed algorithm—including algorithm A—fails to produce a small
boundary in some graph.

Indeed, the best we can hope A to achieve is a recut `A
of size ∂`A  e for some small constant e > 0. Such recuts
can be computed using, e.g., graph decomposition algorithms
for G: if we are given a decomposition of G into low-diameter
components that is induced by deleting a small fraction of
edges, we can simply colour the components monochromati-
cally. Currently, the fastest decomposition algorithms found
in the literature are all randomised: the Linial–Saks [14] de-
composition algorithm allows one to compute a recut of size
∂`A  e in time Oe(logn) on any graph G, whereas for some
restricted graph families decomposition is possible even in
constant-time; see, e.g., Hassidim et al. [6].

Interpretation. The RECUT problem models the following
abstract high-level challenge in designing distributed algo-
rithms: Each node in a local neighbourhood U ✓V can, in
principle, internally compute a completely locally optimal
solution for the subgraph induced by U , but difficulties arise
when deciding which of these proposed solution are to be
used in the final distributed output. In particular, when the
type of the produced solution changes from one (e.g., red)

→

Simple algorithm

4 Mika Göös, Jukka Suomela

Put otherwise, the only available symmetry-breaking infor-
mation is the radius-r neighbourhood topology—the nodes
do not have unique identifiers.

We will also consider graphs that may be associated with
some additional symmetry-breaking structure:

– Node labels: A node v 2V is supplied with a label `(v).
In the context of property (2), we must now require that
the isomorphism f : V ! V 0 between labelled graphs
(G, `) and (G0, `0) preserves the labels in the sense that
`(v) = `0(f (v)) for all v 2V .

– Directed edges: The edges E may be directed. Here, the
directions are merely additional data; they do not restrict
communication.

2.2 Recut Problem

In the RECUT problem we will be interested in partitions of V
into red and blue colour classes as determined by a labelling

` : V ! {red,blue}.

We write ∂` for the fraction of edges crossing the red/blue
cut:

∂` :=
e(`�1(red), `�1(blue))

|E| ,

where e(U,U 0) denotes the number of edges with one end-
point in U and another in U 0. As usual, we also write `(V) :=
{`(v) : v 2V} for the image of `.

Definition 2 In the RECUT problem we are given a labelled
graph (G, `) as input and the objective is to compute an output
labelling (a recut) `out that minimises ∂`out subject to the
following constraints: (a) If `(V) = {red}, then `out(V) =

{red}. (b) If `(V) = {blue}, then `out(V) = {blue}.

In words, if we have an all-red input, we have to produce
an all-red output, and if we have an all-blue input, we have
to produce an all-blue output. Otherwise the output can be
arbitrary. See Fig. 1 for an illustration.

Needless to say, the global optimum for an algorithm A
would be to produce a constant output labelling `A (either
all red or all blue) having ∂`A = 0. However, a distributed
algorithm A can only access the values of the input labelling
` in its local radius-r neighbourhood: when encountering a
neighbourhood v 2U ✓V with `(U) = {red}, the algorithm
is forced to output red at v to guarantee satisfying the global
constraint (a), and when encountering a neighbourhood v 2
U ✓V with `(U) = {blue}, the algorithm is forced to output
blue at v to satisfy (b). Thus, if a connected graph G has two
disjoint r-neighbourhoods U,U 0 ✓V with `(U) = {red} and
`(U 0) = {blue}, algorithm A cannot avoid producing at least
some red/blue edge boundary.

RECUT input

RECUT output

simple algorithm:

optimum:

Fig. 1 The RECUT problem. In this example, we have used a simple
distributed algorithm A to find a recut `out with a small boundary ∂`out:
a node outputs red iff there is a red node within distance r = 3 in the
input. While the solution is not optimal, in a grid graph the boundary
will be relatively small. However, our lower bound shows that any fast
distributed algorithm—including algorithm A—fails to produce a small
boundary in some graph.

Indeed, the best we can hope A to achieve is a recut `A
of size ∂`A  e for some small constant e > 0. Such recuts
can be computed using, e.g., graph decomposition algorithms
for G: if we are given a decomposition of G into low-diameter
components that is induced by deleting a small fraction of
edges, we can simply colour the components monochromati-
cally. Currently, the fastest decomposition algorithms found
in the literature are all randomised: the Linial–Saks [14] de-
composition algorithm allows one to compute a recut of size
∂`A  e in time Oe(logn) on any graph G, whereas for some
restricted graph families decomposition is possible even in
constant-time; see, e.g., Hassidim et al. [6].

Interpretation. The RECUT problem models the following
abstract high-level challenge in designing distributed algo-
rithms: Each node in a local neighbourhood U ✓V can, in
principle, internally compute a completely locally optimal
solution for the subgraph induced by U , but difficulties arise
when deciding which of these proposed solution are to be
used in the final distributed output. In particular, when the
type of the produced solution changes from one (e.g., red)

Optimum
23/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Reduction

∃ A computing a (1 + ε)-approx of 2-VC in t rounds when ∆ = 3

⇒ ∃ A′ computing a recut `A of size ∂`A = O(ε)
on balanced 4-regular tree-like digraphs in t rounds

24/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

∆ = 4

Input

4 Mika Göös, Jukka Suomela

Put otherwise, the only available symmetry-breaking infor-
mation is the radius-r neighbourhood topology—the nodes
do not have unique identifiers.

We will also consider graphs that may be associated with
some additional symmetry-breaking structure:

– Node labels: A node v 2V is supplied with a label `(v).
In the context of property (2), we must now require that
the isomorphism f : V ! V 0 between labelled graphs
(G, `) and (G0, `0) preserves the labels in the sense that
`(v) = `0(f (v)) for all v 2V .

– Directed edges: The edges E may be directed. Here, the
directions are merely additional data; they do not restrict
communication.

2.2 Recut Problem

In the RECUT problem we will be interested in partitions of V
into red and blue colour classes as determined by a labelling

` : V ! {red,blue}.

We write ∂` for the fraction of edges crossing the red/blue
cut:

∂` :=
e(`�1(red), `�1(blue))

|E| ,

where e(U,U 0) denotes the number of edges with one end-
point in U and another in U 0. As usual, we also write `(V) :=
{`(v) : v 2V} for the image of `.

Definition 2 In the RECUT problem we are given a labelled
graph (G, `) as input and the objective is to compute an output
labelling (a recut) `out that minimises ∂`out subject to the
following constraints: (a) If `(V) = {red}, then `out(V) =

{red}. (b) If `(V) = {blue}, then `out(V) = {blue}.

In words, if we have an all-red input, we have to produce
an all-red output, and if we have an all-blue input, we have
to produce an all-blue output. Otherwise the output can be
arbitrary. See Fig. 1 for an illustration.

Needless to say, the global optimum for an algorithm A
would be to produce a constant output labelling `A (either
all red or all blue) having ∂`A = 0. However, a distributed
algorithm A can only access the values of the input labelling
` in its local radius-r neighbourhood: when encountering a
neighbourhood v 2U ✓V with `(U) = {red}, the algorithm
is forced to output red at v to guarantee satisfying the global
constraint (a), and when encountering a neighbourhood v 2
U ✓V with `(U) = {blue}, the algorithm is forced to output
blue at v to satisfy (b). Thus, if a connected graph G has two
disjoint r-neighbourhoods U,U 0 ✓V with `(U) = {red} and
`(U 0) = {blue}, algorithm A cannot avoid producing at least
some red/blue edge boundary.

RECUT input

RECUT output

simple algorithm:

optimum:

Fig. 1 The RECUT problem. In this example, we have used a simple
distributed algorithm A to find a recut `out with a small boundary ∂`out:
a node outputs red iff there is a red node within distance r = 3 in the
input. While the solution is not optimal, in a grid graph the boundary
will be relatively small. However, our lower bound shows that any fast
distributed algorithm—including algorithm A—fails to produce a small
boundary in some graph.

Indeed, the best we can hope A to achieve is a recut `A
of size ∂`A  e for some small constant e > 0. Such recuts
can be computed using, e.g., graph decomposition algorithms
for G: if we are given a decomposition of G into low-diameter
components that is induced by deleting a small fraction of
edges, we can simply colour the components monochromati-
cally. Currently, the fastest decomposition algorithms found
in the literature are all randomised: the Linial–Saks [14] de-
composition algorithm allows one to compute a recut of size
∂`A  e in time Oe(logn) on any graph G, whereas for some
restricted graph families decomposition is possible even in
constant-time; see, e.g., Hassidim et al. [6].

Interpretation. The RECUT problem models the following
abstract high-level challenge in designing distributed algo-
rithms: Each node in a local neighbourhood U ✓V can, in
principle, internally compute a completely locally optimal
solution for the subgraph induced by U , but difficulties arise
when deciding which of these proposed solution are to be
used in the final distributed output. In particular, when the
type of the produced solution changes from one (e.g., red)

→

No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover 5

to another (e.g., blue) across a graph G one might have to
introduce suboptimalities to the solution at the (red/blue)
boundary in order to glue together the different types of local
solutions.

In fact, the RECUT problem captures the first non-trivial
case of this phenomenon with only two solution types present.
One can think of the input labelling ` as recording the ini-
tial preferences of the nodes whereas the output labelling
`A records how an algorithm A decides to combine these
preferences into the final unified output. In the end, our lower-
bound strategy will be to argue that any A can be forced into
producing too large an edge boundary ∂`A resulting in too
many suboptimalities in the produced output.

Next, we show how the above discussion is made concrete
in the case of the 2-VC problem.

2.3 Reduction

Terminology. We call a graph G tree-like if all the r-neigh-
bourhoods in G are trees, i.e., G has girth larger than 2r +1.
Furthermore, if G is directed, we say that it is balanced
if in-degree(v) = out-degree(v) for all vertices v. We note
that a deterministic algorithm A produces the same output
on every node of a balanced regular tree-like (unlabelled)
digraph G, because such a graph is locally homogeneous: all
the r-neighbourhoods of G are pairwise isomorphic.

Using this terminology we prove the following.

Theorem 3 (RECUT  2-VC) Suppose that algorithm A
(with run-time r) computes a (1+ e)-approximation of 2-VC
on graphs of maximum degree D = 3. Then, there is an
algorithm (with run-time r) that finds a recut `A of size
∂`A = O(e) on balanced 4-regular tree-like digraphs.

The proof of Theorem 3 follows the usual route. In three
steps, we describe a reduction that can be computed by a
local algorithm:

1. We start with an instance (G, `) of RECUT and transform
it into a white/black-coloured instance P(G, `) of 2-VC.

2. Then, we simulate A on the resulting instance P(G, `).
3. Finally, we map the output of A back to a solution `A of

the RECUT instance (G, `).

We now proceed with the details. Let G = (V,E) be a bal-
anced 4-regular tree-like digraph and let ` : V ! {red,blue}
be a labelling of G. The instance P(G, `) is obtained by
replacing each vertex v 2 V by one of two local gadgets
depending on the label `(v). We first describe and analyse
simple gadgets yielding instances of 2-VC with D = 4; the
gadgets yielding instances with D = 3 are described later.

Red gadgets. The red gadget replaces a vertex v 2V by two
new vertices wv (white) and bv (black) that share a new edge

ev := {wv,bv}. The incoming edges of v are reconnected to
wv, whereas the outgoing edges of v are reconnected to bv.
See Fig. 2.

v
wv

bv
�

red node red gadget

RECUT input 2-VC input

Fig. 2 Red gadget for D = 4.

The case of all-red input. The 2-VC instance P(G, red),
where we denote by red the constant labelling v 7! red, con-
tains {ev : v 2 V} as a perfect matching. Since (G, red) is
locally homogeneous, in P(G, red) the solutions output by
A on the endpoints of ev are isomorphic across all v. As-
suming e < 1 it follows that algorithm A must output either
the set of all white nodes or the set of all black nodes on
P(G, red). Our reduction branches at this point: we choose
the structure of the blue gadget to counteract this white/black
decision made by A on the red gadgets. We describe the
case that A outputs all white nodes on P(G, red); the case of
black nodes is symmetric.

Blue gadgets. The blue gadget replacing v 2V is identical
to the red gadget with the exception that a third new vertex
w0

v (white) is added and connected to bv. See Fig. 3.

v
wv

bv

w’v

�

blue node blue gadget

RECUT input 2-VC input

Fig. 3 Blue gadget for D = 4 (assuming an all-red input produces an
all-white output).

Similarly as above, we can argue that A outputs exactly
the set of all black nodes on the instance P(G,blue). This
completes the description of P .

Simulation. Next, we simulate algorithm A on P(G, `). The
output of A is then transformed back to a labelling `A : V !
{red,blue} by setting

`A(v) = blue () the output of A contains only
the black node bv at the gadget at v.

No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover 5

to another (e.g., blue) across a graph G one might have to
introduce suboptimalities to the solution at the (red/blue)
boundary in order to glue together the different types of local
solutions.

In fact, the RECUT problem captures the first non-trivial
case of this phenomenon with only two solution types present.
One can think of the input labelling ` as recording the ini-
tial preferences of the nodes whereas the output labelling
`A records how an algorithm A decides to combine these
preferences into the final unified output. In the end, our lower-
bound strategy will be to argue that any A can be forced into
producing too large an edge boundary ∂`A resulting in too
many suboptimalities in the produced output.

Next, we show how the above discussion is made concrete
in the case of the 2-VC problem.

2.3 Reduction

Terminology. We call a graph G tree-like if all the r-neigh-
bourhoods in G are trees, i.e., G has girth larger than 2r +1.
Furthermore, if G is directed, we say that it is balanced
if in-degree(v) = out-degree(v) for all vertices v. We note
that a deterministic algorithm A produces the same output
on every node of a balanced regular tree-like (unlabelled)
digraph G, because such a graph is locally homogeneous: all
the r-neighbourhoods of G are pairwise isomorphic.

Using this terminology we prove the following.

Theorem 3 (RECUT  2-VC) Suppose that algorithm A
(with run-time r) computes a (1+ e)-approximation of 2-VC
on graphs of maximum degree D = 3. Then, there is an
algorithm (with run-time r) that finds a recut `A of size
∂`A = O(e) on balanced 4-regular tree-like digraphs.

The proof of Theorem 3 follows the usual route. In three
steps, we describe a reduction that can be computed by a
local algorithm:

1. We start with an instance (G, `) of RECUT and transform
it into a white/black-coloured instance P(G, `) of 2-VC.

2. Then, we simulate A on the resulting instance P(G, `).
3. Finally, we map the output of A back to a solution `A of

the RECUT instance (G, `).

We now proceed with the details. Let G = (V,E) be a bal-
anced 4-regular tree-like digraph and let ` : V ! {red,blue}
be a labelling of G. The instance P(G, `) is obtained by
replacing each vertex v 2 V by one of two local gadgets
depending on the label `(v). We first describe and analyse
simple gadgets yielding instances of 2-VC with D = 4; the
gadgets yielding instances with D = 3 are described later.

Red gadgets. The red gadget replaces a vertex v 2V by two
new vertices wv (white) and bv (black) that share a new edge

ev := {wv,bv}. The incoming edges of v are reconnected to
wv, whereas the outgoing edges of v are reconnected to bv.
See Fig. 2.

v
wv

bv
�

red node red gadget

RECUT input 2-VC input

Fig. 2 Red gadget for D = 4.

The case of all-red input. The 2-VC instance P(G, red),
where we denote by red the constant labelling v 7! red, con-
tains {ev : v 2 V} as a perfect matching. Since (G, red) is
locally homogeneous, in P(G, red) the solutions output by
A on the endpoints of ev are isomorphic across all v. As-
suming e < 1 it follows that algorithm A must output either
the set of all white nodes or the set of all black nodes on
P(G, red). Our reduction branches at this point: we choose
the structure of the blue gadget to counteract this white/black
decision made by A on the red gadgets. We describe the
case that A outputs all white nodes on P(G, red); the case of
black nodes is symmetric.

Blue gadgets. The blue gadget replacing v 2V is identical
to the red gadget with the exception that a third new vertex
w0

v (white) is added and connected to bv. See Fig. 3.

v
wv

bv

w’v

�

blue node blue gadget

RECUT input 2-VC input

Fig. 3 Blue gadget for D = 4 (assuming an all-red input produces an
all-white output).

Similarly as above, we can argue that A outputs exactly
the set of all black nodes on the instance P(G,blue). This
completes the description of P .

Simulation. Next, we simulate algorithm A on P(G, `). The
output of A is then transformed back to a labelling `A : V !
{red,blue} by setting

`A(v) = blue () the output of A contains only
the black node bv at the gadget at v.

25/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Output

6 Mika Göös, Jukka Suomela

See Fig. 4. Note that `A satisfies both feasibility constraints
(a) and (b) of RECUT. It remains to bound the size ∂`A of
this recut.

�

�

red output

blue outputonly black node

anything else

RECUT output2-VC output

Fig. 4 Mapping the output of A to a solution of the RECUT problem.

Recut analysis. Call a red vertex v in (G, `A) bad if v has a
blue out-neighbour u; see Fig. 5.

v u

wv
bv

wu
bu

�

RECUT output2-VC output

Fig. 5 A bad node: v is red and its out-neighbour u is blue.

By the definition of “`A(u) = blue”, the vertex cover pro-
duced by algorithm A does not contain the white node wu.
Thus to cover the edge (bv,wu), the vertex cover has to con-
tain the black node bv. But by the definition of “`A(v) = red”,
we must have wv or w0

v in the solution as well. Hence, at least
two nodes are used to cover the gadget at v, which is subopti-
mal as compared to the minimum vertex cover {bv : v 2V},

which uses only one node per gadget. This implies that we
must have at most e|V | bad vertices as A produces a (1+ e)-
approximation of 2-VC on P(G, `).

On the other hand, exactly half of the edges crossing the
cut `A are oriented from red to blue since G is balanced.
Each bad vertex gives rise to at most two of these edges, so
we have that ∂`A · |E|/2  2e|V | which gives ∂`A  2e , as
required. This proves Theorem 3 for D = 4.

Gadgets for D = 3. The maximum degree used in the gadgets
can be reduced to 3 by the following modification. The red
gadget replaces a vertex v 2 V by a path of length 3; see
Fig. 6.

v
wv

bv

v
wv

w’v

�

� bv

red node red gadget

blue node blue gadget

RECUT input 2-VC input

Fig. 6 Gadgets for D = 3.

Again, to achieve a 1.499-approximation of 2-VC on
P(G, red), algorithm A has to make a choice: either leave
out the middle black vertex or the middle white vertex from
the vertex cover. Supposing A leaves out the middle black,
the blue gadget is defined to be identical to the red gadget
with an additional white vertex connected to the middle black
one.

After simulating A on an instance P(G, `) we define
`A(v) = blue iff A outputs only black nodes at the gadget
at v. The recut analysis will then give ∂`A  4e .

2.4 Recut Is Hard on Expanders

Intuitively, the difficulty in computing a small recut on gen-
eral graphs stems from the inability of an algorithm to over-
come the neighbourhood expansion of an input graph in
r = o(logn) steps—an algorithm cannot hide the red/blue
boundary as the radius-r neighbourhoods themselves might
have large boundaries.

To formalise this intuition, we use expander graphs as a
basis for our lower-bound construction.

26/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Analysis: bad nodes

6 Mika Göös, Jukka Suomela

See Fig. 4. Note that `A satisfies both feasibility constraints
(a) and (b) of RECUT. It remains to bound the size ∂`A of
this recut.

�

�

red output

blue outputonly black node

anything else

RECUT output2-VC output

Fig. 4 Mapping the output of A to a solution of the RECUT problem.

Recut analysis. Call a red vertex v in (G, `A) bad if v has a
blue out-neighbour u; see Fig. 5.

v u

wv
bv

wu
bu

�

RECUT output2-VC output

Fig. 5 A bad node: v is red and its out-neighbour u is blue.

By the definition of “`A(u) = blue”, the vertex cover pro-
duced by algorithm A does not contain the white node wu.
Thus to cover the edge (bv,wu), the vertex cover has to con-
tain the black node bv. But by the definition of “`A(v) = red”,
we must have wv or w0

v in the solution as well. Hence, at least
two nodes are used to cover the gadget at v, which is subopti-
mal as compared to the minimum vertex cover {bv : v 2V},

which uses only one node per gadget. This implies that we
must have at most e|V | bad vertices as A produces a (1+ e)-
approximation of 2-VC on P(G, `).

On the other hand, exactly half of the edges crossing the
cut `A are oriented from red to blue since G is balanced.
Each bad vertex gives rise to at most two of these edges, so
we have that ∂`A · |E|/2  2e|V | which gives ∂`A  2e , as
required. This proves Theorem 3 for D = 4.

Gadgets for D = 3. The maximum degree used in the gadgets
can be reduced to 3 by the following modification. The red
gadget replaces a vertex v 2 V by a path of length 3; see
Fig. 6.

v
wv

bv

v
wv

w’v

�

� bv

red node red gadget

blue node blue gadget

RECUT input 2-VC input

Fig. 6 Gadgets for D = 3.

Again, to achieve a 1.499-approximation of 2-VC on
P(G, red), algorithm A has to make a choice: either leave
out the middle black vertex or the middle white vertex from
the vertex cover. Supposing A leaves out the middle black,
the blue gadget is defined to be identical to the red gadget
with an additional white vertex connected to the middle black
one.

After simulating A on an instance P(G, `) we define
`A(v) = blue iff A outputs only black nodes at the gadget
at v. The recut analysis will then give ∂`A  4e .

2.4 Recut Is Hard on Expanders

Intuitively, the difficulty in computing a small recut on gen-
eral graphs stems from the inability of an algorithm to over-
come the neighbourhood expansion of an input graph in
r = o(logn) steps—an algorithm cannot hide the red/blue
boundary as the radius-r neighbourhoods themselves might
have large boundaries.

To formalise this intuition, we use expander graphs as a
basis for our lower-bound construction.

Since A is a (1 + ε)-approx: at most ε|V | bad vertices.
So nb of edges from red to blue ≤ 2ε|V |

∂`A = nb of edges red-blue
|E | = 2 · nb of edges from red to blue

|E | ≤ 2ε

27/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Analysis: bad nodes

6 Mika Göös, Jukka Suomela

See Fig. 4. Note that `A satisfies both feasibility constraints
(a) and (b) of RECUT. It remains to bound the size ∂`A of
this recut.

�

�

red output

blue outputonly black node

anything else

RECUT output2-VC output

Fig. 4 Mapping the output of A to a solution of the RECUT problem.

Recut analysis. Call a red vertex v in (G, `A) bad if v has a
blue out-neighbour u; see Fig. 5.

v u

wv
bv

wu
bu

�

RECUT output2-VC output

Fig. 5 A bad node: v is red and its out-neighbour u is blue.

By the definition of “`A(u) = blue”, the vertex cover pro-
duced by algorithm A does not contain the white node wu.
Thus to cover the edge (bv,wu), the vertex cover has to con-
tain the black node bv. But by the definition of “`A(v) = red”,
we must have wv or w0

v in the solution as well. Hence, at least
two nodes are used to cover the gadget at v, which is subopti-
mal as compared to the minimum vertex cover {bv : v 2V},

which uses only one node per gadget. This implies that we
must have at most e|V | bad vertices as A produces a (1+ e)-
approximation of 2-VC on P(G, `).

On the other hand, exactly half of the edges crossing the
cut `A are oriented from red to blue since G is balanced.
Each bad vertex gives rise to at most two of these edges, so
we have that ∂`A · |E|/2  2e|V | which gives ∂`A  2e , as
required. This proves Theorem 3 for D = 4.

Gadgets for D = 3. The maximum degree used in the gadgets
can be reduced to 3 by the following modification. The red
gadget replaces a vertex v 2 V by a path of length 3; see
Fig. 6.

v
wv

bv

v
wv

w’v

�

� bv

red node red gadget

blue node blue gadget

RECUT input 2-VC input

Fig. 6 Gadgets for D = 3.

Again, to achieve a 1.499-approximation of 2-VC on
P(G, red), algorithm A has to make a choice: either leave
out the middle black vertex or the middle white vertex from
the vertex cover. Supposing A leaves out the middle black,
the blue gadget is defined to be identical to the red gadget
with an additional white vertex connected to the middle black
one.

After simulating A on an instance P(G, `) we define
`A(v) = blue iff A outputs only black nodes at the gadget
at v. The recut analysis will then give ∂`A  4e .

2.4 Recut Is Hard on Expanders

Intuitively, the difficulty in computing a small recut on gen-
eral graphs stems from the inability of an algorithm to over-
come the neighbourhood expansion of an input graph in
r = o(logn) steps—an algorithm cannot hide the red/blue
boundary as the radius-r neighbourhoods themselves might
have large boundaries.

To formalise this intuition, we use expander graphs as a
basis for our lower-bound construction.

Since A is a (1 + ε)-approx: at most ε|V | bad vertices.
So nb of edges from red to blue ≤ 2ε|V |

∂`A = nb of edges red-blue
|E | = 2 · nb of edges from red to blue

|E | ≤ 2ε

27/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

∆ = 3

6 Mika Göös, Jukka Suomela

See Fig. 4. Note that `A satisfies both feasibility constraints
(a) and (b) of RECUT. It remains to bound the size ∂`A of
this recut.

�

�

red output

blue outputonly black node

anything else

RECUT output2-VC output

Fig. 4 Mapping the output of A to a solution of the RECUT problem.

Recut analysis. Call a red vertex v in (G, `A) bad if v has a
blue out-neighbour u; see Fig. 5.

v u

wv
bv

wu
bu

�

RECUT output2-VC output

Fig. 5 A bad node: v is red and its out-neighbour u is blue.

By the definition of “`A(u) = blue”, the vertex cover pro-
duced by algorithm A does not contain the white node wu.
Thus to cover the edge (bv,wu), the vertex cover has to con-
tain the black node bv. But by the definition of “`A(v) = red”,
we must have wv or w0

v in the solution as well. Hence, at least
two nodes are used to cover the gadget at v, which is subopti-
mal as compared to the minimum vertex cover {bv : v 2V},

which uses only one node per gadget. This implies that we
must have at most e|V | bad vertices as A produces a (1+ e)-
approximation of 2-VC on P(G, `).

On the other hand, exactly half of the edges crossing the
cut `A are oriented from red to blue since G is balanced.
Each bad vertex gives rise to at most two of these edges, so
we have that ∂`A · |E|/2  2e|V | which gives ∂`A  2e , as
required. This proves Theorem 3 for D = 4.

Gadgets for D = 3. The maximum degree used in the gadgets
can be reduced to 3 by the following modification. The red
gadget replaces a vertex v 2 V by a path of length 3; see
Fig. 6.

v
wv

bv

v
wv

w’v

�

� bv

red node red gadget

blue node blue gadget

RECUT input 2-VC input

Fig. 6 Gadgets for D = 3.

Again, to achieve a 1.499-approximation of 2-VC on
P(G, red), algorithm A has to make a choice: either leave
out the middle black vertex or the middle white vertex from
the vertex cover. Supposing A leaves out the middle black,
the blue gadget is defined to be identical to the red gadget
with an additional white vertex connected to the middle black
one.

After simulating A on an instance P(G, `) we define
`A(v) = blue iff A outputs only black nodes at the gadget
at v. The recut analysis will then give ∂`A  4e .

2.4 Recut Is Hard on Expanders

Intuitively, the difficulty in computing a small recut on gen-
eral graphs stems from the inability of an algorithm to over-
come the neighbourhood expansion of an input graph in
r = o(logn) steps—an algorithm cannot hide the red/blue
boundary as the radius-r neighbourhoods themselves might
have large boundaries.

To formalise this intuition, we use expander graphs as a
basis for our lower-bound construction.

28/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Nearly balanced recut

Lemma
If A runs in o(log n) rounds for
RECUT then for each 4-regular
graph ∃ input ` for which A
computes a nearly balanced
recut |red | = n/2± o(n).

Change of vi ’s color seen only
by ≤ 4r + 1 = o(n) vertices

No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover 7

Definition 3 (Expander graphs) Let d > 0. A graph G =
(V,E), |V | = n, is called a d -expander if it satisfies the edge
expansion condition

e(S,V rS) � d · |S| for all S ✓V, |S|  n/2, (3)

where e(S,V rS) is the number of edges leaving S.

See Hoory et al. [7] for a survey on expanders graphs.
For our proof, we will need an infinite family F of ex-

pander graphs, i.e., there is a universal constant d > 0 so that
each G 2 F is a d -expander. Now, to fool an algorithm A
into producing a large recut on the graphs G 2F it is enough
for us to force A to output a nearly balanced recut `A on
G where both colour classes have size n/2 ± o(n). This is
because if the number of, say, the red nodes is

|`�1
A (red)| = n/2�o(n),

then the expansion property (3) implies that

∂`A � d/4�o(1).

That is, A computes a recut of size W(d).
Indeed, the following simple fooling trick makes up the

very core of our argument.

Lemma 1 Suppose A produces a feasible solution for the
RECUT problem in time r = o(logn). Then for each 4-regular
graph G there exists an input labelling for which A computes
a nearly balanced recut.

Proof Fix an arbitrary ordering v1,v2, . . . ,vn for the vertices
of G and define a sequence of labellings `0, `1, . . . , `n by
setting `i(v j) = blue iff j  i. That is, in `0 all nodes are
red, in `n all nodes are blue, and `i is obtained from `i�1 by
changing the colour of vi from red to blue.

When we switch from the instance (G, `i�1) to (G, `i)
the change of vi’s colour is only registered by nodes in the
radius-r neighbourhood of vi. This neighbourhood has size
|BG(vi,r)|  4r +1 = o(n), and so the number of red nodes
in the outputs `i�1

A and `i
A of A can only differ by o(n); see

Fig. 7 for an illustration. As, by assumption, we have that A
computes the labelling `0

A = red on (G, `0) and the labelling
`n
A = blue on (G, `n), it follows that some labelling in our

sequence must force A to output n/2�o(n) red nodes. ut

We now have all the ingredients for the lower-bound
proof: We can take d = 2�

p
3 if we choose F to be the fam-

ily of 4-regular Ramanujan graphs due to Morgenstern [15].
These graphs are tree-like, as they have girth Q(logn). They
can be made into balanced digraphs since a suitable orien-
tation can always be derived from an Euler tour. Thus, F
consists of balanced 4-regular tree-like digraphs. Lemma 1
together with the discussion above imply that every algorithm
for RECUT produces a recut of size W(d) on some labelled
graph in F . Hence, the contrapositive of Theorem 3 proves
Theorem 1 for our deterministic toy algorithms.

Input

Red nodes in output

o(n)

n/2 − o(n)

0

n/2

n

…

`0: all red `n: all blue

Fig. 7 An illustration for the proof of Lemma 1.

3 Randomised Lower Bound

Model. Even though our model of deterministic algorithms
in Sect. 2 is an unusually weak one, we can quickly recover
the standard LOCAL model from it by equipping the nodes
with independent sources of randomness. In particular, as is
well known, each node can choose an identifier uniformly
at random from, e.g., the set {1,2, . . . ,n3}, and this results
in the identifiers being globally unique with probability at
least 1�1/n.

Simplifying assumptions. Without loss of generality, we may
assume the randomised algorithm is of the following form:

(a) Deterministic run-time: Each node runs for at most
r = o(logn) steps.

(b) Las Vegas algorithm: The algorithm always produces
a feasible solution.

Indeed, if we are given an algorithm that has expected run-
ning time r0 = o(logn) and covers each edge with probability
1�o(1), we can modify it so that it satisfies the above two
properties at a cost of only an additive o(1) term in the ex-
pected approximation ratio. This is done as follows:

(a) Choose a slowly growing function t such that r := tr0 =
o(logn). If a node v runs longer than r steps, we stop
v’s computation and output v into the vertex cover. By
Markov’s inequality, this modification interferes with the
computation of only o(n) nodes in expectation.

(b) After r steps we finish by including both endpoints of
each uncovered edge in the output.

29/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Finally

δ-Expander graph: edge expansion condition

e(S,V \ S) ≥ δ · |S| for all S ⊆ V , |S| ≤ n/2

Take F=family of Ramanujan graphs
δ = (2−

√
3)−expanders [Morgenstern 15] having girth

θ(log n)⇒ tree-like for any A on o(log n) rounds.
4-regular ⇒ Orient with an Euler tour to balanced 4-reg.
digraphs
Apply previous lemma: ∃ input ` for which A produces nearly
balanced recut
By expansion property, ∂`A ≥ δ/4− o(1)
Contrapositive of RECUT≤ 2-VC reduction: no
(1 + ε)-approx of 2-VC in o(log n) rounds

30/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Back to randomised algorithm

∃ A randomised LOCAL algo for 2-VC in o(log n) rounds?

Without loss of generality:

Deterministic run-time: Each node runs for at most
t = o(log n) steps
Las Vegas algo. : Never fails

Then with same simulation RECUT → 2-VC as before:

∃ input ` s.t. E(|`−1out(red)|) = n/2− o(n)

Local Concentration Bound [Janson]:
with high proba this number is concentrated around its
expectation.

31/31

Different models Maximal fractional matchings Lower bound in EC Reductions Conclusion Bip. Vertex Cover

Back to randomised algorithm

∃ A randomised LOCAL algo for 2-VC in o(log n) rounds?

Without loss of generality:

Deterministic run-time: Each node runs for at most
t = o(log n) steps
Las Vegas algo. : Never fails

Then with same simulation RECUT → 2-VC as before:

∃ input ` s.t. E(|`−1out(red)|) = n/2− o(n)

Local Concentration Bound [Janson]:
with high proba this number is concentrated around its
expectation.

31/31

	Different models
	Maximal fractional matchings
	Lower bound in EC
	Reductions
	Conclusion
	Bip. Vertex Cover

