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Different models

Locality of a distributed algorithm

In LOCAL model with run-time t:
e Graph G = (V, E) a network
@ Nodes synchronously send messages to their neighbours

@ In t rounds: the output at node v depends only on the
t-neighborhood of v
/"\Edge e incident to v: at distance 1

@ Could be deterministic, randomized....
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Different models

Different models of networks

@ |ID model: each node has a unique identifier from N.
e Ol model (Order-invariance): total order < on the nodes

e PO model (Port numbering and Orientation): each node has
a numbering of its incident edges + edges are oriented

e EC model (Edge-Colouring): proper edge-colouring

PO and EC models are anonymous

e Q a<b<c<d K 1 |

3 1
.o ® @ j o—to
® © 1
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Different models

PO can be seen as "special" edge-colouring:

2
1 I 2 S =(1,2
2 ’ :>O } Z:E} ';

3 b -
OF] O

PO, PO,

2

1 i 1 1 3
1 0 — . ~—0

2 2
O O

4/31



Different models

Lifts

H is a lift of G via covering map «: « preserves degree and

edge-colours
v

OO0 v
. 042_0:)1
d(v) =1+1=2 d*(v) =141 d"(v)=1

In an anonymous model: an algorithm cannot distinguish between
a graph and its lifts.
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Two special lifts

Hﬂ ji o

Universal cover Ug Factor graph Fg



Maximal fractional matchings

Maximal vs maximum Fractional Matching

Fractional matching: weight function w : E(G) — [0, 1] such that:

Vv € V(G) Z w(e) <1
) e%E:
v Incid. to e

A vertex v is saturated if its inequality is tight (=1).

(a) 0.5 0.5 (b) 0.5 03

05 0.0 0.5 0.0 0.5 02
Maximal:
every edge has > 1
endpoint saturated

Maximum:
total weight=2
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Maximal fractional matchings

Maximal Frac. Matching and Loopiness

Definition: loopiness

G is k-loopy if every node has > k loops.
loopy=1-loopy
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Maximal fractional matchings

Maximal Frac. Matching and Loopiness

Definition: loopiness

G is k-loopy if every node has > k loops.
loopy=1-loopy

Observation:
If a node v has a loop: it must be saturated by any EC-algo.
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Maximal fractional matchings

Lower bound

There is no LOCAL algorithm that finds a maximal fractional
matching in o(A) rounds (where A is the max. degree).
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Maximal fractional matchings

Lower bound

There is no LOCAL algorithm that finds a maximal fractional
matching in o(A) rounds (where A is the max. degree).

© The maximal FM problem cannot be solved in time o(A) on
loopy EC-graphs of maximum degree A.

Q@ /D~ Ol ~ PO~ EC
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Lower bound in EC

Theorem: step 1

The maximal FM problem cannot be solved in time o(A) on loopy
EC-graphs of maximum degree A.

Proof:
Let A be an EC-algo computing maximal FM.
For i=0,...,A — 2, exhibit a pair (G;, H;) such that:

e Jg; € V(Gj) and h; € V(H;) having the same
i-neighbourhood...

@ ... but g; and h; must have an incident loop e on which A
disagrees

@ G;j, H; are trees apart from loops, and A — 1 — i loopy
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Lower bound in EC

Base case
Go 0.5 e Hy
0C>—Y<)o.3 02C0<)04
A same colour ¢, 6
02 different weight 0.4
A loops A — 1 loops

= Gg, Hp are trees apart from loops, and A — 1 loopy
= go and hg have the same 0-neighborhood

= go and hg have an incident loop e on which A disagrees
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Lower bound in EC

Inductive case

0.5

G H:
0 0.3 02 04
02 ¢ oa 7
GG: 0.3 GH: HH:
0 03 02 04
8
02|e 04|f
h
0 03 02 04
0.5

@ Unfold G — GG, unfold H — HH
e Unfold & mix G,H — GH
@ Choose to keep GH and one of GG, HH

= Gjt1, Hi11 are trees apart from loops, and A —1 — (i + 1) loopy
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Lower bound in EC

Inductive case

Find 8i+1 and h,‘+1
@ with same / 4+ 1 neighborhood

@ but incident loop e on which A disagrees

GG: 93 GH
0C0=<003 (>?g-<)
02|e #0.2
0C0<03 C>—o}-l<)
0.5
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Lower bound in EC

Inductive case

Find 8i+1 and h,‘+1
@ with same / 4+ 1 neighborhood

@ but incident loop e on which A disagrees

GG: 93 GH:
0 (>8—Q0.3 QE-Q
8
02]e 04
h
0 03
0.5
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Lower bound in EC

Inductive case

Find 8i+1 and h,‘+1
@ with same / 4+ 1 neighborhood

@ but incident loop e on which A disagrees

, 0.5 ,
GG: ? GH: ?03
0C0<03 0 C— ;<)
02]|e 041
0C0<003 C ]3<)
05
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Lower bound in EC

Inductive case

Find 8i+1 and h,‘+1
@ with same / 4+ 1 neighborhood
@ but incident loop e on which A disagrees

Push from g; towards copy of G following edge disagreement.

GG: GH:
03 0.4
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Reductions

ID ~ Ol ~~ PO ~ EC

Theorem: step 2

If 4 Ajp running in t-time for max FM on any graph of max.
degree A = 3 Agc running in t-time computing max. FM on any
loopy EC-graph of max. degree A/2.
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Reductions

ID ~ Ol ~~ PO ~ EC

Theorem: step 2

If 4 Ajp running in t-time for max FM on any graph of max.
degree A = 3 Agc running in t-time computing max. FM on any
loopy EC-graph of max. degree A/2.

PO ~ EC
03 0.5
2 A

output
PO E— EC
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Let T be the infinite 2d-regular d-edge-coloured PO-tree
where d denote the maximum number of edge colours appearing in
the input PO-graphs that have max. degree A.

There is a total order < on V/(T) such that all the ordered
neighborhoods (T, <, v) for v € V(T) are pairwise isomorphic (up
to any radius).
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u<veu~v]>0

Clearly antisymmetric and total
Also transitive
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Conclusion

ID ~ Ol

Lemma [Naor and Stockmeyer]

If A is an ID-algo that outputs finitely many values, there is an
infinite set | C N such that A is an Ol-algo when restricted to
graphs whose identifiers are in /.

Problem: A any ID-algo for maximal FM — infinitely many

possible outputs.
Trick: let A* simulate A and outputs 1 if v is saturated, 0
otherwise.
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Conclusion

Conclusion

Theorem: step 1

The maximal FM problem cannot be solved in time o(A) on loopy
EC-graphs of maximum degree A.

| A

Theorem: step 2

If 3 Ajp running in t-time for max FM on any graph of max.
degree A = 4 Agc running in t-time computing max. FM on any
loopy EC-graph of max. degree A/2.

Theorem

There is no LOCAL algorithm that finds a maximal fractional
matching in o(A) rounds (where A is the max. degree).
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Bip. Vertex Cover

Another problem, another lower bound

2-VERTEX-COVER
Input: a 2-coloured graph G
Output: a minimum-size vertex cover

Model: LOCAL randomised
Theorem: Inapproximability of 2-VC

There exists a § > 0 such that no randomised distributed algorithm
with run-time o(log n) can find an expected (1 + §)-approx of
2-Vertex-Cover on graphs of maximum degree A = 3.
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Bip. Vertex Cover

Context
Max matching Vertex cover
max Z Xe
eckE min Z Y
E 1y veV
. Xe < v
bi. t eivece 7€ ’
St © Z 0 SUb. to: Zv:vée Yv Z 1,Ve
Py >0

@ Primal and Dual LP admit local (1 + €)-approximation in time
Oc(1)

@ The integral primal problem admits a local constant-time
approximation scheme when A is bounded.

e Here: Q(log n) lower bound for dual integral problem even
with A =3
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Bip. Vertex Cover

Toy model & Auxiliary problem

@ Deterministic LOCAL
@ but anonymous.

e Edges are oriented (not for communication)

RECUT problem
Input: Each node has a color £(v) € {red, blue}
Output: An output labelling £, such that

nb of edges crossing red-blue

aeout = |E‘

is minimized subject to:
an all-red (resp. all-blue) ¢ must lead to all-red (resp. all blue) £t
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Bip. Vertex Cover

RECUT problem

Simple algorithm

Oo0o OO0 0000

O-O-OH OO -0-0

OO

O-O-OH OO0

Input HHOHFOHO-OHHO-O

CHO-O-OHO-O- OO0 CHOHHHO-0-0-0

-O-OHOHCHO- OO0 -O-OHFO-OHRO0-0-0

DDDQ__Q;_"]OOOO 0000000000
OO 000000 —

HOHG 6 -0-0-0-0-0 Oo0o o o0 0000

HOIHO- 000000 CHOHOHCHOHO- OO

O-LOMII0-0-0-0-0-0 OO OO0

[(HO-0-0-0-0-0000 OO OO

O-O-OH OO -0-0

O-O-OH OO -0-0

O-O-OHO OO0

0000000000

Optimum
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Bip. Vertex Cover

Reduction

3 A computing a (1 + ¢)-approx of 2-VC in t rounds when A =3

3 A’ computing a recut £ 4 of size 904 = O(e)
on balanced 4-regular tree-like digraphs in t rounds
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Bip. Vertex Cover

A=4
RECUT input 2-VC input
[ s f .
_—> = >
\4 bv
Input ? ?
O-0-0-0-0-0- {00 red node red gadget
[HO-OHHFO-OMR0-0
HHHO-O0-0-0-0 Fig. 2 Red gadget for A = 4.
[FOHOO LHO-0-0-0-0—
DEOEDEO 000000 RECUT input 2-VC input
[HOMHO-0-0-0-0-0-0
O-CHOHO-0-0-0-0-0 (
[(HO-0-0-000000 />/‘V ,

blue node blue gadget

Fig. 3 Blue gadget for A = 4 (assuming an all-red input produces an
all-white output).
25/31



Output

Bip. Vertex Cover

2-VC output RECUT output
/»fé/' /7&%/ > /7&»
only black node blue output
— /?—I—/' — /‘O‘—i*/' @

anything else red output

Fig. 4 Mapping the output of A to a solution of the RECUT problem.
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Bip. Vertex Cover

Analysis: bad nodes

2-VC output RECUT output

Fig. 5 A bad node: v is red and its out-neighbour u is blue.
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Bip. Vertex Cover

Analysis: bad nodes

2-VC output RECUT output

Fig. 5 A bad node: v is red and its out-neighbour u is blue.

Since A is a (1 + €)-approx: at most ¢|V/| bad vertices.
So nb of edges from red to blue < 2¢|V/|

nb of edges red-blue 2 - nb of edges from red to blue
|E| - |E|

ol =
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Bip. Vertex Cover

A=3

RECUT input 2-VC input

blue node blue gadget

Fig. 6 Gadgets for A = 3.
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Bip. Vertex Cover

Nearly balanced recut

Red nodes in output

n L]
\_ -
, N e
If A runs in o(log n) rounds for ¢ \
RECUT then for each 4-regular o ° 7
graph 3 input £ for which A \O(n)
computes a nearly balanced nl2 - o(n) ——>o i
recut |red| = n/2 + o(n). \./0\.\
Change of v;'s color seen only 0 °
by < 4"+ 1 = o(n) vertices Input
o0 000
o0 000
OO0 000
£: all red £": all blue
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Bip. Vertex Cover

Finally

d-Expander graph: edge expansion condition

e(S,V\S)>d-|S]| forall S C V,|S| < n/2

Take F=family of Ramanujan graphs
§ = (2 — v/3)—expanders [Morgenstern 15] having girth
(log n) = tree-like for any A on o(log n) rounds.

4-regular = Orient with an Euler tour to balanced 4-reg.
digraphs

Apply previous lemma: 3 input £ for which A produces nearly
balanced recut

By expansion property, 904 > §/4 — o(1)
Contrapositive of RECUT< 2-VC reduction: no
(1 + €)-approx of 2-VC in o(log n) rounds
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Bip. Vertex Cover

Back to randomised algorithm

3 A randomised LOCAL algo for 2-VC in o(log n) rounds?
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Bip. Vertex Cover

Back to randomised algorithm

3 A randomised LOCAL algo for 2-VC in o(log n) rounds?

Without loss of generality:
@ Deterministic run-time: Each node runs for at most
t = o(log n) steps
o Las Vegas algo. : Never fails

Then with same simulation RECUT — 2-VC as before:
Jinput £ s.t. E(|655(red)|) = n/2 — o(n)

Local Concentration Bound [Janson]:
with high proba this number is concentrated around its
expectation.
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