Lower bounds JCRAA 2017

Aurélie Lagoutte

According to Linear-in-∆ Lower bounds in the LOCAL model [Göös, Hirvonen, Suomela] and No sublog-time approx scheme for Bipartite Vertex Cover [Göös, Suomela]

LIMOS, Univ. Clermont Auvergne

October 3, 2017 Grenoble

Locality of a distributed algorithm

In LOCAL model with run-time t:

- Graph G = (V, E) a network
- Nodes synchronously send messages to their neighbours
- In t rounds: the output at node v depends only on the t-neighborhood of v

/!\Edge e incident to v: at distance 1

• Could be deterministic, randomized....

Different models of networks

- ID model: each node has a unique identifier from $\mathbb N.$
- OI model (Order-invariance): total order < on the nodes
- PO model (*Port numbering and Orientation*): each node has a numbering of its incident edges + edges are oriented
- EC model (Edge-Colouring): proper edge-colouring

PO and EC models are anonymous

PO can be seen as "special" edge-colouring:

H is a lift of G via covering map α : α preserves degree and edge-colours

In an anonymous model: an algorithm cannot distinguish between a graph and its lifts.

Two special lifts

Universal cover U_G

G

Factor graph F_G

Maximal vs maximum Fractional Matching

Fractional matching: weight function $w : E(G) \rightarrow [0,1]$ such that:

$$\forall v \in V(G) \quad \sum_{\substack{e \in E: \\ v \text{ incid. to } e}} w(e) \leq 1$$

A vertex v is saturated if its inequality is tight (=1).

Maximal Frac. Matching and Loopiness

Definition: loopiness

G is k-loopy if every node has $\geq k$ loops. loopy=1-loopy

Maximal Frac. Matching and Loopiness

Definition: loopiness

G is k-loopy if every node has $\geq k$ loops. loopy=1-loopy

Observation:

If a node v has a loop: it must be saturated by any *EC*-algo.

Lower bound

Theorem

There is no LOCAL algorithm that finds a maximal fractional matching in $o(\Delta)$ rounds (where Δ is the max. degree).

Lower bound

Theorem

There is no LOCAL algorithm that finds a maximal fractional matching in $o(\Delta)$ rounds (where Δ is the max. degree).

- The maximal FM problem cannot be solved in time o(Δ) on loopy EC-graphs of maximum degree Δ.
- $ID \rightsquigarrow OI \rightsquigarrow PO \rightsquigarrow EC$

Lower bound in EC

Theorem: step 1

The maximal FM problem cannot be solved in time $o(\Delta)$ on loopy EC-graphs of maximum degree Δ .

Proof:

Let \mathcal{A} be an EC-algo computing maximal FM.

For $i = 0, ..., \Delta - 2$, exhibit a pair (G_i, H_i) such that:

- $\exists g_i \in V(G_i)$ and $h_i \in V(H_i)$ having the same *i*-neighbourhood...
- ... but g_i and h_i must have an incident loop e on which A disagrees
- G_i, H_i are trees apart from loops, and $\Delta 1 i$ loopy

Base case

- \Rightarrow G_0, H_0 are trees apart from loops, and $\Delta 1$ loopy
- \Rightarrow g_0 and h_0 have the same 0-neighborhood
- \Rightarrow g_0 and h_0 have an incident loop e on which \mathcal{A} disagrees

- Unfold $G \rightarrow GG$, unfold $H \rightarrow HH$
- Unfold & mix $G, H \rightarrow GH$
- Choose to keep GH and one of GG, HH

 \Rightarrow G_{i+1}, H_{i+1} are trees apart from loops, and $\Delta - 1 - (i+1)$ loopy

Find g_{i+1} and h_{i+1}

- with same i + 1 neighborhood
- but incident loop e on which \mathcal{A} disagrees

Find g_{i+1} and h_{i+1}

- with same i + 1 neighborhood
- but incident loop e on which \mathcal{A} disagrees

Find g_{i+1} and h_{i+1}

- with same i + 1 neighborhood
- but incident loop e on which \mathcal{A} disagrees

Find g_{i+1} and h_{i+1}

- with same i + 1 neighborhood
- but incident loop e on which \mathcal{A} disagrees

Push from g_i towards copy of G following edge disagreement.

Reductions

$ID \rightsquigarrow OI \rightsquigarrow PO \rightsquigarrow EC$

Theorem: step 2

If $\exists A_{ID}$ running in *t*-time for max FM on any graph of max. degree $\Delta \Rightarrow \exists A_{EC}$ running in *t*-time computing max. FM on any loopy EC-graph of max. degree $\Delta/2$.

Reductions

$ID \rightsquigarrow OI \rightsquigarrow PO \rightsquigarrow EC$

Theorem: step 2

If $\exists A_{ID}$ running in *t*-time for max FM on any graph of max. degree $\Delta \Rightarrow \exists A_{EC}$ running in *t*-time computing max. FM on any loopy EC-graph of max. degree $\Delta/2$.

 $PO \rightarrow EC$ 3 2 0 3 2 0 0.3 0 0.5 0 $EC \xrightarrow{input} PO PO \xrightarrow{output} EC$

Let T be the infinite 2*d*-regular *d*-edge-coloured PO-tree where *d* denote the maximum number of edge colours appearing in the input PO-graphs that have max. degree Δ .

Lemma

There is a total order \prec on V(T) such that all the ordered neighborhoods (T, \prec, v) for $v \in V(T)$ are pairwise isomorphic (up to any radius).

Clearly antisymmetric and total Also transitive

$$\textit{ID} \rightsquigarrow \textit{OI}$$

Lemma [Naor and Stockmeyer]

If \mathcal{A} is an ID-algo that outputs finitely many values, there is an infinite set $I \subseteq \mathbb{N}$ such that \mathcal{A} is an OI-algo when restricted to graphs whose identifiers are in I.

Problem: \mathcal{A} any ID-algo for maximal FM \rightarrow infinitely many possible outputs.

Trick: let \mathcal{A}^* simulate \mathcal{A} and outputs 1 if v is saturated, 0 otherwise.

Conclusion

Theorem: step 1

The maximal FM problem cannot be solved in time $o(\Delta)$ on loopy EC-graphs of maximum degree Δ .

Theorem: step 2

If $\exists \mathcal{A}_{ID}$ running in *t*-time for max FM on any graph of max. degree $\Delta \Rightarrow \exists \mathcal{A}_{EC}$ running in *t*-time computing max. FM on any loopy EC-graph of max. degree $\Delta/2$.

Theorem

There is no LOCAL algorithm that finds a maximal fractional matching in $o(\Delta)$ rounds (where Δ is the max. degree).

Another problem, another lower bound

2-VERTEX-COVER Input: a 2-coloured graph *G* Output: a minimum-size vertex cover

Model: LOCAL randomised

Theorem: Inapproximability of 2-VC

There exists a $\delta > 0$ such that no randomised distributed algorithm with run-time $o(\log n)$ can find an expected $(1 + \delta)$ -approx of 2-Vertex-Cover on graphs of maximum degree $\Delta = 3$.

Context

Max matchingVertex cover $\max \sum_{e \in E} x_e$ $\min \sum_{v \in V} y_v$ subj. to: $\sum_{e:v \in e} x_e \leq 1, \forall v$ $x \geq 0$ subj. to: $\sum_{v:v \in e} y_v \geq 1, \forall e$

- Primal and Dual LP admit local $(1 + \varepsilon)$ -approximation in time $\mathcal{O}_{\varepsilon}(1)$
- The integral primal problem admits a local constant-time approximation scheme when Δ is bounded.
- Here: $\Omega(\log n)$ lower bound for dual integral problem even with $\Delta = 3$

Conclusion

Toy model & Auxiliary problem

- Deterministic LOCAL
- but anonymous.
- Edges are oriented (not for communication)

RECUT problem Input: Each node has a color $\ell(v) \in \{\text{red, blue}\}$ Output: An output labelling ℓ_{out} such that

$$\partial \ell_{out} = \frac{\text{nb of edges crossing red-blue}}{|E|}$$

is minimized subject to:

an all-red (resp. all-blue) ℓ must lead to all-red (resp. all blue) ℓ_{out}

RECUT problem

Reduction

 \Rightarrow

 $\exists \mathcal{A} \text{ computing a } (1 + \varepsilon) \text{-approx of 2-VC in } t \text{ rounds when } \Delta = 3$

 $\exists \mathcal{A}' \text{ computing a recut } \ell_{\mathcal{A}} \text{ of size } \partial \ell_{\mathcal{A}} = O(\varepsilon)$ on balanced 4-regular tree-like digraphs in t rounds $\Delta = 4$

Fig. 3 Blue gadget for $\Delta = 4$ (assuming an all-red input produces an all-white output).

Output

Fig. 4 Mapping the output of A to a solution of the RECUT problem.

Analysis: bad nodes

Fig. 5 A bad node: v is red and its out-neighbour u is blue.

Analysis: bad nodes

Fig. 5 A bad node: v is red and its out-neighbour u is blue.

Since A is a $(1 + \varepsilon)$ -approx: at most $\varepsilon |V|$ bad vertices. So nb of edges from red to blue $\leq 2\varepsilon |V|$

$$\partial \ell_{\mathcal{A}} = rac{\text{nb of edges red-blue}}{|E|} = rac{2 \cdot \text{nb of edges from red to blue}}{|E|} \le 2\varepsilon$$

 $\Delta=3$

Fig. 6 Gadgets for $\Delta = 3$.

Nearly balanced recut

Lemma

If \mathcal{A} runs in $o(\log n)$ rounds for RECUT then for each 4-regular graph \exists input ℓ for which \mathcal{A} computes a nearly balanced recut $|red| = n/2 \pm o(n)$.

Change of v_i 's color seen only by $\leq 4^r + 1 = o(n)$ vertices

Finally

$\delta\textsc{-}\mathsf{Expander}$ graph: edge expansion condition

 $e(S, V \setminus S) \ge \delta \cdot |S|$ for all $S \subseteq V, |S| \le n/2$

- Take \mathcal{F} =family of Ramanujan graphs $\delta = (2 - \sqrt{3})$ -expanders [Morgenstern 15] having girth $\theta(\log n) \Rightarrow$ tree-like for any \mathcal{A} on $o(\log n)$ rounds.
- 4-regular \Rightarrow Orient with an Euler tour to balanced 4-reg. digraphs
- Apply previous lemma: \exists input ℓ for which $\mathcal A$ produces nearly balanced recut
- By expansion property, $\partial\ell_{\mathcal{A}} \geq \delta/4 o(1)$
- Contrapositive of RECUT≤ 2-VC reduction: no (1 + ε)-approx of 2-VC in o(log n) rounds

Back to randomised algorithm

 $\exists \mathcal{A} \text{ randomised LOCAL algo for 2-VC in } o(\log n) \text{ rounds}?$

Back to randomised algorithm

 $\exists \mathcal{A} \text{ randomised LOCAL algo for 2-VC in } o(\log n) \text{ rounds}?$

Without loss of generality:

- **Deterministic run-time:** Each node runs for at most $t = o(\log n)$ steps
- Las Vegas algo. : Never fails

Then with same simulation RECUT \rightarrow 2-VC as before:

$$\exists \text{ input } \ell \text{ s.t. } \mathbb{E}(|\ell_{out}^{-1}(red)|) = n/2 - o(n)$$

Local Concentration Bound [Janson]: with high proba this number is concentrated around its expectation.