Lower bounds JCRAA 2017

Aurélie Lagoutte

According to Linear-in- Δ Lower bounds in the LOCAL model [Göös, Hirvonen, Suomela] and No sublog-time approx scheme for Bipartite Vertex Cover [Göös, Suomela]

LIMOS, Univ. Clermont Auvergne

October 3, 2017
Grenoble

Locality of a distributed algorithm

In LOCAL model with run-time t :

- Graph $G=(V, E)$ a network
- Nodes synchronously send messages to their neighbours
- In t rounds: the output at node v depends only on the t-neighborhood of v
$/!\backslash$ Edge e incident to v : at distance 1
- Could be deterministic, randomized....

Different models of networks

- ID model: each node has a unique identifier from \mathbb{N}.
- Ol model (Order-invariance): total order < on the nodes
- PO model (Port numbering and Orientation): each node has a numbering of its incident edges + edges are oriented
- EC model (Edge-Colouring): proper edge-colouring

PO and EC models are anonymous

ID

OI

PO

EC

PO can be seen as "special" edge-colouring:

Lifts

H is a lift of G via covering map α : α preserves degree and edge-colours

G

$$
d(v)=1+1=2
$$

$$
d^{+}(v)=1+1 \quad d^{-}(v)=1
$$

In an anonymous model: an algorithm cannot distinguish between a graph and its lifts.

Two special lifts

Universal cover U_{G}

Factor graph F_{G}

Maximal vs maximum Fractional Matching

Fractional matching: weight function $w: E(G) \rightarrow[0,1]$ such that:

$$
\forall v \in V(G) \quad \sum_{\substack{e \in E: \\ v \text { incid. to } e}} w(e) \leq 1
$$

A vertex v is saturated if its inequality is tight $(=1)$.
(a)

Maximum:
total weight $=2$
(b)

every edge has ≥ 1 endpoint saturated

Maximal Frac. Matching and Loopiness

Definition: loopiness
G is k-loopy if every node has $\geq k$ loops. loopy=1-loopy

Maximal Frac. Matching and Loopiness

Definition: loopiness
G is k-loopy if every node has $\geq k$ loops. loopy $=1$-loopy

Observation:

If a node v has a loop: it must be saturated by any EC-algo.

Lower bound

Theorem

There is no LOCAL algorithm that finds a maximal fractional matching in $o(\Delta)$ rounds (where Δ is the max. degree).

Lower bound

Theorem

There is no LOCAL algorithm that finds a maximal fractional matching in $o(\Delta)$ rounds (where Δ is the max. degree).
(1) The maximal FM problem cannot be solved in time $o(\Delta)$ on loopy EC-graphs of maximum degree Δ.
(2) $I D \rightsquigarrow O I \rightsquigarrow P O \rightsquigarrow E C$

Lower bound in EC

Theorem: step 1

The maximal FM problem cannot be solved in time $o(\Delta)$ on loopy EC-graphs of maximum degree Δ.

Proof:
Let \mathcal{A} be an EC-algo computing maximal FM .
For $i=0, \ldots, \Delta-2$, exhibit a pair $\left(G_{i}, H_{i}\right)$ such that:

- $\exists g_{i} \in V\left(G_{i}\right)$ and $h_{i} \in V\left(H_{i}\right)$ having the same i-neighbourhood...
- ... but g_{i} and h_{i} must have an incident loop e on which \mathcal{A} disagrees
- G_{i}, H_{i} are trees apart from loops, and $\Delta-1-i$ loopy

Base case

G_{0} :

0.2
same colour c_{0},

$$
H_{0}:
$$ different weight

Δ loops
$\Delta-1$ loops
$\Rightarrow G_{0}, H_{0}$ are trees apart from loops, and $\Delta-1$ loopy
$\Rightarrow g_{0}$ and h_{0} have the same 0 -neighborhood
$\Rightarrow g_{0}$ and h_{0} have an incident loop e on which \mathcal{A} disagrees

Inductive case

H:

HH:

- Unfold $G \rightarrow G G$, unfold $H \rightarrow H H$
- Unfold \& mix $G, H \rightarrow G H$
- Choose to keep GH and one of GG, HH
$\Rightarrow G_{i+1}, H_{i+1}$ are trees apart from loops, and $\Delta-1-(i+1)$ loopy

Inductive case

Find g_{i+1} and h_{i+1}

- with same $i+1$ neighborhood
- but incident loop e on which \mathcal{A} disagrees

Inductive case

Find g_{i+1} and h_{i+1}

- with same $i+1$ neighborhood
- but incident loop e on which \mathcal{A} disagrees

Inductive case

Find g_{i+1} and h_{i+1}

- with same $i+1$ neighborhood
- but incident loop e on which \mathcal{A} disagrees

Inductive case

Find g_{i+1} and h_{i+1}

- with same $i+1$ neighborhood
- but incident loop e on which \mathcal{A} disagrees

Push from g_{i} towards copy of G following edge disagreement.

Reductions

$$
I D \rightsquigarrow O I \rightsquigarrow P O \rightsquigarrow E C
$$

Theorem: step 2

If $\exists \mathcal{A}_{I D}$ running in t-time for max FM on any graph of max. degree $\Delta \Rightarrow \exists \mathcal{A}_{E C}$ running in t-time computing max. FM on any loopy EC-graph of max. degree $\Delta / 2$.

Reductions

$$
I D \rightsquigarrow O I \rightsquigarrow P O \rightsquigarrow E C
$$

Theorem: step 2

If $\exists \mathcal{A}_{I D}$ running in t-time for max FM on any graph of max. degree $\Delta \Rightarrow \exists \mathcal{A}_{E C}$ running in t-time computing max. FM on any loopy EC-graph of max. degree $\Delta / 2$.

$$
P O \rightsquigarrow E C
$$

$$
\xrightarrow[0.2]{\stackrel{0.3}{\longrightarrow}} \mathrm{O}
$$

$\mathrm{PO} \xrightarrow{\text { output }} \mathrm{EC}$

Let T be the infinite $2 d$-regular d-edge-coloured PO-tree where d denote the maximum number of edge colours appearing in the input PO-graphs that have max. degree Δ.

Lemma

There is a total order \prec on $V(T)$ such that all the ordered neighborhoods (T, \prec, v) for $v \in V(T)$ are pairwise isomorphic (up to any radius).

$$
u \prec v \Leftrightarrow \llbracket u \rightsquigarrow v \rrbracket>0
$$

Clearly antisymmetric and total Also transitive

$I D \rightsquigarrow O I$

Lemma [Naor and Stockmeyer]

If \mathcal{A} is an ID-algo that outputs finitely many values, there is an infinite set $I \subseteq \mathbb{N}$ such that \mathcal{A} is an Ol-algo when restricted to graphs whose identifiers are in I.

Problem: \mathcal{A} any ID-algo for maximal FM \rightarrow infinitely many possible outputs.
Trick: let \mathcal{A}^{*} simulate \mathcal{A} and outputs 1 if v is saturated, 0 otherwise.

Conclusion

Theorem: step 1

The maximal FM problem cannot be solved in time $o(\Delta)$ on loopy EC-graphs of maximum degree Δ.

Theorem: step 2

If $\exists \mathcal{A}_{I D}$ running in t-time for max FM on any graph of max. degree $\Delta \Rightarrow \exists \mathcal{A}_{E C}$ running in t-time computing max. FM on any loopy EC-graph of max. degree $\Delta / 2$.

Theorem

There is no LOCAL algorithm that finds a maximal fractional matching in $o(\Delta)$ rounds (where Δ is the max. degree).

Another problem, another lower bound

2-VERTEX-Cover
Input: a 2-coloured graph G
Output: a minimum-size vertex cover
Model: LOCAL randomised

Theorem: Inapproximability of 2-VC

There exists a $\delta>0$ such that no randomised distributed algorithm with run-time $o(\log n)$ can find an expected $(1+\delta)$-approx of 2-Vertex-Cover on graphs of maximum degree $\Delta=3$.

Context

Max matching

$$
\max \sum_{e \in E} x_{e}
$$

$$
\sum_{e: v \in e} x_{e} \leq 1, \forall v
$$

$$
x \geq 0
$$

Vertex cover

$$
\min \sum_{v \in V} y_{v}
$$

$$
\begin{array}{ll}
\text { subj. to: } & \sum_{v: v \in e} y_{v} \geq 1, \forall e \\
& y \geq 0
\end{array}
$$

- Primal and Dual LP admit local $(1+\varepsilon)$-approximation in time $\mathcal{O}_{\varepsilon}(1)$
- The integral primal problem admits a local constant-time approximation scheme when Δ is bounded.
- Here: $\Omega(\log n)$ lower bound for dual integral problem even with $\Delta=3$

Toy model \& Auxiliary problem

- Deterministic LOCAL
- but anonymous.
- Edges are oriented (not for communication)

RECUT problem
Input: Each node has a color $\ell(v) \in\{$ red, blue $\}$
Output: An output labelling $\ell_{\text {out }}$ such that

$$
\partial \ell_{\text {out }}=\frac{\mathrm{nb} \text { of edges crossing red-blue }}{|E|}
$$

is minimized subject to:
an all-red (resp. all-blue) ℓ must lead to all-red (resp. all blue) $\ell_{\text {out }}$

RECUT problem

Simple algorithm

\longrightarrow

Optimum

Reduction

$\exists \mathcal{A}$ computing a $(1+\varepsilon)$-approx of 2 - VC in t rounds when $\Delta=3$
$\exists \mathcal{A}^{\prime}$ computing a recut $\ell_{\mathcal{A}}$ of size $\partial \ell_{\mathcal{A}}=O(\varepsilon)$
$\Rightarrow \quad$ on balanced 4-regular tree-like digraphs in t rounds

$\Delta=4$

Fig. 2 Red gadget for $\Delta=4$.

Fig. 3 Blue gadget for $\Delta=4$ (assuming an all-red input produces an all-white output).

Output

2-VC output

only black node

anything else
RECUT output

blue output

red output

Fig. 4 Mapping the output of \mathcal{A} to a solution of the RECUT problem.

Analysis: bad nodes

Fig. 5 A bad node: v is red and its out-neighbour u is blue.

Analysis: bad nodes

Fig. 5 A bad node: v is red and its out-neighbour u is blue.
Since \mathcal{A} is a $(1+\varepsilon)$-approx: at most $\varepsilon|V|$ bad vertices.
So nb of edges from red to blue $\leq 2 \varepsilon|V|$
$\partial \ell_{\mathcal{A}}=\frac{\mathrm{nb} \text { of edges red-blue }}{|E|}=\frac{2 \cdot \mathrm{nb} \text { of edges from red to blue }}{|E|} \leq 2 \varepsilon$
$\Delta=3$

RECUT input

red node

blue node

2-VC input

red gadget

blue gadget

Fig. 6 Gadgets for $\Delta=3$.

Nearly balanced recut

Lemma

If \mathcal{A} runs in $o(\log n)$ rounds for RECUT then for each 4-regular graph \exists input ℓ for which \mathcal{A} computes a nearly balanced recut \mid red $\mid=n / 2 \pm o(n)$.

Change of v_{i} 's color seen only by $\leq 4^{r}+1=o(n)$ vertices

Finally

δ-Expander graph: edge expansion condition

$$
e(S, V \backslash S) \geq \delta \cdot|S| \quad \text { for all } S \subseteq V,|S| \leq n / 2
$$

- Take $\mathcal{F}=$ family of Ramanujan graphs $\delta=(2-\sqrt{3})$-expanders [Morgenstern 15] having girth $\theta(\log n) \Rightarrow$ tree-like for any \mathcal{A} on $o(\log n)$ rounds.
- 4-regular \Rightarrow Orient with an Euler tour to balanced 4-reg. digraphs
- Apply previous lemma: \exists input ℓ for which \mathcal{A} produces nearly balanced recut
- By expansion property, $\partial \ell_{\mathcal{A}} \geq \delta / 4-o(1)$
- Contrapositive of RECUT $\leq 2-\mathrm{VC}$ reduction: no $(1+\varepsilon)$-approx of 2 -VC in $o(\log n)$ rounds

Back to randomised algorithm

$\exists \mathcal{A}$ randomised LOCAL algo for $2-\mathrm{VC}$ in $o(\log n)$ rounds?

Back to randomised algorithm

$\exists \mathcal{A}$ randomised LOCAL algo for $2-\mathrm{VC}$ in $o(\log n)$ rounds?
Without loss of generality:

- Deterministic run-time: Each node runs for at most $t=o(\log n)$ steps
- Las Vegas algo. : Never fails

Then with same simulation RECUT $\rightarrow 2-\mathrm{VC}$ as before:

$$
\exists \text { input } \ell \text { s.t. } \mathbb{E}\left(\left|\ell_{\text {out }}^{-1}(r e d)\right|\right)=n / 2-o(n)
$$

Local Concentration Bound [Janson]: with high proba this number is concentrated around its expectation.

