My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives

Coloring perfect graphs with bounded clique number JGA 2016

Aurélie Lagoutte

Joint work with M. Chudnovsky, P. Seymour and S. Spirkl

G-SCOP, Univ. Grenoble Alpes

November 17, 2016 Paris Dauphine What's in my thesis?

Interactions between Cliques and Stable sets in a graph
 My thesis
 Coloring
 Perfect graphs
 Our algorithm
 Perspectives

 ••••••••
 ••••••
 •••••
 •••••

 What's in my thesis?

Coloration Partition into stable sets; relate nb of parts to size of max. clique

Interactions between Cliques and Stable sets in a graph

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
00000		00000	000000000000000000000000000000000000000	

Game on a graph G:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
00000				

Game on a graph G:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
00000				

Game on a graph G:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
00000				

Game on a graph G:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
00000				

Game on a graph G:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
00000				

Game on a graph G:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
00000		00000	000000000000000000000000000000000000000	

Game on a graph G:

- Pre-processing step: choose some cuts of *G*.
- An Adversary chooses a clique K and a stable set S that do not intersect.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
00000				

Game on a graph G:

- Pre-processing step: choose some cuts of *G*.
- An Adversary chooses a clique K and a stable set S that do not intersect.
- I win if I have a cut **separating** K and S (=certificate of non-intersection between K and S)

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
00000				

Game on a graph G:

- Pre-processing step: choose some cuts of *G*.
- An Adversary chooses a clique K and a stable set S that do not intersect.
- I win if I have a cut **separating** K and S (=certificate of non-intersection between K and S)

A CS-Separator is a family of cuts that ensures me to always win.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
00000				

Game on a graph G:

- Pre-processing step: choose some cuts of *G*.
- An Adversary chooses a clique K and a stable set S that do not intersect.
- I win if I have a cut **separating** K and S (=certificate of non-intersection between K and S)

A **CS-Separator** is a family of cuts that ensures me to always win. \rightarrow I am allowed to select only **polynomially many** cuts.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
○○●○○○	00	00000	00000000000000000000000000	0
Bounds				

Yannakakis (1991)

Upper Bound: $\forall G$ there exists a CS-separator of size $\mathcal{O}(n^{\log n})$.

Question: Do perfect graphs admit polynomial-size CS-Separator?

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
○○●○○○	00	00000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	0
Bounds				

Yannakakis (1991)

Upper Bound: $\forall G$ there exists a CS-separator of size $\mathcal{O}(n^{\log n})$.

Question: Do perfect graphs admit polynomial-size CS-Separator?

Huang, Sudakov (2012)

Lower bound : $\Omega(n^{\frac{6}{5}})$ cuts are needed for some graphs

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
○○●○○○	00	00000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	0
Bounds				

Yannakakis (1991)

Upper Bound: $\forall G$ there exists a CS-separator of size $\mathcal{O}(n^{\log n})$. **Question:** Do perfect graphs admit polynomial-size CS-Separator?

Huang, Sudakov (2012)

Lower bound : $\Omega(n^{\frac{6}{5}})$ cuts are needed for some graphs

Does there exist for all graph G on n vertices a CS-separator of size poly(n)? Or for which classes of graphs does it exist?

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000				

- If ω or α is bounded (trivial)
- chordal graphs (linear number of max. cliques)
- comparability graphs (Yannakakis 1991)
- C₄-free graphs (Conseq. of Alekseev 1991)
- P₅-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000				

- If ω or α is bounded (trivial)
- chordal graphs (linear number of max. cliques)
- comparability graphs (Yannakakis 1991)
- C₄-free graphs (Conseq. of Alekseev 1991)
- P₅-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000				

- If ω or α is bounded (trivial)
- chordal graphs (linear number of max. cliques)
- comparability graphs (Yannakakis 1991)
- C₄-free graphs (Conseq. of Alekseev 1991)
- P₅-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000				

- If ω or α is bounded (trivial)
- chordal graphs (linear number of max. cliques)
- comparability graphs (Yannakakis 1991)
- C₄-free graphs (Conseq. of Alekseev 1991)
- P₅-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ; Random graphs *H*-free graphs where *H* is a split graph.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	000000000000000000000000000000000000000	0

- If ω or α is bounded (trivial)
- chordal graphs (linear number of max. cliques)
- comparability graphs (Yannakakis 1991)
- C₄-free graphs (Conseq. of Alekseev 1991)
- P₅-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ; Random graphs *H*-free graphs where *H* is a split graph.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000				

- If ω or α is bounded (trivial)
- chordal graphs (linear number of max. cliques)
- comparability graphs (Yannakakis 1991)
- C₄-free graphs (Conseq. of Alekseev 1991)
- P₅-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

- Random graphs
- *H*-free graphs where *H* is a split graph.
- $(P_k, \overline{P_k})$ -free graphs

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000				

- If ω or α is bounded (trivial)
- chordal graphs (linear number of max. cliques)
- comparability graphs (Yannakakis 1991)
- C₄-free graphs (Conseq. of Alekseev 1991)
- P₅-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ; and Trunck

- Random graphs
- *H*-free graphs where *H* is a split graph.
- $(P_k, \overline{P_k})$ -free graphs
- Perfect graphs with no BSP

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000				

Does there exist for all graph G on n vertices a CS-separator of size poly(n)?

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000				

Does there exist for all graph *G* **on** *n* **vertices a CS-separator of size poly**(*n*)**? No! Lower Bound:** (Göös 2015): we need $n^{\Omega(\log^{0.128} n)}$ cuts for some graphs.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
○○○○●○	00	00000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	O

Does there exist for all graph *G* **on** *n* **vertices a CS-separator of size poly**(*n*)**? No! Lower Bound:** (Göös 2015): we need $n^{\Omega(\log^{0.128} n)}$ cuts for some graphs.

What now?

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
○○○○●○	00	00000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	O

Does there exist for all graph *G* **on** *n* **vertices a CS-separator of size poly**(*n*)**? No! Lower Bound:** (Göös 2015): we need $n^{\Omega(\log^{0.128} n)}$ cuts for some graphs.

What now?

 \rightarrow Want to learn more about perfect graphs and try to close the CS-Separation question on them.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000				

Coloring perfect graphs with bounded clique number JGA 2016

Aurélie Lagoutte

Joint work with M. Chudnovsky, P. Seymour and S. Spirkl

G-SCOP, Univ. Grenoble Alpes

November 17, 2016 Paris Dauphine

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
	•0			

A **proper** *k*-**coloring** of *G* is an assignment of colors from $\{1, \ldots, k\}$ such that any two adjacent vertices are given different colors.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
	•0			

A **proper** k-**coloring** of G is an assignment of colors from $\{1, \ldots, k\}$ such that any two adjacent vertices are given different colors.

GRAPH COLORING

Input: A graph G and an integer k. *Output:* Does G admits a proper k-coloring?

Graph Coloring is NP-complete.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
	•0			

A **proper** k-**coloring** of G is an assignment of colors from $\{1, \ldots, k\}$ such that any two adjacent vertices are given different colors.

GRAPH COLORING 3-Coloring

Input: A graph *G* and an integer *k*. *Output:* Does *G* admits a proper *k*-coloring? 3-coloring?

Graph Coloring is NP-complete. Even 3-Coloring is!

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
	00			

- χ(G): chromatic number of G, i.e. minimum number of color in a proper coloring.
- $\omega(G)$: clique number, i.e. size of the largest clique.

- - χ(G): chromatic number of G, i.e. minimum number of color in a proper coloring.
 - $\omega(G)$: clique number, i.e. size of the largest clique.

 $\chi(G) \geq \omega(G)$

ly thesis	Coloring 00	Perfect graphs ●0000	Our algorithm 000000000000000000000000000000000000	Perspectives 0
Perfe	ect graph: de	efinition		
G is every	perfect if and induced sub	nd only if $\chi(G)$ = ograph <i>H</i> of <i>G</i> .	= $\omega(G)$ and the equality holds holds are consistent of $\omega(G)$ and the equality holds have $\omega(G)$ and $\omega(G)$	lds for

Mv thesis Perfect graphs Our algorithm Perspectives 00000 Perfect graph: definition G is **perfect** if and only if $\chi(G) = \omega(G)$ and the equality holds for

every induced subgraph H of G.

Berge's Conjecture (1960's)

A graph G is perfect if and only if G contains no odd hole and no odd antihole as induced subgraph.

My thesis
occorring
occorring
occorringColoring
Perfect graphs
•oocoOur algorithm
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
occorring
<

Berge's Conjecture (1960's) \Rightarrow Strong Perfect Graph Theorem

A graph G is perfect if and only if G contains no odd hole and no odd antihole as induced subgraph.

Proved in 2002 by Chudnovsky, Robertson, Seymour and Thomas.

 My thesis
 Coloring
 Perfect graphs
 Our algorithm
 Perspectives

 Owned
 Owned
 Owned
 Owned
 Owned

 What about coloring perfect graphs?
 Owned
 Owned
 Owned

Theorem [Grötschel, Lovász, Schrijver 1981]

The Maximum Weighted Stable Set problem can be solved in polynomial time for perfect graphs.

 My thesis
 Coloring
 Perfect graphs
 Our algorithm
 Perspectives

 000000
 00000
 00000
 00000
 00000

 What about coloring perfect graphs?
 00000
 00000

Theorem [Grötschel, Lovász, Schrijver 1981]

The Maximum Weighted Stable Set problem can be solved in polynomial time for perfect graphs.

Consequence

There is a polynomial-time algorithm that optimally colors any input perfect graph.

Theorem [Grötschel, Lovász, Schrijver 1981]

The Maximum Weighted Stable Set problem can be solved in polynomial time for perfect graphs.

Consequence

There is a polynomial-time algorithm that optimally colors any input perfect graph.

 \Rightarrow Are we done??

Theorem [Grötschel, Lovász, Schrijver 1981]

The Maximum Weighted Stable Set problem can be solved in polynomial time for perfect graphs.

Consequence

There is a polynomial-time algorithm that optimally colors any input perfect graph.

- \Rightarrow Are we done?? This algorithm uses the ellipsoid method:
 - \Rightarrow commonly acknowledged to be unpractical.
 - ⇒ Theoretical point of view: translates into semi-definite programming and we loose any understanding on the ongoing process.

My thesis Coloring Perfect graphs Our algorithm Perspectives occoordinate of the second secon

Theorem [Grötschel, Lovász, Schrijver 1981]

The Maximum Weighted Stable Set problem can be solved in polynomial time for perfect graphs.

Consequence

There is a polynomial-time algorithm that optimally colors any input perfect graph.

- \Rightarrow Are we done?? This algorithm uses the ellipsoid method:
 - \Rightarrow commonly acknowledged to be unpractical.
 - ⇒ Theoretical point of view: translates into semi-definite programming and we loose any understanding on the ongoing process.

Not satisfying! We know so much on perfect graphs that we want a *combinatorial* algorithm.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
		00000		

Decomposition theorem from [CRST'02]

- either G is basic (bipartite, line graph of bipartite,),
- or G can be *decomposed* in a given way.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
		00000		

Decomposition theorem from [CRST'02]

- either G is basic (bipartite, line graph of bipartite,),
- or G can be *decomposed* in a given way.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
		00000		

Decomposition theorem from [CRST'02]

- either G is basic (bipartite, line graph of bipartite,),
- or G can be *decomposed* in a given way.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
		00000		

Decomposition theorem from [CRST'02]

- either G is basic (bipartite, line graph of bipartite,),
- or G can be *decomposed* in a given way.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
		00000		

Decomposition theorem from [CRST'02]

- either G is basic (bipartite, line graph of bipartite,),
- or G can be *decomposed* in a given way.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
		00000		

Decomposition theorem from [CRST'02]

If G is Berge, then

- either G is basic (bipartite, line graph of bipartite,),
- or G can be *decomposed* in a given way.

How to use it?

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
		00000		

Decomposition theorem from [CRST'02]

If G is Berge, then

- either G is basic (bipartite, line graph of bipartite,),
- or G can be decomposed in a given way.

How to use it?

For structural purposes: want to prove that any Berge graph satisfies some property \mathcal{P} (ex: *is perfect*).

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000		00000	000000000000000000000000000000000000000	

Decomposition theorem from [CRST'02]

If G is Berge, then

- either G is basic (bipartite, line graph of bipartite,),
- or G can be decomposed in a given way.

How to use it?

For structural purposes: want to prove that any Berge graph satisfies some property \mathcal{P} (ex: *is perfect*).

Take G a minimal counter-example, i.e. Berge but does not satisfy \mathcal{P} .

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000		00000	000000000000000000000000000000000000000	

Decomposition theorem from [CRST'02]

If G is Berge, then

- either G is basic (bipartite, line graph of bipartite,),
- or G can be decomposed in a given way.

How to use it?

For structural purposes: want to prove that any Berge graph satisfies some property \mathcal{P} (ex: *is perfect*).

Take G a minimal counter-example, i.e. Berge but does not satisfy \mathcal{P} .

- Prove that G cannot be decomposed (get a smaller counter-example)
- Prove that any basic graph satisfies \mathcal{P} .

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000		00000	000000000000000000000000000000000000000	

Decomposition theorem from [CRST'02]

If G is Berge, then

- either G is basic (bipartite, line graph of bipartite,),
- or G can be decomposed in a given way.

How to use it?

For structural purposes: want to prove that any Berge graph satisfies some property \mathcal{P} (ex: *is perfect*).

Take G a minimal counter-example, i.e. Berge but does not satisfy \mathcal{P} .

- Prove that G cannot be decomposed (get a smaller counter-example)
- \bullet Prove that any basic graph satisfies $\mathcal{P}.$
- \Rightarrow Contradiction!

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
		00000		

Want to compute something (coloring, largest stable set, ...).

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
		00000		

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	000●0	000000000000000000000000000000000000	0

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	000●0	000000000000000000000000000000000000	0

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	000●0	000000000000000000000000000000000000	0

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	000●0	000000000000000000000000000000000000	0

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

Onstruct the decomposition tree:

② Compute what you want on the **leaves** (\rightarrow *basic* graphs).

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	000●0	000000000000000000000000000000000000	0

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

- **②** Compute what you want on the **leaves** (\rightarrow *basic* graphs).
- From bottom to top: combine solutions for children to get a solution for the father.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	000●0	000000000000000000000000000000000000	0

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

- **②** Compute what you want on the **leaves** (\rightarrow *basic* graphs).
- From bottom to top: combine solutions for children to get a solution for the father.

• Know how to directly solve the problem on leaves.

- Know how to directly solve the problem on leaves.
- Know how to go from children to father (combining solutions).

- Know how to directly solve the problem on leaves.
- Know how to go from children to father (combining solutions).
- Bound the size of the tree by a polynomial in *n*.

- Know how to directly solve the problem on leaves.
- Know how to go from children to father (combining solutions).
- Bound the size of the tree by a polynomial in *n*.
- Know how to algorithmically construct the tree.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	●oooooooooooooooooooooooooooooooooooo	0
Our resul	lt			

Theorem [Chudnovsky, L., Seymour, Spirkl]

We design an algorithm with the following specification: Algorithm \mathcal{A}_k : Input: A perfect graph G with $\omega(G) \leq k$. Output: A proper coloring of G with $\chi(G) = \omega(G)$ colors. Running time: $\mathcal{O}(n^{(\omega(G)+1)^2})$

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	••••	0
Our resul	t			

Theorem [Chudnovsky, L., Seymour, Spirkl]

We design an algorithm with the following specification: Algorithm \mathcal{A}_k : Input: A perfect graph G with $\omega(G) \leq k$. Output: A proper coloring of G with $\chi(G) = \omega(G)$ colors. Running time: $\mathcal{O}(n^{(\omega(G)+1)^2})$

We proceed by induction on $k \rightarrow$ we can call \mathcal{A}_{k-1} when needed.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

Previous results in this direction:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00		⊙●000000000000000000000000000000000000	0

Previous results in this direction:

- A combinatorial algorithm that optimally colors:
 - any Berge graph with no BSP
 [Chudnovsky, Trotignon, Trunkc, Vušković 2015]
 - any C₄-free Berge graph

[Chudnovsky, Lo, Maffray, Trotignon, Vušković 2015⁺]

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	O
Outline				

Five intermediate steps to reach:

- Describe the decomposition tree that is used
- Know how to algorithmically construct the tree
- Know how to directly solve the problem on leaves
- Bound the size of the tree by a polynomial in *n*
- Know how to go from children to father (combining solutions)
| D | · · | | | |
|-----------|----------|----------------|-----------------------|--------------|
| My thesis | Coloring | Perfect graphs | Our algorithm | Perspectives |
| 000000 | 00 | 00000 | ○○○●OO○○○○○○○○○○○○○○○ | 0 |

Decomposing perfect graphs

Decomposition theorem

If G is perfect, then at least one of the following holds:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000		0

Decomposing perfect graphs

Decomposition theorem

If G is perfect, then at least one of the following holds:

• G or \overline{G} lies in one of the following classes: bipartite graphs, line graphs of a bipartite graph, double split.

Decomposing perfect graphs

Decomposition theorem

If G is perfect, then at least one of the following holds:

- G or \overline{G} lies in one of the following classes: bipartite graphs, line graphs of a bipartite graph, double split.
- G or \overline{G} admits a decomposition by 2-join,

2-join

Decomposing perfect graphs

Decomposition theorem

If G is perfect, then at least one of the following holds:

- G or \overline{G} lies in one of the following classes: bipartite graphs, line graphs of a bipartite graph, double split.
- G or \overline{G} admits a decomposition by 2-join,
- G admits a decomposition by balanced skew partition (BSP).

Skew partition

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	००० ००० ०००००००००००००००	O

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	००० ००० ०००००००००००००००	0
Our dec	ompositio	on tree		

My thesis	Coloring	Perfect graphs	Our algorithm	0
000000	00	00000		Perspectives
Our decc	mpositio	on tree		

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

- admits no BSP,
- or is not anticonnected,
- or has clique number < k,
- or has bounded size < 2k.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000		0
Outline				

Five intermediate steps to reach:

- $\checkmark\,$ Describe the decomposition tree that is used
- Know how to algorithmically construct the tree
- Know how to directly solve the problem on leaves
- Bound the size of the tree by a polynomial in *n*
- Know how to go from children to father (combining solutions)

How to algorithmically construct the tree?

Find a BSP in polynomial time?

How to algorithmically construct the tree?

Find a BSP in polynomial time?

Theorem [Chudnovsky, L., Seymour, Spirkl]

There is an algorithm that, given as input a perfect graph G, outputs

a BSP of G or asserts that there is none.

How to algorithmically construct the tree?

Find a BSP in polynomial time?

Theorem [Chudnovsky, L., Seymour, Spirkl]

There is an algorithm that, given as input a perfect graph G, outputs a BSP of G or asserts that there is none.

Previous results:

- Deciding if a graph has a BSP is NP-complete. [Trotignon 08]
- A poly-time algorithm that decides if a **perfect** graph has a BSP can be done in polynomial-time (but, if yes, the algo does not output such a partition). [Trotignon 08]
- A poly-time algo that decides if a graph has a skew partition and, if yes, outputs such a partition. [Kennedy & Reed 08]

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000		O
Outline				

Five intermediate steps to reach:

- $\checkmark\,$ Describe the decomposition tree that is used
- \checkmark Know how to algorithmically construct the tree
- Know how to directly solve the problem on leaves \rightarrow time $\mathcal{O}(n^{\max(7,\omega(G)^2)})$
- Bound the size of the tree by a polynomial in *n*
- Know how to go from children to father (combining solutions)

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

- admits no BSP,
- or is not anticonnected,
- or has clique number < k,
- or has bounded size < 2k.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

Decompose along BSP until the graph:

- admits no BSP,
- or is not anticonnected,
- or has clique number < k,
- or has bounded size < 2k.

Color with CTTV algo $\rightarrow \mathcal{O}(n^7)$

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

Decompose along BSP until the graph:

- admits no BSP,
- or is not anticonnected,
- or has clique number < k,
- or has bounded size < 2k.

Color with CTTV algo $\rightarrow \mathcal{O}(n^7)$ Color with $\mathcal{A}_{k-1} \rightarrow \mathcal{O}(n^{\omega(G)^2})$

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

If G is not anticonnected:

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

If G is not anticonnected:

 $\omega(C_1) + \omega(C_2) = \omega(G)$ $\omega(C_1), \omega(C_2) < \omega(G)$

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

If G is not anticonnected:

Color each side with \mathcal{A}_{k-1}

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

Decompose along BSP until the graph:

- admits no BSP,
- or is not anticonnected,
- or has clique number < k,
- or has bounded size < 2k.

Color with CTTV algo $\rightarrow \mathcal{O}(n^7)$ Color with $\mathcal{A}_{k-1} \rightarrow \mathcal{O}(n^{\omega(G)^2})$

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

Decompose along BSP until the graph:

- admits no BSP,
- or is not anticonnected,
- or has clique number < k,
- or has bounded size < 2k.

Color with CTTV algo $\rightarrow \mathcal{O}(n^7)$ Color with $\mathcal{A}_{k-1} \rightarrow \mathcal{O}(n^{\omega(G)^2})$ Easy to color in f(k)

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000		0
Outline				

Five intermediate steps to reach:

- $\checkmark\,$ Describe the decomposition tree that is used
- \checkmark Know how to algorithmically construct the tree
- ✓ Know how to directly solve the problem on leaves → time $\mathcal{O}(n^{\max(7,\omega(G)^2)})$
- Bound the size of the tree by a polynomial in *n*
- Know how to go from children to father (combining solutions)

My thesis Coloring Perfect graphs Our algorithm Perspective:

Label each node of the tree with some well-chosen $Y \subseteq V(G)$:

• Each label is different from every other labels,

My thesis coloring Perfect graphs Our algorithm Perspectives

How to bound the size of the tree?

- Each label is different from every other labels,
- The number of candidates for labeling is bounded by a polynomial.

My thesis coloring Perfect graphs Our algorithm Perspectives

How to bound the size of the tree?

- Each label is different from every other labels,
- The number of candidates for labeling is bounded by a polynomial.

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to bound the size of the tree?

- Each label is different from every other labels,
- The number of candidates for labeling is bounded by a polynomial.
- \Rightarrow Bounds the number of nodes by a polynomial.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	०००००००००० ००००० ०००००	0
Key ingre	edient: <i>k</i>	-pellet		

Definition: k-pellet

A subset $Y \subseteq V(G)$ is a k-pellet if

- Y contains a clique of size k,
- Y is anticonnected,

• and
$$|Y| = 2k$$
.

Number of $\omega(G)$ -pellets: at most $\mathcal{O}(n^{2\omega(G)})!!$

Good property of $\omega(G)$ -pellet

An $\omega(G)$ -pellet can not lie in the middle part $B_1 \cup B_2$ of a BSP.

Good property of $\omega(G)$ -pellet

An $\omega(G)$ -pellet can not lie in the middle part $B_1 \cup B_2$ of a BSP.

Good property of $\omega(G)$ -pellet

An $\omega(G)$ -pellet can not lie in the middle part $B_1 \cup B_2$ of a BSP.

Y is anticonnected.

Good property of $\omega(G)$ -pellet

An $\omega(G)$ -pellet can not lie in the middle part $B_1 \cup B_2$ of a BSP.

- Y is anticonnected.
- Y contains a clique of size $\omega(G)$ and any $v \in B_2$ is complete to it.
- \Rightarrow Contradiction!

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	००००००००००० ००००० ००००००	0
Unique	labeling			

Two nodes getting the same label Y?

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	०००००००००००००००००००००००	O
Unique	labeling			

Two nodes getting the same label Y?

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	०००००००००००००००००००००००	O
Unique I	abeling			

Two nodes getting the same label Y?

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	000000000000000000000000000000000000	0
Where i	s Y?			

\ \ / = = = = =	- 1/2			
My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000		0

Y appears in left descendants.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000		0
Where	is Y?			

- Y appears in left descendants.
- Y appears in right descendants.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000		0
Where	is Y?			

- Y appears in left descendants.
- Y appears in right descendants.
- \Rightarrow Contradiction!

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000		O
Outline				

Five intermediate steps to reach:

- $\checkmark\,$ Describe the decomposition tree that is used
- \checkmark Know how to algorithmically construct the tree
- ✓ Know how to directly solve the problem on leaves → time $\mathcal{O}(n^{\max(7,\omega(G)^2)})$
- \checkmark Bound the size of the tree by a polynomial in n
- Know how to go from children to father (combining solutions)

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			00000000000000000000000000000000000000	

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

Goal: Find a partition in two sets (F_1, F_2) :

Then we will call A_{k-1} on F_1 and F_2 .

How to find such a partition (F_1, F_2) ?

• Compute $k_1 = \omega(B_1) < k$ (test every X s.t. |X| < k).

- Compute $k_1 = \omega(B_1) < k$ (test every X s.t. |X| < k).
- Onsider the solution on the left part:

- Compute $k_1 = \omega(B_1) < k$ (test every X s.t. |X| < k).
- Onsider the solution on the left part:

- Compute $k_1 = \omega(B_1) < k$ (test every X s.t. |X| < k).
- Onsider the solution on the left part:

- Compute $k_1 = \omega(B_1) < k$ (test every X s.t. |X| < k).
- Onsider the solution on the left part:

- Compute $k_1 = \omega(B_1) < k$ (test every X s.t. |X| < k).
- Onsider the solution on the left part:

- Compute $k_1 = \omega(B_1) < k$ (test every X s.t. |X| < k).
- Onsider the solution on the left part:

- Compute $k_1 = \omega(B_1) < k$ (test every X s.t. |X| < k).
- Onsider the solution on the left part:
- **③** Do the same on the right part and set $F_1 = F_1^1 \cup F_1^2$.

- Compute $k_1 = \omega(B_1) < k$ (test every X s.t. |X| < k).
- Onsider the solution on the left part:
- **③** Do the same on the right part and set $F_1 = F_1^1 \cup F_1^2$.

- Compute $k_1 = \omega(B_1) < k$ (test every X s.t. |X| < k).
- Onsider the solution on the left part:
- **③** Do the same on the right part and set $F_1 = F_1^1 \cup F_1^2$.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

Goal: Find a partition in two sets (F_1, F_2) :

Call \mathcal{A}_{k-1} on F_1 and F_2 . This gives a proper $\omega(G)$ -coloring of G.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
			000000000000000000000000000000000000000	

Goal: Find a partition in two sets (F_1, F_2) :

ω(F₁) = k₁ < ω(G);
ω(F₂) = k₂ < ω(G);
k₁ + k₂ = ω(G).

Call \mathcal{A}_{k-1} on F_1 and F_2 . This gives a proper $\omega(G)$ -coloring of G.

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000		O
Outline				

Five intermediate steps to reach:

- $\checkmark\,$ Describe the decomposition tree that is used
- \checkmark Know how to algorithmically construct the tree
- ✓ Know how to directly solve the problem on leaves → time $\mathcal{O}(n^{\max(7,\omega(G)^2)})$
- \checkmark Bound the size of the tree by a polynomial in n
- ✓ Know how to go from children to father (combining solutions) → time $\mathcal{O}(n^{2\omega(G)})$

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000		O
Outline				

Five intermediate steps to reach:

- $\checkmark\,$ Describe the decomposition tree that is used
- \checkmark Know how to algorithmically construct the tree
- ✓ Know how to directly solve the problem on leaves → time $\mathcal{O}(n^{\max(7,\omega(G)^2)})$
- \checkmark Bound the size of the tree by a polynomial in n
- ✓ Know how to go from children to father (combining solutions) → time $\mathcal{O}(n^{2\omega(G)})$

ightarrow Algorithm \mathcal{A}_k is well-defined and runs in time $\mathcal{O}(n^{(\omega(G)+1)^2})$

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	●
Perspect	zives			

Ultimate aim: Color perfect graphs in the general case!

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	•
Perspecti				

Ultimate aim: Color perfect graphs in the general case!

- How to bound the size of the tree?
- Could we modify the decomposition theorem?
- Could we get a FPT algorithm with parameter $\omega(G)$?

My thesis	Coloring	Perfect graphs	Our algorithm	Perspectives
000000	00	00000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	•
Perspecti				

Ultimate aim: Color perfect graphs in the general case!

- How to bound the size of the tree?
- Could we modify the decomposition theorem?
- Could we get a FPT algorithm with parameter $\omega(G)$?

Thank you for your attention!