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Interactions between
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sets in a graph
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Erdos-Hajnal conjecture

Clique-Stable set Separation

Pbs around CS-Separation

In H-free graphs, there always exists
a big clique or a big stable set.

(see next slide)

PL for Max. Weighted Stable Set,
Constraint Satisfaction Pbs (CSP),
Alon-Saks-Seymour conjecture
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Clique-Stable set Separation
Game on a graph G :

Pre-processing step: choose some cuts of G .
An Adversary chooses a clique K and a stable set S that do
not intersect.
I win if I have a cut separating K and S
(=certificate of non-intersection between K and S)

A CS-Separator is a family of cuts that ensures me to always win.
→ I am allowed to select only polynomially many cuts.
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Bounds

Yannakakis (1991)
Upper Bound: ∀G there exists a CS-separator of size O(nlog n).
Question: Do perfect graphs admit polynomial-size CS-Separator?

Huang, Sudakov (2012)

Lower bound : Ω(n 6
5 ) cuts are needed for some graphs

Does there exist for all graph G on n vertices a CS-separator of
size poly(n)? Or for which classes of graphs does it exist?
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It is known that the following classes of graphs admit poly-size
CS-Separator:

If ω or α is bounded (trivial)
chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)
C4-free graphs (Conseq. of Alekseev 1991)
P5-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

and Trunck
Random graphs
H-free graphs where H is a split
graph.
(Pk ,Pk)-free graphs
Perfect graphs with no BSP

Split graph
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Does there exist for all graph G on n vertices a CS-separator
of size poly(n)?

Lower Bound: (Göös 2015): we need nΩ(log0.128 n) cuts for some
graphs.

What now?

→ Want to learn more about perfect graphs and try to close the
CS-Separation question on them.
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A proper k-coloring of G is an assignment of colors from
{1, . . . , k} such that any two adjacent vertices are given different
colors.

Graph Coloring 3-Coloring

Input: A graph G

and an integer k.

Output: Does G admits a proper

Graph Coloring is NP-complete.

Even 3-Coloring is!
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χ(G): chromatic number of G , i.e. minimum number of
color in a proper coloring.
ω(G): clique number, i.e. size of the largest clique.

χ(G) ≥ ω(G)
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Perfect graph: definition
G is perfect if and only if χ(G) = ω(G) and the equality holds for
every induced subgraph H of G .

Odd hole C7 Odd antihole C7

Berge’s Conjecture (1960’s)
A graph G is perfect if and only if G contains no odd hole and no
odd antihole as induced subgraph.

Proved in 2002 by Chudnovsky, Robertson, Seymour and Thomas.
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Perfect graph: definition
G is perfect if and only if χ(G) = ω(G) and the equality holds for
every induced subgraph H of G .

Odd hole C7 Odd antihole C7

Berge’s Conjecture (1960’s) ⇒ Strong Perfect Graph Theorem
A graph G is perfect if and only if G contains no odd hole and no
odd antihole as induced subgraph.

Proved in 2002 by Chudnovsky, Robertson, Seymour and Thomas.
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What about coloring perfect graphs?

Theorem [Grötschel, Lovász, Schrijver 1981]
The Maximum Weighted Stable Set problem can be solved in
polynomial time for perfect graphs.

Consequence
There is a polynomial-time algorithm that optimally colors any
input perfect graph.

⇒ Are we done?? This algorithm uses the ellipsoid method:
⇒ commonly acknowledged to be unpractical.
⇒ Theoretical point of view: translates into semi-definite

programming and we loose any understanding on the ongoing
process.

Not satisfying! We know so much on perfect graphs that we
want a combinatorial algorithm.
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We know so much?

Decomposition theorem from [CRST’02]
If G is Berge, then

either G is basic (bipartite, line graph of bipartite, ....),
or G can be decomposed in a given way.

G

A1 A2B

How to use it?
For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy
P.

Prove that G cannot be decomposed (get a smaller
counter-example)
Prove that any basic graph satisfies P.

⇒ Contradiction!
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How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:
1 Construct the decomposition tree:

G

2 Compute what you want on the leaves (→ basic graphs).
3 From bottom to top: combine solutions for children to get

a solution for the father.
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G
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Hence four intermediate steps to reach:

Know how to directly solve the problem on leaves.
Know how to go from children to father (combining solutions).
Bound the size of the tree by a polynomial in n.
Know how to algorithmically construct the tree.
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Our result

Theorem [Chudnovsky, L., Seymour, Spirkl]
We design an algorithm with the following specification:
Algorithm Ak :
Input: A perfect graph G with ω(G) ≤ k.
Output: A proper coloring of G with χ(G) = ω(G) colors.
Running time: O(n(ω(G)+1)2

)

We proceed by induction on k → we can call Ak−1 when needed.
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Previous results in this direction:

A combinatorial algorithm that optimally colors:
any Berge graph with no BSP
[Chudnovsky, Trotignon, Trunkc, Vušković 2015]

any C4-free Berge graph
[Chudnovsky, Lo, Maffray, Trotignon, Vušković 2015+]
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Outline

Five intermediate steps to reach:
Describe the decomposition tree that is used
Know how to algorithmically construct the tree
Know how to directly solve the problem on leaves
Bound the size of the tree by a polynomial in n
Know how to go from children to father (combining solutions)

→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2

)
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Decomposing perfect graphs

Decomposition theorem
If G is perfect, then at least one of the following holds:

G or G lies in one of the following classes: bipartite graphs, line
graphs of a bipartite graph, double split.
G or G admits a decomposition by 2-join,
G admits a decomposition by balanced skew partition (BSP).

induced matching induced antimatching
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Our decomposition tree
G

A1 A2

B1

B2
Decompose along BSP until the
graph:

admits no BSP,
or is not anticonnected,
or has clique number < k,
or has bounded size < 2k.

Color with CTTV algo → O(n7)
Color with Ak−1 → O(nω(G)2

)
Easy to color in f (k)
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Outline

Five intermediate steps to reach:
X Describe the decomposition tree that is used

Know how to algorithmically construct the tree
Know how to directly solve the problem on leaves
Bound the size of the tree by a polynomial in n
Know how to go from children to father (combining solutions)

→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2

)
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How to algorithmically construct the tree?

Find a BSP in polynomial time?

Theorem [Chudnovsky, L., Seymour, Spirkl]
There is an algorithm that, given as input a perfect graph G , outputs
a BSP of G or asserts that there is none.
Previous results:

Deciding if a graph has a BSP is NP-complete. [Trotignon 08]
A poly-time algorithm that decides if a perfect graph has a
BSP can be done in polynomial-time (but, if yes, the algo
does not output such a partition). [Trotignon 08]
A poly-time algo that decides if a graph has a skew partition
and, if yes, outputs such a partition. [Kennedy & Reed 08]
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If G is not anticonnected:

C1 C2
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If G is not anticonnected:

C1 C2

ω(C1) + ω(C2) = ω(G)

ω(C1), ω(C2) < ω(G)
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If G is not anticonnected:

C1 C2

ω(C1) + ω(C2) = ω(G)

ω(C1), ω(C2) < ω(G)

Color each side with Ak−1

ω(C1) colors ω(C2) colors
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→ time O(nmax(7,ω(G)2))

Bound the size of the tree by a polynomial in n
Know how to go from children to father (combining solutions)

→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2
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How to bound the size of the tree?
Label each node of the tree with some well-chosen Y ⊆ V (G):

G

. . .

G1 G2

. . .

Y0

Y1 Y2

Y3

Y4 Y5

Y6

Y8

Y7

Y9

Y10

Each label is different from every other labels,
The number of candidates for labeling is bounded by a
polynomial.

⇒ Bounds the number of nodes by a polynomial.
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Key ingredient: k-pellet

Definition: k-pellet
A subset Y ⊆ V (G) is a k-pellet if

Y contains a clique of size k,
Y is anticonnected,
and |Y | = 2k.

clique of size k

anticonnected set of size 2k

Number of ω(G)-pellets: at most O(n2ω(G))!!
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Good property of ω(G)-pellet

An ω(G)-pellet can not lie in the middle part B1 ∪ B2 of a BSP.

A1

A2

B1

B2

Y is anticonnected.
Y contains a clique of size ω(G) and any v ∈ B2 is complete to it.
⇒ Contradiction!
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Unique labeling

Two nodes getting the same label Y ?

node 1
Y

node 2
Y
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Where is Y ?

A1

A2

B1

B2

Y appears in left descendants.
Y appears in right descendants.
⇒ Contradiction!
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Outline

Five intermediate steps to reach:
X Describe the decomposition tree that is used
X Know how to algorithmically construct the tree
X Know how to directly solve the problem on leaves
→ time O(nmax(7,ω(G)2))

X Bound the size of the tree by a polynomial in n
Know how to go from children to father (combining solutions)

→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2

)
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How to combine solutions?
Problem when gluing solutions

G

A1 A2

B1

B2
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Goal: Find a partition in two sets (F1,F2):

ω(F1) = k1 < ω(G);
ω(F2) = k2 < ω(G);
k1 + k2 = ω(G).

F1

F2

Then we will call Ak−1 on F1 and F2.

This gives a proper
ω(G)-coloring of G .
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How to find such a partition (F1, F2)?

1 Compute k1 = ω(B1) < k (test every X s.t. |X | < k).

2 Consider the solution on the left part:
3 Do the same on the right part and set F1 = F 1

1 ∪ F 2
1 .

G

A1 A2

B1

B2
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1
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1 ), ω(F

2
1 ) = k1

F2
ω(F2) = ω(G)− k1
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Goal: Find a partition in two sets (F1,F2):

ω(F1) = k1 < ω(G);
ω(F2) = k2 < ω(G);
k1 + k2 = ω(G).

F1

F2

Call Ak−1 on F1 and F2. This gives a proper ω(G)-coloring of G .
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Outline

Five intermediate steps to reach:
X Describe the decomposition tree that is used
X Know how to algorithmically construct the tree
X Know how to directly solve the problem on leaves
→ time O(nmax(7,ω(G)2))

X Bound the size of the tree by a polynomial in n
X Know how to go from children to father (combining solutions)
→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2

)
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Perspectives

Ultimate aim: Color perfect graphs in the general case!

How to bound the size of the tree?
Could we modify the decomposition theorem?
Could we get a FPT algorithm with parameter ω(G)?

Thank you for your attention!
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