
My thesis Coloring Perfect graphs Our algorithm Perspectives

Coloring perfect graphs with bounded clique
number
JGA 2016

Aurélie Lagoutte

Joint work with M. Chudnovsky, P. Seymour and S. Spirkl

G-SCOP, Univ. Grenoble Alpes

November 17, 2016
Paris Dauphine

1/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

What’s in my thesis?

Interactions between
Cliques and Stable

sets in a graph

2/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

What’s in my thesis?

Interactions between
Cliques and Stable

sets in a graph

Coloration
Partition into stable sets; relate nb of
parts to size of max. clique

2/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

What’s in my thesis?

Interactions between
Cliques and Stable

sets in a graph

Coloration

Erdos-Hajnal conjecture
In H-free graphs, there always exists
a big clique or a big stable set.

Partition into stable sets; relate nb of
parts to size of max. clique

2/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

What’s in my thesis?

Interactions between
Cliques and Stable

sets in a graph

Coloration

Erdos-Hajnal conjecture

Clique-Stable set Separation

In H-free graphs, there always exists
a big clique or a big stable set.

(see next slide)

Partition into stable sets; relate nb of
parts to size of max. clique

2/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

What’s in my thesis?

Interactions between
Cliques and Stable

sets in a graph

Coloration

Erdos-Hajnal conjecture

Clique-Stable set Separation

Pbs around CS-Separation

In H-free graphs, there always exists
a big clique or a big stable set.

(see next slide)

PL for Max. Weighted Stable Set,
Constraint Satisfaction Pbs (CSP),
Alon-Saks-Seymour conjecture

Partition into stable sets; relate nb of
parts to size of max. clique

2/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Clique-Stable set Separation
Game on a graph G :

Pre-processing step: choose some cuts of G .
An Adversary chooses a clique K and a stable set S that do
not intersect.
I win if I have a cut separating K and S
(=certificate of non-intersection between K and S)

A CS-Separator is a family of cuts that ensures me to always win.
→ I am allowed to select only polynomially many cuts.

3/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Clique-Stable set Separation
Game on a graph G :

Pre-processing step: choose some cuts of G .

An Adversary chooses a clique K and a stable set S that do
not intersect.
I win if I have a cut separating K and S
(=certificate of non-intersection between K and S)

A CS-Separator is a family of cuts that ensures me to always win.
→ I am allowed to select only polynomially many cuts.

3/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Clique-Stable set Separation
Game on a graph G :

Pre-processing step: choose some cuts of G .

An Adversary chooses a clique K and a stable set S that do
not intersect.
I win if I have a cut separating K and S
(=certificate of non-intersection between K and S)

A CS-Separator is a family of cuts that ensures me to always win.
→ I am allowed to select only polynomially many cuts.

3/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Clique-Stable set Separation
Game on a graph G :

Pre-processing step: choose some cuts of G .

An Adversary chooses a clique K and a stable set S that do
not intersect.
I win if I have a cut separating K and S
(=certificate of non-intersection between K and S)

A CS-Separator is a family of cuts that ensures me to always win.
→ I am allowed to select only polynomially many cuts.

3/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Clique-Stable set Separation
Game on a graph G :

Pre-processing step: choose some cuts of G .

An Adversary chooses a clique K and a stable set S that do
not intersect.
I win if I have a cut separating K and S
(=certificate of non-intersection between K and S)

A CS-Separator is a family of cuts that ensures me to always win.
→ I am allowed to select only polynomially many cuts.

3/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Clique-Stable set Separation
Game on a graph G :

Pre-processing step: choose some cuts of G .

An Adversary chooses a clique K and a stable set S that do
not intersect.
I win if I have a cut separating K and S
(=certificate of non-intersection between K and S)

A CS-Separator is a family of cuts that ensures me to always win.
→ I am allowed to select only polynomially many cuts.

3/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Clique-Stable set Separation
Game on a graph G :

Pre-processing step: choose some cuts of G .
An Adversary chooses a clique K and a stable set S that do
not intersect.

I win if I have a cut separating K and S
(=certificate of non-intersection between K and S)

K

S

A CS-Separator is a family of cuts that ensures me to always win.
→ I am allowed to select only polynomially many cuts.

3/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Clique-Stable set Separation
Game on a graph G :

Pre-processing step: choose some cuts of G .
An Adversary chooses a clique K and a stable set S that do
not intersect.
I win if I have a cut separating K and S
(=certificate of non-intersection between K and S)

K

S

A CS-Separator is a family of cuts that ensures me to always win.
→ I am allowed to select only polynomially many cuts.

3/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Clique-Stable set Separation
Game on a graph G :

Pre-processing step: choose some cuts of G .
An Adversary chooses a clique K and a stable set S that do
not intersect.
I win if I have a cut separating K and S
(=certificate of non-intersection between K and S)

K

S

A CS-Separator is a family of cuts that ensures me to always win.

→ I am allowed to select only polynomially many cuts.

3/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Clique-Stable set Separation
Game on a graph G :

Pre-processing step: choose some cuts of G .
An Adversary chooses a clique K and a stable set S that do
not intersect.
I win if I have a cut separating K and S
(=certificate of non-intersection between K and S)

K

S

A CS-Separator is a family of cuts that ensures me to always win.
→ I am allowed to select only polynomially many cuts.

3/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Bounds

Yannakakis (1991)
Upper Bound: ∀G there exists a CS-separator of size O(nlog n).
Question: Do perfect graphs admit polynomial-size CS-Separator?

Huang, Sudakov (2012)

Lower bound : Ω(n 6
5) cuts are needed for some graphs

Does there exist for all graph G on n vertices a CS-separator of
size poly(n)? Or for which classes of graphs does it exist?

4/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Bounds

Yannakakis (1991)
Upper Bound: ∀G there exists a CS-separator of size O(nlog n).
Question: Do perfect graphs admit polynomial-size CS-Separator?

Huang, Sudakov (2012)

Lower bound : Ω(n 6
5) cuts are needed for some graphs

Does there exist for all graph G on n vertices a CS-separator of
size poly(n)? Or for which classes of graphs does it exist?

4/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Bounds

Yannakakis (1991)
Upper Bound: ∀G there exists a CS-separator of size O(nlog n).
Question: Do perfect graphs admit polynomial-size CS-Separator?

Huang, Sudakov (2012)

Lower bound : Ω(n 6
5) cuts are needed for some graphs

Does there exist for all graph G on n vertices a CS-separator of
size poly(n)? Or for which classes of graphs does it exist?

4/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

It is known that the following classes of graphs admit poly-size
CS-Separator:

If ω or α is bounded (trivial)
chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)
C4-free graphs (Conseq. of Alekseev 1991)
P5-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

and Trunck
Random graphs
H-free graphs where H is a split
graph.
(Pk ,Pk)-free graphs
Perfect graphs with no BSP

Split graph

5/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

It is known that the following classes of graphs admit poly-size
CS-Separator:

If ω or α is bounded (trivial)
chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)
C4-free graphs (Conseq. of Alekseev 1991)
P5-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

and Trunck
Random graphs
H-free graphs where H is a split
graph.
(Pk ,Pk)-free graphs
Perfect graphs with no BSP

Split graph

5/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

It is known that the following classes of graphs admit poly-size
CS-Separator:

If ω or α is bounded (trivial)
chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)
C4-free graphs (Conseq. of Alekseev 1991)
P5-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

and Trunck

Random graphs

H-free graphs where H is a split
graph.
(Pk ,Pk)-free graphs
Perfect graphs with no BSP

Split graph

5/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

It is known that the following classes of graphs admit poly-size
CS-Separator:

If ω or α is bounded (trivial)
chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)
C4-free graphs (Conseq. of Alekseev 1991)
P5-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

and Trunck

Random graphs
H-free graphs where H is a split
graph.

(Pk ,Pk)-free graphs
Perfect graphs with no BSP

Split graph

5/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

It is known that the following classes of graphs admit poly-size
CS-Separator:

If ω or α is bounded (trivial)
chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)
C4-free graphs (Conseq. of Alekseev 1991)
P5-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

and Trunck

Random graphs
H-free graphs where H is a split
graph.

(Pk ,Pk)-free graphs
Perfect graphs with no BSP

Net

5/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

It is known that the following classes of graphs admit poly-size
CS-Separator:

If ω or α is bounded (trivial)
chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)
C4-free graphs (Conseq. of Alekseev 1991)
P5-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

and Trunck

Random graphs
H-free graphs where H is a split
graph.
(Pk ,Pk)-free graphs

Perfect graphs with no BSP

Net

5/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

It is known that the following classes of graphs admit poly-size
CS-Separator:

If ω or α is bounded (trivial)
chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)
C4-free graphs (Conseq. of Alekseev 1991)
P5-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;
and Trunck

Random graphs
H-free graphs where H is a split
graph.
(Pk ,Pk)-free graphs
Perfect graphs with no BSP Net

5/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Does there exist for all graph G on n vertices a CS-separator
of size poly(n)?

Lower Bound: (Göös 2015): we need nΩ(log0.128 n) cuts for some
graphs.

What now?

→ Want to learn more about perfect graphs and try to close the
CS-Separation question on them.

6/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Does there exist for all graph G on n vertices a CS-separator
of size poly(n)? No!
Lower Bound: (Göös 2015): we need nΩ(log0.128 n) cuts for some
graphs.

What now?

→ Want to learn more about perfect graphs and try to close the
CS-Separation question on them.

6/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Does there exist for all graph G on n vertices a CS-separator
of size poly(n)? No!
Lower Bound: (Göös 2015): we need nΩ(log0.128 n) cuts for some
graphs.

What now?

→ Want to learn more about perfect graphs and try to close the
CS-Separation question on them.

6/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Does there exist for all graph G on n vertices a CS-separator
of size poly(n)? No!
Lower Bound: (Göös 2015): we need nΩ(log0.128 n) cuts for some
graphs.

What now?

→ Want to learn more about perfect graphs and try to close the
CS-Separation question on them.

6/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Coloring perfect graphs with bounded clique
number
JGA 2016

Aurélie Lagoutte

Joint work with M. Chudnovsky, P. Seymour and S. Spirkl

G-SCOP, Univ. Grenoble Alpes

November 17, 2016
Paris Dauphine

7/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

A proper k-coloring of G is an assignment of colors from
{1, . . . , k} such that any two adjacent vertices are given different
colors.

Graph Coloring 3-Coloring

Input: A graph G

and an integer k.

Output: Does G admits a proper

Graph Coloring is NP-complete.

Even 3-Coloring is!

8/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

A proper k-coloring of G is an assignment of colors from
{1, . . . , k} such that any two adjacent vertices are given different
colors.

Graph Coloring

Graph Coloring 3-Coloring

Input: A graph G and an integer k.

and an integer k.

Output: Does G admits a proper k-coloring?

Graph Coloring is NP-complete.

Even 3-Coloring is!

8/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

A proper k-coloring of G is an assignment of colors from
{1, . . . , k} such that any two adjacent vertices are given different
colors.

Graph Coloring 3-Coloring
Input: A graph G and an integer k.
Output: Does G admits a proper k-coloring? 3-coloring?

Graph Coloring is NP-complete. Even 3-Coloring is!

8/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

χ(G): chromatic number of G , i.e. minimum number of
color in a proper coloring.
ω(G): clique number, i.e. size of the largest clique.

χ(G) ≥ ω(G)

9/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

χ(G): chromatic number of G , i.e. minimum number of
color in a proper coloring.
ω(G): clique number, i.e. size of the largest clique.

χ(G) ≥ ω(G)

9/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Perfect graph: definition
G is perfect if and only if χ(G) = ω(G) and the equality holds for
every induced subgraph H of G .

Odd hole C7 Odd antihole C7

Berge’s Conjecture (1960’s)
A graph G is perfect if and only if G contains no odd hole and no
odd antihole as induced subgraph.

Proved in 2002 by Chudnovsky, Robertson, Seymour and Thomas.

10/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Perfect graph: definition
G is perfect if and only if χ(G) = ω(G) and the equality holds for
every induced subgraph H of G .

Odd hole C7 Odd antihole C7

Berge’s Conjecture (1960’s)
A graph G is perfect if and only if G contains no odd hole and no
odd antihole as induced subgraph.

Proved in 2002 by Chudnovsky, Robertson, Seymour and Thomas.

10/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Perfect graph: definition
G is perfect if and only if χ(G) = ω(G) and the equality holds for
every induced subgraph H of G .

Odd hole C7 Odd antihole C7

Berge’s Conjecture (1960’s) ⇒ Strong Perfect Graph Theorem
A graph G is perfect if and only if G contains no odd hole and no
odd antihole as induced subgraph.

Proved in 2002 by Chudnovsky, Robertson, Seymour and Thomas.

10/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

What about coloring perfect graphs?

Theorem [Grötschel, Lovász, Schrijver 1981]
The Maximum Weighted Stable Set problem can be solved in
polynomial time for perfect graphs.

Consequence
There is a polynomial-time algorithm that optimally colors any
input perfect graph.

⇒ Are we done?? This algorithm uses the ellipsoid method:
⇒ commonly acknowledged to be unpractical.
⇒ Theoretical point of view: translates into semi-definite

programming and we loose any understanding on the ongoing
process.

Not satisfying! We know so much on perfect graphs that we
want a combinatorial algorithm.

11/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

What about coloring perfect graphs?

Theorem [Grötschel, Lovász, Schrijver 1981]
The Maximum Weighted Stable Set problem can be solved in
polynomial time for perfect graphs.

Consequence
There is a polynomial-time algorithm that optimally colors any
input perfect graph.

⇒ Are we done?? This algorithm uses the ellipsoid method:
⇒ commonly acknowledged to be unpractical.
⇒ Theoretical point of view: translates into semi-definite

programming and we loose any understanding on the ongoing
process.

Not satisfying! We know so much on perfect graphs that we
want a combinatorial algorithm.

11/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

What about coloring perfect graphs?

Theorem [Grötschel, Lovász, Schrijver 1981]
The Maximum Weighted Stable Set problem can be solved in
polynomial time for perfect graphs.

Consequence
There is a polynomial-time algorithm that optimally colors any
input perfect graph.

⇒ Are we done??

This algorithm uses the ellipsoid method:
⇒ commonly acknowledged to be unpractical.
⇒ Theoretical point of view: translates into semi-definite

programming and we loose any understanding on the ongoing
process.

Not satisfying! We know so much on perfect graphs that we
want a combinatorial algorithm.

11/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

What about coloring perfect graphs?

Theorem [Grötschel, Lovász, Schrijver 1981]
The Maximum Weighted Stable Set problem can be solved in
polynomial time for perfect graphs.

Consequence
There is a polynomial-time algorithm that optimally colors any
input perfect graph.

⇒ Are we done?? This algorithm uses the ellipsoid method:
⇒ commonly acknowledged to be unpractical.
⇒ Theoretical point of view: translates into semi-definite

programming and we loose any understanding on the ongoing
process.

Not satisfying! We know so much on perfect graphs that we
want a combinatorial algorithm.

11/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

What about coloring perfect graphs?

Theorem [Grötschel, Lovász, Schrijver 1981]
The Maximum Weighted Stable Set problem can be solved in
polynomial time for perfect graphs.

Consequence
There is a polynomial-time algorithm that optimally colors any
input perfect graph.

⇒ Are we done?? This algorithm uses the ellipsoid method:
⇒ commonly acknowledged to be unpractical.
⇒ Theoretical point of view: translates into semi-definite

programming and we loose any understanding on the ongoing
process.

Not satisfying! We know so much on perfect graphs that we
want a combinatorial algorithm.

11/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

We know so much?

Decomposition theorem from [CRST’02]
If G is Berge, then

either G is basic (bipartite, line graph of bipartite,),
or G can be decomposed in a given way.

G

A1 A2B

How to use it?
For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy
P.

Prove that G cannot be decomposed (get a smaller
counter-example)
Prove that any basic graph satisfies P.

⇒ Contradiction!

12/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

We know so much?

Decomposition theorem from [CRST’02]
If G is Berge, then

either G is basic (bipartite, line graph of bipartite,),
or G can be decomposed in a given way.

G

A1 A2B

How to use it?
For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy
P.

Prove that G cannot be decomposed (get a smaller
counter-example)
Prove that any basic graph satisfies P.

⇒ Contradiction!

12/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

We know so much?

Decomposition theorem from [CRST’02]
If G is Berge, then

either G is basic (bipartite, line graph of bipartite,),
or G can be decomposed in a given way.

G

A1 A2B

How to use it?
For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy
P.

Prove that G cannot be decomposed (get a smaller
counter-example)
Prove that any basic graph satisfies P.

⇒ Contradiction!

12/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

We know so much?

Decomposition theorem from [CRST’02]
If G is Berge, then

either G is basic (bipartite, line graph of bipartite,),
or G can be decomposed in a given way.

G

A1 A2B

G1

A1 B

How to use it?
For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy
P.

Prove that G cannot be decomposed (get a smaller
counter-example)
Prove that any basic graph satisfies P.

⇒ Contradiction!

12/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

We know so much?

Decomposition theorem from [CRST’02]
If G is Berge, then

either G is basic (bipartite, line graph of bipartite,),
or G can be decomposed in a given way.

G

A1 A2B

G1

A1 B

G2

A2B

How to use it?
For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy
P.

Prove that G cannot be decomposed (get a smaller
counter-example)
Prove that any basic graph satisfies P.

⇒ Contradiction!

12/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

We know so much?

Decomposition theorem from [CRST’02]
If G is Berge, then

either G is basic (bipartite, line graph of bipartite,),
or G can be decomposed in a given way.

How to use it?

For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy
P.

Prove that G cannot be decomposed (get a smaller
counter-example)
Prove that any basic graph satisfies P.

⇒ Contradiction!

12/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

We know so much?

Decomposition theorem from [CRST’02]
If G is Berge, then

either G is basic (bipartite, line graph of bipartite,),
or G can be decomposed in a given way.

How to use it?
For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).

Take G a minimal counter-example, i.e. Berge but does not satisfy
P.

Prove that G cannot be decomposed (get a smaller
counter-example)
Prove that any basic graph satisfies P.

⇒ Contradiction!

12/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

We know so much?

Decomposition theorem from [CRST’02]
If G is Berge, then

either G is basic (bipartite, line graph of bipartite,),
or G can be decomposed in a given way.

How to use it?
For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy
P.

Prove that G cannot be decomposed (get a smaller
counter-example)
Prove that any basic graph satisfies P.

⇒ Contradiction!

12/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

We know so much?

Decomposition theorem from [CRST’02]
If G is Berge, then

either G is basic (bipartite, line graph of bipartite,),
or G can be decomposed in a given way.

How to use it?
For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy
P.

Prove that G cannot be decomposed (get a smaller
counter-example)
Prove that any basic graph satisfies P.

⇒ Contradiction!

12/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

We know so much?

Decomposition theorem from [CRST’02]
If G is Berge, then

either G is basic (bipartite, line graph of bipartite,),
or G can be decomposed in a given way.

How to use it?
For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy
P.

Prove that G cannot be decomposed (get a smaller
counter-example)
Prove that any basic graph satisfies P.

⇒ Contradiction!

12/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:
1 Construct the decomposition tree:

G

2 Compute what you want on the leaves (→ basic graphs).
3 From bottom to top: combine solutions for children to get

a solution for the father.

13/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

1 Construct the decomposition tree:

G

2 Compute what you want on the leaves (→ basic graphs).
3 From bottom to top: combine solutions for children to get

a solution for the father.

13/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:
1 Construct the decomposition tree:

G

2 Compute what you want on the leaves (→ basic graphs).
3 From bottom to top: combine solutions for children to get

a solution for the father.

13/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:
1 Construct the decomposition tree:

G

G1 G2

2 Compute what you want on the leaves (→ basic graphs).
3 From bottom to top: combine solutions for children to get

a solution for the father.

13/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:
1 Construct the decomposition tree:

G

. . .

G1 G2

. . .

2 Compute what you want on the leaves (→ basic graphs).
3 From bottom to top: combine solutions for children to get

a solution for the father.

13/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:
1 Construct the decomposition tree:

G

. . .

G1 G2

. . .

2 Compute what you want on the leaves (→ basic graphs).

3 From bottom to top: combine solutions for children to get
a solution for the father.

13/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:
1 Construct the decomposition tree:

G

. . .

G1 G2

. . .

2 Compute what you want on the leaves (→ basic graphs).
3 From bottom to top: combine solutions for children to get

a solution for the father.

13/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:
1 Construct the decomposition tree:

G

. . .

G1 G2

. . .

2 Compute what you want on the leaves (→ basic graphs).
3 From bottom to top: combine solutions for children to get

a solution for the father.

13/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

G

. . .

G1 G2

. . .

Hence four intermediate steps to reach:

Know how to directly solve the problem on leaves.
Know how to go from children to father (combining solutions).
Bound the size of the tree by a polynomial in n.
Know how to algorithmically construct the tree.

14/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

G

. . .

G1 G2

. . .

Hence four intermediate steps to reach:
Know how to directly solve the problem on leaves.

Know how to go from children to father (combining solutions).
Bound the size of the tree by a polynomial in n.
Know how to algorithmically construct the tree.

14/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

G

. . .

G1 G2

. . .

Hence four intermediate steps to reach:
Know how to directly solve the problem on leaves.
Know how to go from children to father (combining solutions).

Bound the size of the tree by a polynomial in n.
Know how to algorithmically construct the tree.

14/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

G

. . .

G1 G2

. . .

Hence four intermediate steps to reach:
Know how to directly solve the problem on leaves.
Know how to go from children to father (combining solutions).
Bound the size of the tree by a polynomial in n.

Know how to algorithmically construct the tree.

14/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

G

. . .

G1 G2

. . .

Hence four intermediate steps to reach:
Know how to directly solve the problem on leaves.
Know how to go from children to father (combining solutions).
Bound the size of the tree by a polynomial in n.
Know how to algorithmically construct the tree.

14/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Our result

Theorem [Chudnovsky, L., Seymour, Spirkl]
We design an algorithm with the following specification:
Algorithm Ak :
Input: A perfect graph G with ω(G) ≤ k.
Output: A proper coloring of G with χ(G) = ω(G) colors.
Running time: O(n(ω(G)+1)2

)

We proceed by induction on k → we can call Ak−1 when needed.

15/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Our result

Theorem [Chudnovsky, L., Seymour, Spirkl]
We design an algorithm with the following specification:
Algorithm Ak :
Input: A perfect graph G with ω(G) ≤ k.
Output: A proper coloring of G with χ(G) = ω(G) colors.
Running time: O(n(ω(G)+1)2

)

We proceed by induction on k → we can call Ak−1 when needed.

15/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Previous results in this direction:

A combinatorial algorithm that optimally colors:
any Berge graph with no BSP
[Chudnovsky, Trotignon, Trunkc, Vušković 2015]

any C4-free Berge graph
[Chudnovsky, Lo, Maffray, Trotignon, Vušković 2015+]

16/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Previous results in this direction:

A combinatorial algorithm that optimally colors:
any Berge graph with no BSP
[Chudnovsky, Trotignon, Trunkc, Vušković 2015]

any C4-free Berge graph
[Chudnovsky, Lo, Maffray, Trotignon, Vušković 2015+]

16/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Outline

Five intermediate steps to reach:
Describe the decomposition tree that is used
Know how to algorithmically construct the tree
Know how to directly solve the problem on leaves
Bound the size of the tree by a polynomial in n
Know how to go from children to father (combining solutions)

→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2

)

17/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Decomposing perfect graphs

Decomposition theorem
If G is perfect, then at least one of the following holds:

G or G lies in one of the following classes: bipartite graphs, line
graphs of a bipartite graph, double split.
G or G admits a decomposition by 2-join,
G admits a decomposition by balanced skew partition (BSP).

induced matching induced antimatching

18/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Decomposing perfect graphs

Decomposition theorem
If G is perfect, then at least one of the following holds:

G or G lies in one of the following classes: bipartite graphs, line
graphs of a bipartite graph, double split.

G or G admits a decomposition by 2-join,
G admits a decomposition by balanced skew partition (BSP).

induced matching induced antimatching

Double-Split
18/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Decomposing perfect graphs

Decomposition theorem
If G is perfect, then at least one of the following holds:

G or G lies in one of the following classes: bipartite graphs, line
graphs of a bipartite graph, double split.
G or G admits a decomposition by 2-join,

G admits a decomposition by balanced skew partition (BSP).

A1

B1

C1

A2

B2

C2

2-join
18/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Decomposing perfect graphs

Decomposition theorem
If G is perfect, then at least one of the following holds:

G or G lies in one of the following classes: bipartite graphs, line
graphs of a bipartite graph, double split.
G or G admits a decomposition by 2-join,
G admits a decomposition by balanced skew partition (BSP).

G

A1 A2

B1

B2

Skew partition 18/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Our decomposition tree
G

A1 A2

B1

B2
Decompose along BSP until the
graph:

admits no BSP,
or is not anticonnected,
or has clique number < k,
or has bounded size < 2k.

Color with CTTV algo → O(n7)
Color with Ak−1 → O(nω(G)2

)
Easy to color in f (k)

19/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Our decomposition tree
G

A1 A2

B1

B2

G1 G2

A1

B1

B2

A2

B1

B2

Decompose along BSP until the
graph:

admits no BSP,
or is not anticonnected,
or has clique number < k,
or has bounded size < 2k.

Color with CTTV algo → O(n7)
Color with Ak−1 → O(nω(G)2

)
Easy to color in f (k)

19/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Our decomposition tree
G

A1 A2

B1

B2

G1 G2

A1

B1

B2

A2

B1

B2

Decompose along BSP until the
graph:

admits no BSP,
or is not anticonnected,
or has clique number < k,
or has bounded size < 2k.

Color with CTTV algo → O(n7)
Color with Ak−1 → O(nω(G)2

)
Easy to color in f (k)

19/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Our decomposition tree
G

A1 A2

B1

B2

G1 G2

A1

B1

B2

A2

B1

B2

.
. . .

Decompose along BSP until the
graph:

admits no BSP,
or is not anticonnected,
or has clique number < k,
or has bounded size < 2k.

Color with CTTV algo → O(n7)
Color with Ak−1 → O(nω(G)2

)
Easy to color in f (k)

19/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Outline

Five intermediate steps to reach:
X Describe the decomposition tree that is used

Know how to algorithmically construct the tree
Know how to directly solve the problem on leaves
Bound the size of the tree by a polynomial in n
Know how to go from children to father (combining solutions)

→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2

)

20/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to algorithmically construct the tree?

Find a BSP in polynomial time?

Theorem [Chudnovsky, L., Seymour, Spirkl]
There is an algorithm that, given as input a perfect graph G , outputs
a BSP of G or asserts that there is none.
Previous results:

Deciding if a graph has a BSP is NP-complete. [Trotignon 08]
A poly-time algorithm that decides if a perfect graph has a
BSP can be done in polynomial-time (but, if yes, the algo
does not output such a partition). [Trotignon 08]
A poly-time algo that decides if a graph has a skew partition
and, if yes, outputs such a partition. [Kennedy & Reed 08]

21/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to algorithmically construct the tree?

Find a BSP in polynomial time?
Theorem [Chudnovsky, L., Seymour, Spirkl]
There is an algorithm that, given as input a perfect graph G , outputs
a BSP of G or asserts that there is none.

Previous results:
Deciding if a graph has a BSP is NP-complete. [Trotignon 08]
A poly-time algorithm that decides if a perfect graph has a
BSP can be done in polynomial-time (but, if yes, the algo
does not output such a partition). [Trotignon 08]
A poly-time algo that decides if a graph has a skew partition
and, if yes, outputs such a partition. [Kennedy & Reed 08]

21/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to algorithmically construct the tree?

Find a BSP in polynomial time?
Theorem [Chudnovsky, L., Seymour, Spirkl]
There is an algorithm that, given as input a perfect graph G , outputs
a BSP of G or asserts that there is none.
Previous results:

Deciding if a graph has a BSP is NP-complete. [Trotignon 08]
A poly-time algorithm that decides if a perfect graph has a
BSP can be done in polynomial-time (but, if yes, the algo
does not output such a partition). [Trotignon 08]
A poly-time algo that decides if a graph has a skew partition
and, if yes, outputs such a partition. [Kennedy & Reed 08]

21/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Outline

Five intermediate steps to reach:
X Describe the decomposition tree that is used
X Know how to algorithmically construct the tree

Know how to directly solve the problem on leaves
→ time O(nmax(7,ω(G)2))

Bound the size of the tree by a polynomial in n
Know how to go from children to father (combining solutions)

→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2

)

22/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Our decomposition tree
G

A1 A2

B1

B2

G1 G2

A1

B1

B2

A2

B1

B2

.
. . .

Decompose along BSP until the
graph:

admits no BSP,
or is not anticonnected,
or has clique number < k,
or has bounded size < 2k.

Color with CTTV algo → O(n7)
Color with Ak−1 → O(nω(G)2

)
Easy to color in f (k)

23/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Our decomposition tree
G

A1 A2

B1

B2

G1 G2

A1

B1

B2

A2

B1

B2

.
. . .

Decompose along BSP until the
graph:

admits no BSP,
or is not anticonnected,
or has clique number < k,
or has bounded size < 2k.

Color with CTTV algo → O(n7)

Color with Ak−1 → O(nω(G)2
)

Easy to color in f (k)

23/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Our decomposition tree
G

A1 A2

B1

B2

G1 G2

A1

B1

B2

A2

B1

B2

.
. . .

Decompose along BSP until the
graph:

admits no BSP,
or is not anticonnected,
or has clique number < k,
or has bounded size < 2k.

Color with CTTV algo → O(n7)
Color with Ak−1 → O(nω(G)2

)

Easy to color in f (k)

23/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

If G is not anticonnected:

C1 C2

24/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

If G is not anticonnected:

C1 C2

ω(C1) + ω(C2) = ω(G)

ω(C1), ω(C2) < ω(G)

24/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

If G is not anticonnected:

C1 C2

ω(C1) + ω(C2) = ω(G)

ω(C1), ω(C2) < ω(G)

Color each side with Ak−1

ω(C1) colors ω(C2) colors

24/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Our decomposition tree
G

A1 A2

B1

B2

G1 G2

A1

B1

B2

A2

B1

B2

.
. . .

Decompose along BSP until the
graph:

admits no BSP,
or is not anticonnected,
or has clique number < k,
or has bounded size < 2k.

Color with CTTV algo → O(n7)
Color with Ak−1 → O(nω(G)2

)

Easy to color in f (k)

25/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Our decomposition tree
G

A1 A2

B1

B2

G1 G2

A1

B1

B2

A2

B1

B2

.
. . .

Decompose along BSP until the
graph:

admits no BSP,
or is not anticonnected,
or has clique number < k,
or has bounded size < 2k.

Color with CTTV algo → O(n7)
Color with Ak−1 → O(nω(G)2

)
Easy to color in f (k)

25/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Outline

Five intermediate steps to reach:
X Describe the decomposition tree that is used
X Know how to algorithmically construct the tree
X Know how to directly solve the problem on leaves
→ time O(nmax(7,ω(G)2))

Bound the size of the tree by a polynomial in n
Know how to go from children to father (combining solutions)

→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2

)

26/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to bound the size of the tree?
Label each node of the tree with some well-chosen Y ⊆ V (G):

G

. . .

G1 G2

. . .

Y0

Y1 Y2

Y3

Y4 Y5

Y6

Y8

Y7

Y9

Y10

Each label is different from every other labels,
The number of candidates for labeling is bounded by a
polynomial.

⇒ Bounds the number of nodes by a polynomial.

27/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to bound the size of the tree?
Label each node of the tree with some well-chosen Y ⊆ V (G):

G

. . .

G1 G2

. . .

Y0

Y1 Y2

Y3

Y4 Y5

Y6

Y8

Y7

Y9

Y10

Each label is different from every other labels,

The number of candidates for labeling is bounded by a
polynomial.

⇒ Bounds the number of nodes by a polynomial.

27/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to bound the size of the tree?
Label each node of the tree with some well-chosen Y ⊆ V (G):

G

. . .

G1 G2

. . .

Y0

Y1 Y2

Y3

Y4 Y5

Y6

Y8

Y7

Y9

Y10

Each label is different from every other labels,
The number of candidates for labeling is bounded by a
polynomial.

⇒ Bounds the number of nodes by a polynomial.

27/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to bound the size of the tree?
Label each node of the tree with some well-chosen Y ⊆ V (G):

G

. . .

G1 G2

. . .

Y0

Y1 Y2

Y3

Y4 Y5

Y6

Y8

Y7

Y9

Y10

Each label is different from every other labels,
The number of candidates for labeling is bounded by a
polynomial.

⇒ Bounds the number of nodes by a polynomial.

27/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to bound the size of the tree?
Label each node of the tree with some well-chosen Y ⊆ V (G):

G

. . .

G1 G2

. . .

Y0

Y1 Y2

Y3

Y4 Y5

Y6

Y8

Y7

Y9

Y10

Each label is different from every other labels,
The number of candidates for labeling is bounded by a
polynomial.

⇒ Bounds the number of nodes by a polynomial.

27/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Key ingredient: k-pellet

Definition: k-pellet
A subset Y ⊆ V (G) is a k-pellet if

Y contains a clique of size k,
Y is anticonnected,
and |Y | = 2k.

clique of size k

anticonnected set of size 2k

Number of ω(G)-pellets: at most O(n2ω(G))!!

28/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Good property of ω(G)-pellet

An ω(G)-pellet can not lie in the middle part B1 ∪ B2 of a BSP.

A1

A2

B1

B2

Y is anticonnected.
Y contains a clique of size ω(G) and any v ∈ B2 is complete to it.
⇒ Contradiction!

29/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Good property of ω(G)-pellet

An ω(G)-pellet can not lie in the middle part B1 ∪ B2 of a BSP.

A1

A2

B1

B2

Y

Y is anticonnected.
Y contains a clique of size ω(G) and any v ∈ B2 is complete to it.
⇒ Contradiction!

29/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Good property of ω(G)-pellet

An ω(G)-pellet can not lie in the middle part B1 ∪ B2 of a BSP.

A1

A2

B1

B2

Y

Y is anticonnected.

Y contains a clique of size ω(G) and any v ∈ B2 is complete to it.
⇒ Contradiction!

29/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Good property of ω(G)-pellet

An ω(G)-pellet can not lie in the middle part B1 ∪ B2 of a BSP.

A1

A2

B1

B2

Y

Y is anticonnected.
Y contains a clique of size ω(G) and any v ∈ B2 is complete to it.
⇒ Contradiction!

29/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Unique labeling

Two nodes getting the same label Y ?

node 1
Y

node 2
Y

30/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Unique labeling

Two nodes getting the same label Y ?

node 1
Y

node 2
Y

30/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Unique labeling

Two nodes getting the same label Y ?

node 1
Y

node 2
Y

30/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Where is Y ?

A1

A2

B1

B2

Y appears in left descendants.
Y appears in right descendants.
⇒ Contradiction!

31/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Where is Y ?

A1

A2

B1

B2

Y

Y appears in left descendants.

Y appears in right descendants.
⇒ Contradiction!

31/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Where is Y ?

A1

A2

B1

B2

Y

Y appears in left descendants.
Y appears in right descendants.

⇒ Contradiction!

31/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Where is Y ?

A1

A2

B1

B2

Y

Y appears in left descendants.
Y appears in right descendants.
⇒ Contradiction!

31/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Outline

Five intermediate steps to reach:
X Describe the decomposition tree that is used
X Know how to algorithmically construct the tree
X Know how to directly solve the problem on leaves
→ time O(nmax(7,ω(G)2))

X Bound the size of the tree by a polynomial in n
Know how to go from children to father (combining solutions)

→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2

)

32/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to combine solutions?
Problem when gluing solutions

G

A1 A2

B1

B2

33/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to combine solutions?
Problem when gluing solutions

G

A1 A2

B1

B2

G1 G2

33/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to combine solutions?
Problem when gluing solutions

G

G1 G2

33/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to combine solutions?
Problem when gluing solutions

G

G1 G2

33/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to combine solutions?
Problem when gluing solutions

G

G1 G2

33/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Goal: Find a partition in two sets (F1,F2):

ω(F1) = k1 < ω(G);
ω(F2) = k2 < ω(G);
k1 + k2 = ω(G).

F1

F2

Then we will call Ak−1 on F1 and F2.

This gives a proper
ω(G)-coloring of G .

34/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to find such a partition (F1, F2)?

1 Compute k1 = ω(B1) < k (test every X s.t. |X | < k).

2 Consider the solution on the left part:
3 Do the same on the right part and set F1 = F 1

1 ∪ F 2
1 .

G

A1 A2

B1

B2

35/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to find such a partition (F1, F2)?

1 Compute k1 = ω(B1) < k (test every X s.t. |X | < k).
2 Consider the solution on the left part:

3 Do the same on the right part and set F1 = F 1
1 ∪ F 2

1 .

more than k1 colors

say `1 colors

35/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to find such a partition (F1, F2)?

1 Compute k1 = ω(B1) < k (test every X s.t. |X | < k).
2 Consider the solution on the left part:

3 Do the same on the right part and set F1 = F 1
1 ∪ F 2

1 .

more than k1 colors

say `1 colors

35/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to find such a partition (F1, F2)?

1 Compute k1 = ω(B1) < k (test every X s.t. |X | < k).
2 Consider the solution on the left part:

3 Do the same on the right part and set F1 = F 1
1 ∪ F 2

1 .

more than k1 colors

say `1 colors

clique size `1 − k1

35/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to find such a partition (F1, F2)?

1 Compute k1 = ω(B1) < k (test every X s.t. |X | < k).
2 Consider the solution on the left part:

3 Do the same on the right part and set F1 = F 1
1 ∪ F 2

1 .

more than k1 colors

say `1 colors

clique size `1 − k1

Recolor
with `1 colors

35/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to find such a partition (F1, F2)?

1 Compute k1 = ω(B1) < k (test every X s.t. |X | < k).
2 Consider the solution on the left part:

3 Do the same on the right part and set F1 = F 1
1 ∪ F 2

1 .

clique size `1 − k1

Recolor
with `1 colors

exactly k1 colors

35/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to find such a partition (F1, F2)?

1 Compute k1 = ω(B1) < k (test every X s.t. |X | < k).
2 Consider the solution on the left part:

3 Do the same on the right part and set F1 = F 1
1 ∪ F 2

1 .

clique size `1 − k1

Recolor
with `1 colors

exactly k1 colorsF 1
1

35/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to find such a partition (F1, F2)?

1 Compute k1 = ω(B1) < k (test every X s.t. |X | < k).
2 Consider the solution on the left part:
3 Do the same on the right part and set F1 = F 1

1 ∪ F 2
1 .

clique size `1 − k1

F 1
1

clique size `2 − k1

F 2
1

35/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to find such a partition (F1, F2)?

1 Compute k1 = ω(B1) < k (test every X s.t. |X | < k).
2 Consider the solution on the left part:
3 Do the same on the right part and set F1 = F 1

1 ∪ F 2
1 .

F 1
1

F 2
1

ω(F1) = max(ω(F 1
1), ω(F

2
1) = k1

35/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

How to find such a partition (F1, F2)?

1 Compute k1 = ω(B1) < k (test every X s.t. |X | < k).
2 Consider the solution on the left part:
3 Do the same on the right part and set F1 = F 1

1 ∪ F 2
1 .

F 1
1

F 2
1

ω(F1) = max(ω(F 1
1), ω(F

2
1) = k1

F2
ω(F2) = ω(G)− k1

35/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Goal: Find a partition in two sets (F1,F2):

ω(F1) = k1 < ω(G);
ω(F2) = k2 < ω(G);
k1 + k2 = ω(G).

F1

F2

Call Ak−1 on F1 and F2. This gives a proper ω(G)-coloring of G .

36/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Goal: Find a partition in two sets (F1,F2):

ω(F1) = k1 < ω(G);
ω(F2) = k2 < ω(G);
k1 + k2 = ω(G).

F1

F2

k1 colors

k2 colors

Call Ak−1 on F1 and F2. This gives a proper ω(G)-coloring of G .

36/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Outline

Five intermediate steps to reach:
X Describe the decomposition tree that is used
X Know how to algorithmically construct the tree
X Know how to directly solve the problem on leaves
→ time O(nmax(7,ω(G)2))

X Bound the size of the tree by a polynomial in n
X Know how to go from children to father (combining solutions)
→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2

)

37/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Outline

Five intermediate steps to reach:
X Describe the decomposition tree that is used
X Know how to algorithmically construct the tree
X Know how to directly solve the problem on leaves
→ time O(nmax(7,ω(G)2))

X Bound the size of the tree by a polynomial in n
X Know how to go from children to father (combining solutions)
→ time O(n2ω(G))

→ Algorithm Ak is well-defined and runs in time
O(n(ω(G)+1)2

)

37/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Perspectives

Ultimate aim: Color perfect graphs in the general case!

How to bound the size of the tree?
Could we modify the decomposition theorem?
Could we get a FPT algorithm with parameter ω(G)?

Thank you for your attention!

38/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Perspectives

Ultimate aim: Color perfect graphs in the general case!
How to bound the size of the tree?
Could we modify the decomposition theorem?
Could we get a FPT algorithm with parameter ω(G)?

Thank you for your attention!

38/38

My thesis Coloring Perfect graphs Our algorithm Perspectives

Perspectives

Ultimate aim: Color perfect graphs in the general case!
How to bound the size of the tree?
Could we modify the decomposition theorem?
Could we get a FPT algorithm with parameter ω(G)?

Thank you for your attention!

38/38

	My thesis
	CS-Separation
	Positive Results

	Coloring
	Perfect graphs
	Our algorithm
	Outline
	Describing the tree
	Algorithmically construct the tree
	Leaves
	Bounding the size of the tree
	Combining solutions

	Perspectives

