Coloring perfect graphs with bounded clique
number
JGA 2016

Aurélie Lagoutte

Joint work with M. Chudnovsky, P. Seymour and S. Spirkl

G-SCOP, Univ. Grenoble Alpes

November 17, 2016
Paris Dauphine

1/38

My thesis
°

What's in my thesis?

Interactions between
Cliques and Stable
sets in a graph

2/38

My thesis
°

What's in my thesis?

Coloration
Partition into stable sets; relate nb of]

arts to size of max. clique

Interactions between
Cliques and Stable
sets in a graph

2/38

My thesis
°

What's in my thesis?

Coloration
Partition into stable sets; relate nb of]

arts to size of max. clique

Erdos-Hajnal conjecture
In H-free graphs, there always exists
a big clique or a big stable set.

Interactions between
Cliques and Stable
sets in a graph

2/38

My thesis
°

What's in my thesis?

Coloration
Partition into stable sets; relate nb of]

arts to size of max. clique

Erdos-Hajnal conjecture
In H-free graphs, there always exists
a big clique or a big stable set.

Interactions between

Cliques and Stable o Clique-Stable set Separation
sets in a graph see next slide)

2/38

My thesis
°

What's in my thesis?

Coloration
Partition into stable sets; relate nb of]

arts to size of max. clique

Erdos-Hajnal conjecture
In H-free graphs, there always exists
a big clique or a big stable set.

Interactions between

Cliques and Stable o Clique-Stable set Separation
sets in a graph (see next slide)

Pbs around CS-Separation

PL for Max. Weighted Stable Set,
Constraint Satisfaction Pbs (CSP),
Alon-Saks-Seymour conjecture

2/38

My thesis
[1e}

Clique-Stable set Separation

Game on a graph G:

3/38

My thesis
[1e}

Clique-Stable set Separation

Game on a graph G:
@ Pre-processing step: choose some cuts of G.

3/38

My thesis
[1e}

Clique-Stable set Separation

Game on a graph G:
@ Pre-processing step: choose some cuts of G.

Tﬁ%@

3/38

My thesis
[1e}

Clique-Stable set Separation

Game on a graph G:
@ Pre-processing step: choose some cuts of G.

<)
A4

3/38

My thesis
[1e}

Clique-Stable set Separation

Game on a graph G:
@ Pre-processing step: choose some cuts of G.

3/38

My thesis
[1e}

Clique-Stable set Separation

Game on a graph G:
@ Pre-processing step: choose some cuts of G.

3/38

My thesis
[1e}

Clique-Stable set Separation

Game on a graph G:
@ Pre-processing step: choose some cuts of G.

@ An Adversary chooses a clique K and a stable set S that do
not intersect.

2

v

3/38

My thesis
[1e}

Clique-Stable set Separation

Game on a graph G:
@ Pre-processing step: choose some cuts of G.

@ An Adversary chooses a clique K and a stable set S that do
not intersect.

@ | win if | have a cut separating K and S

(=certificate of non-intersection between K and S)

A=

/

<7

v

3/38

My thesis
[1e}

Clique-Stable set Separation

Game on a graph G:
@ Pre-processing step: choose some cuts of G.

@ An Adversary chooses a clique K and a stable set S that do
not intersect.

@ | win if | have a cut separating K and S

(=certificate of non-intersection between K and S)

A=

/

<7

v

A CS-Separator is a family of cuts that ensures me to always win.

3/38

My thesis
[1e}

Clique-Stable set Separation

Game on a graph G:
@ Pre-processing step: choose some cuts of G.

@ An Adversary chooses a clique K and a stable set S that do
not intersect.

@ | win if | have a cut separating K and S

(=certificate of non-intersection between K and S)

A=

/

<7

v

A CS-Separator is a family of cuts that ensures me to always win.
— | am allowed to select only polynomially many cuts.

3/38

My thesis
ce

Bounds

Yannakakis (1991)

Upper Bound: VG there exists a CS-separator of size O(n'%8").

Question: Do perfect graphs admit polynomial-size CS-Separator?

4/38

My thesis
ce

Bounds

Yannakakis (1991)

Upper Bound: VG there exists a CS-separator of size O(n'%8").

Question: Do perfect graphs admit polynomial-size CS-Separator?

Huang, Sudakov (2012)

Lower bound : Q(ng) cuts are needed for some graphs

4/38

My thesis
ce

Bounds

Yannakakis (1991)

Upper Bound: VG there exists a CS-separator of size O(n'%8").

Question: Do perfect graphs admit polynomial-size CS-Separator?

Huang, Sudakov (2012)

Lower bound : Q(ng) cuts are needed for some graphs

Does there exist for all graph G on n vertices a CS-separator of
size poly(n)? Or for which classes of graphs does it exist?

4/38

It is known that the following classes of graphs admit poly-size
CS-Separator:
If w or v is bounded (trivial)
chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)
Cy-free graphs (Conseq. of Alekseev 1991)

Ps-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

5/38

It is known that the following classes of graphs admit poly-size
CS-Separator:
If w or v is bounded (trivial)
chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)
Cy-free graphs (Conseq. of Alekseev 1991)

Ps-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

5/38

It is known that the following classes of graphs admit poly-size
CS-Separator:
If w or v is bounded (trivial)
chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)
Cy-free graphs (Conseq. of Alekseev 1991)

Ps-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

@ Random graphs

5/38

My thesis
®00

It is known that the following classes of graphs admit poly-size
CS-Separator:

If w or v is bounded (trivial)

chordal graphs (linear number of max. cliques)
comparability graphs (Yannakakis 1991)

Cy-free graphs (Conseq. of Alekseev 1991)

Ps-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

@ Random graphs

@ H-free graphs where H is a split
graph.

Split graph

5/38

My thesis
®00

It is known that the following classes of graphs admit poly-size

CS-Separator:

If w or v is bounded (trivial)

Joint work with Bousquet, Thomassé ;

@ Random graphs

@ H-free graphs where H is a split
graph.

chordal graphs (linear number of max. cliques)

comparability graphs (Yannakakis 1991)

Cy-free graphs (Conseq. of Alekseev 1991)

Ps-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

5/38

It is known that the following classes of graphs admit poly-size
CS-Separator:

e If w or « is bounded (trivial)

o chordal graphs (linear number of max. cliques)

@ comparability graphs (Yannakakis 1991)

@ (C,-free graphs (Conseq. of Alekseev 1991)

@ Ps-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

@ Random graphs

@ H-free graphs where H is a split
graph.

o (Py, Py)-free graphs

5/38

It is known that the following classes of graphs admit poly-size
CS-Separator:

e If w or « is bounded (trivial)

o chordal graphs (linear number of max. cliques)

@ comparability graphs (Yannakakis 1991)

@ (C,-free graphs (Conseq. of Alekseev 1991)

@ Ps-free graphs (Conseq. of Lokshtanov, Vatchelle, Villanger 2014)

Joint work with Bousquet, Thomassé ;

and Trunck

@ Random graphs

@ H-free graphs where H is a split
graph.

o (Py, Py)-free graphs

@ Perfect graphs with no BSP

5/38

My thesis
oceo

Does there exist for all graph G on n vertices a CS-separator
of size poly(n)?

6/38

My thesis
oceo

B I st_for_all hC . cs
i ? No!

Lower Bound: (Go66s 2015): we need o™) cyts for some

graphs.

6/38

My thesis
oceo

D | st " h G . cs
i 2 No!

Lower Bound: (Go66s 2015): we need o™) cyts for some
graphs.
What now?

6/38

My thesis
oceo

D | st " h G . cs
i 2 No!

Lower Bound: (Go66s 2015): we need o™) cyts for some
graphs.
What now?

— Want to learn more about perfect graphs and try to close the
CS-Separation question on them.

6/38

My thesis
ocoe

Coloring perfect graphs with bounded clique

number
JGA 2016

Aurélie Lagoutte

Joint work with M. Chudnovsky, P. Seymour and S. Spirkl

G-SCOP, Univ. Grenoble Alpes

November 17, 2016
Paris Dauphine

7/38

Coloring

[Je}

A proper k-coloring of G is an assignment of colors from
{1,..., k} such that any two adjacent vertices are given different

P

|~

8/38

Coloring

[Je}

A proper k-coloring of G is an assignment of colors from
{1,..., k} such that any two adjacent vertices are given different

P

|~

GRAPH COLORING

Input: A graph G and an integer k.
Output: Does G admits a proper k-coloring?

Graph Coloring is NP-complete.

8/38

Coloring
0

A proper k-coloring of G is an assignment of colors from
{1,..., k} such that any two adjacent vertices are given different
colors.

SPET

GRAPH COLORING

Input: A graph G and-an-integeri-
Output: Does G admits a proper k-eeloring? 3-coloring?

Graph Coloring is NP-complete. Even 3-Coloring is!

8/38

Coloring
oce

e x(G): chromatic number of G, i.e. minimum number of
color in a proper coloring.

e w(G): cligue number, i.e. size of the largest clique.

9/38

Coloring
oce

e x(G): chromatic number of G, i.e. minimum number of
color in a proper coloring.

e w(G): cligue number, i.e. size of the largest clique.

x(G) > w(G)

\/\ <

[~ |
—

9/38

Perfect graphs
®0000

Perfect graph: definition

G is perfect if and only if x(G) = w(G) and the equality holds for
every induced subgraph H of G.

10/38

Perfect graphs
®0000

Perfect graph: definition

G is perfect if and only if x(G) = w(G) and the equality holds for
every induced subgraph H of G.

N
/ \
\ /
Odd hole Gy Odd antihole G;

Berge's Conjecture (1960's)

A graph G is perfect if and only if G contains no odd hole and no
odd antihole as induced subgraph.

10/38

Perfect graphs
®0000

Perfect graph: definition
G is perfect if and only if x(G) = w(G) and the equality holds for
every induced subgraph H of G.

N
/ \
\ /
Odd hole Gy Odd antihole G;

Berge's Conjecture (1960's) = Strong Perfect Graph Theorem

A graph G is perfect if and only if G contains no odd hole and no
odd antihole as induced subgraph.

Proved in 2002 by Chudnovsky, Robertson, Seymour and Thomas.

10/38

Perfect graphs
0®000

What about coloring perfect graphs?

Theorem [Grotschel, Lovasz, Schrijver 1981]

The Maximum Weighted Stable Set problem can be solved in
polynomial time for perfect graphs.

11/38

Perfect graphs
0®000

What about coloring perfect graphs?

Theorem [Grotschel, Lovasz, Schrijver 1981]

The Maximum Weighted Stable Set problem can be solved in
polynomial time for perfect graphs.

Consequence
There is a polynomial-time algorithm that optimally colors any
input perfect graph.

11/38

Perfect graphs
0®000

What about coloring perfect graphs?

Theorem [Grotschel, Lovasz, Schrijver 1981]

The Maximum Weighted Stable Set problem can be solved in
polynomial time for perfect graphs.

Consequence

There is a polynomial-time algorithm that optimally colors any
input perfect graph.

= Are we done??

11/38

Perfect graphs
0®000

What about coloring perfect graphs?

Theorem [Grotschel, Lovasz, Schrijver 1981]

The Maximum Weighted Stable Set problem can be solved in
polynomial time for perfect graphs.

Consequence

There is a polynomial-time algorithm that optimally colors any
input perfect graph.

= Are we done?? This algorithm uses the ellipsoid method:
= commonly acknowledged to be unpractical.
=- Theoretical point of view: translates into semi-definite
programming and we loose any understanding on the ongoing
process.

11/38

Perfect graphs
0®000

What about coloring perfect graphs?

Theorem [Grotschel, Lovasz, Schrijver 1981]

The Maximum Weighted Stable Set problem can be solved in
polynomial time for perfect graphs.

Consequence

There is a polynomial-time algorithm that optimally colors any
input perfect graph.

= Are we done?? This algorithm uses the ellipsoid method:
= commonly acknowledged to be unpractical.
=- Theoretical point of view: translates into semi-definite
programming and we loose any understanding on the ongoing
process.

Not satisfying! We know so much on perfect graphs that we
want a combinatorial algorithm.

11/38

Perfect graphs
©0e00

We know so much?

Decomposition theorem from [CRST'02]

If G is Berge, then
e either G is basic (bipartite, line graph of bipartite,),

@ or G can be decomposed in a given way.

12/38

Perfect graphs
©0e00

We know so much?

Decomposition theorem from [CRST'02]

If G is Berge, then
e either G is basic (bipartite, line graph of bipartite,),

@ or G can be decomposed in a given way.

12/38

Perfect graphs
©0e00

We know so much?

Decomposition theorem from [CRST'02]

If G is Berge, then
e either G is basic (bipartite, line graph of bipartite,),

@ or G can be decomposed in a given way.

12/38

Perfect graphs
©0e00

We know so much?

Decomposition theorem from [CRST'02]

If G is Berge, then
e either G is basic (bipartite, line graph of bipartite,),

@ or G can be decomposed in a given way.

G

Gy ¥ “a

12/38

Perfect graphs
©0e00

We know so much?

Decomposition theorem from [CRST'02]

If G is Berge, then
e either G is basic (bipartite, line graph of bipartite,),

@ or G can be decomposed in a given way.

G

G1 » N Gy

12/38

Perfect graphs
©0e00

We know so much?

Decomposition theorem from [CRST'02]

If G is Berge, then
e either G is basic (bipartite, line graph of bipartite,),

@ or G can be decomposed in a given way.

How to use it?

12/38

Perfect graphs
©0e00

We know so much?

Decomposition theorem from [CRST'02]

If G is Berge, then
e either G is basic (bipartite, line graph of bipartite,),

@ or G can be decomposed in a given way.

How to use it?
For structural purposes: want to prove that any Berge graph
satisfies some property P (ex: is perfect).

12/38

Perfect graphs
©0e00

We know so much?

Decomposition theorem from [CRST'02]

If G is Berge, then
e either G is basic (bipartite, line graph of bipartite,),

@ or G can be decomposed in a given way.

How to use it?
For structural purposes: want to prove that any Berge graph

satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy

P.

12/38

Perfect graphs
©0e00

We know so much?

Decomposition theorem from [CRST'02]

If G is Berge, then
e either G is basic (bipartite, line graph of bipartite,),

@ or G can be decomposed in a given way.

How to use it?
For structural purposes: want to prove that any Berge graph

satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy

P.

@ Prove that G cannot be decomposed (get a smaller

counter-example)
@ Prove that any basic graph satisfies P.

12/38

Perfect graphs
©0e00

We know so much?

Decomposition theorem from [CRST'02]

If G is Berge, then
e either G is basic (bipartite, line graph of bipartite,),

@ or G can be decomposed in a given way.

How to use it?
For structural purposes: want to prove that any Berge graph

satisfies some property P (ex: is perfect).
Take G a minimal counter-example, i.e. Berge but does not satisfy

P.
@ Prove that G cannot be decomposed (get a smaller

counter-example)
@ Prove that any basic graph satisfies P.

= Contradiction!

12/38

Perfect graphs
oooe0

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

13/38

Perfect graphs
oooe0

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

13/38

Perfect graphs
oooe0

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

@ Construct the decomposition tree:

Ceo

13/38

Perfect graphs
oooe0

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

@ Construct the decomposition tree:

- ~a

Ceo

13/38

Perfect graphs
oooe0

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

@ Construct the decomposition tree:

@5@@
CHCOCH O

s X

COCO COCH

13/38

Perfect graphs
oooe0

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

@ Construct the decomposition tree:

@ Compute what you want on the leaves (— basic graphs).

13/38

Perfect graphs
oooe0

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

@ Construct the decomposition tree:

@ Compute what you want on the leaves (— basic graphs).

© From bottom to top: combine solutions for children to get
a solution for the father.

13/38

Perfect graphs
oooe0

How to use it for algorithmic purposes?

Want to compute something (coloring, largest stable set, ...).

Meta-algorithm:

@ Construct the decomposition tree:

@ Compute what you want on the leaves (— basic graphs).

© From bottom to top: combine solutions for children to get
a solution for the father.

13/38

Perfect graphs
ooooe

Hence four intermediate steps to reach:

14/38

Perfect graphs
ooooe

Hence four intermediate steps to reach:

@ Know how to directly solve the problem on leaves.

14/38

Perfect graphs
ooooe

Hence four intermediate steps to reach:

@ Know how to directly solve the problem on leaves.
@ Know how to go from children to father (combining solutions).

14/38

Perfect graphs
ooooe

Hence four intermediate steps to reach:
@ Know how to directly solve the problem on leaves.
@ Know how to go from children to father (combining solutions).
@ Bound the size of the tree by a polynomial in n.

14/38

Perfect graphs
ooooe

Hence four intermediate steps to reach:
@ Know how to directly solve the problem on leaves.
@ Know how to go from children to father (combining solutions).
@ Bound the size of the tree by a polynomial in n.
[~

Know how to algorithmically construct the tree.

14/38

Our algorithm
®00

Our result

Theorem [Chudnovsky, L., Seymour, Spirkl]

We design an algorithm with the following specification:
Algorithm Ay:
Input: A perfect graph G with w(G) < k.

Output: A proper coloring of G with x(G) = w(G) colors.
Running time: O(n(W(G)+1)2)

15/38

Our algorithm
®00

Our result

Theorem [Chudnovsky, L., Seymour, Spirkl]

We design an algorithm with the following specification:
Algorithm Ay:

Input: A perfect graph G with w(G) < k.

Output: A proper coloring of G with x(G) = w(G) colors.
Running time: O(n(<(G)+1)*)

We proceed by induction on k — we can call A,_; when needed.

15/38

Our algorithm
oeo

Previous results in this direction:

16/38

Our algorithm
oeo

Previous results in this direction:

A combinatorial algorithm that optimally colors:

@ any Berge graph with no BSP
[Chudnovsky, Trotignon, Trunkec, Vuskovi¢ 2015]

e any (C4-free Berge graph
[Chudnovsky, Lo, Maffray, Trotignon, Vuskovi¢ 2015"]

16/38

Our algorithm
ooe

Outline

Five intermediate steps to reach:

Describe the decomposition tree that is used

Know how to algorithmically construct the tree

Bound the size of the tree by a polynomial in n

°
°

@ Know how to directly solve the problem on leaves

°

@ Know how to go from children to father (combining solutions)

17/38

Our algorithm
®00

Decomposing perfect graphs

Decomposition theorem

If G is perfect, then at least one of the following holds:

18/38

Our algorithm
®00

Decomposing perfect graphs

Decomposition theorem

If G is perfect, then at least one of the following holds:

@ G or G lies in one of the following classes: bipartite graphs, line
graphs of a bipartite graph, double split.

induced matching induced antimatching

Double-Split

18/38

Our algorithm
®00

Decomposing perfect graphs

Decomposition theorem

If G is perfect, then at least one of the following holds:

@ G or G lies in one of the following classes: bipartite graphs, line
graphs of a bipartite graph, double split.

@ G or G admits a decomposition by 2-join,

(==
C=

2-join

18/38

Our algorithm
®00

Decomposing perfect graphs

Decomposition theorem

If G is perfect, then at least one of the following holds:

@ G or G lies in one of the following classes: bipartite graphs, line
graphs of a bipartite graph, double split.

@ G or G admits a decomposition by 2-join,
@ G admits a decomposition by balanced skew partition (BSP).

Skew partition

18/38

Our algorithm
oeo

Our decomposition tree

Decompose along BSP until the
graph:

19/38

Our algorithm
oeo

Our decomposition tree
€
Decompose along BSP until the

D)
~— Go graph:

G
‘ll“““%i|||||llll) (lll“““%i|||||lll')

19/38

Our algorithm
oeo

Our decomposition tree
€
Decompose along BSP until the

D)
~— Go graph:

G
‘ll“““%i|||||llll) (lll“““%i|||||lll')

19/38

Our algorithm
oeo

G

Our decomposition tree
Decompose along BSP until the

26,
~— G2 graph:

G /
@ admits no BSP,
"‘ "‘ @ or is not anticonnected,
@ or has clique number < k,

@ or has bounded size < 2k.
QO Q O

19/38

Our algorithm
ooe

Outline

Five intermediate steps to reach:

V" Describe the decomposition tree that is used

@ Know how to algorithmically construct the tree

@ Know how to directly solve the problem on leaves
@ Bound the size of the tree by a polynomial in n

@ Know how to go from children to father (combining solutions)

20/38

Our algorithm
°0

How to algorithmically construct the tree?

Find a BSP in polynomial time?

21/38

Our algorithm
°0

How to algorithmically construct the tree?

Find a BSP in polynomial time?

Theorem [Chudnovsky, L., Seymour, Spirkl]

There is an algorithm that, given as input a perfect graph G, outputs
a BSP of G or asserts that there is none.

21/38

Our algorithm
°0

How to algorithmically construct the tree?

Find a BSP in polynomial time?
Theorem [Chudnovsky, L., Seymour, Spirkl]

There is an algorithm that, given as input a perfect graph G, outputs
a BSP of G or asserts that there is none.

Previous results:

@ Deciding if a graph has a BSP is NP-complete. [Trotignon 08]

@ A poly-time algorithm that decides if a perfect graph has a
BSP can be done in polynomial-time (but, if yes, the algo
does not output such a partition). [Trotignon 08]

@ A poly-time algo that decides if a graph has a skew partition
and, if yes, outputs such a partition. [Kennedy & Reed 08]

21/38

Our algorithm
oce

Outline

Five intermediate steps to reach:

v Describe the decomposition tree that is used

v" Know how to algorithmically construct the tree

@ Know how to directly solve the problem on leaves
— time O(nmax(7w(6)?))

@ Bound the size of the tree by a polynomial in n

@ Know how to go from children to father (combining solutions)

22/38

Our algorithm
®000

G

Our decomposition tree
Decompose along BSP until the

26,
~— G2 graph:

G /
@ admits no BSP,
"‘ "‘ @ or is not anticonnected,
@ or has clique number < k,

@ or has bounded size < 2k.
QO Q O

23/38

Our algorithm
®000

G

Our decomposition tree
Decompose along BSP until the

20,
~— G2 graph:

G /
@ admits no BSP,
"‘ "‘ @ or is not anticonnected,
@ or has clique number < k,

@ or has bounded size < 2k.
Q@ Q O

Color with CTTV algo — O(n")

23/38

Our algorithm
®000

G

Our decomposition tree
Decompose along BSP until the

26,
~— G2 graph:

G /
@ admits no BSP,
"‘ "‘ @ or is not anticonnected,
@ or has clique number < k,

@ or has bounded size < 2k.
Q@ Q O

Color with CTTV algo — 0(2”7)
Color with Ax_1 — O(n%

23/38

Our algorithm

Oe00

If G is not anticonnected:

24/38

If G is not anticonnected:

24/38

If G is not anticonnected:

w(Cq) colors w(Cy) colors

w(Cl) + W(CQ) = w(G)

w(Ch),w(Cs) < w(G)
Color each side with Aj;_

24/38

Our algorithm
ocoeo

G

Our decomposition tree
Decompose along BSP until the

26,
~— G2 graph:

G /
@ admits no BSP,
"‘ "‘ @ or is not anticonnected,
@ or has clique number < k,

@ or has bounded size < 2k.
QQ Q O

Color with CTTV algo — (’)(Zn7)
Color with Ax_1 — O(n%

25/38

Our algorithm
ocoeo

G

Our decomposition tree
Decompose along BSP until the

26,
~- G2 graph:

G /
@ admits no BSP,
"‘ "‘ @ or is not anticonnected,
@ or has clique number < k,

@ or has bounded size < 2k.
Q@ Q O

Color with CTTV algo — O(n")
Color with Ax_; — O(n*(€)%)
Easy to color in f(k)

25/38

Our algorithm
oooe

Outline

Five intermediate steps to reach:

v Describe the decomposition tree that is used
v" Know how to algorithmically construct the tree

v" Know how to directly solve the problem on leaves
— time O(nmax(7w(6)))

@ Bound the size of the tree by a polynomial in n

@ Know how to go from children to father (combining solutions)

26/38

Our algorithm
©00000

How to bound the size of the tree?

Label each node of the tree with some well-chosen Y C V/(G):

a
a T~a
D CoN

&

gﬁj
b

27/38

Our algorithm

@®00000

How to bound the size of the tree?

Label each node of the tree with some well-chosen Y C V/(G):

s a8
,
EHCH

@ Each label is different from every other labels,

&

e

B

27/38

Our algorithm
©00000

How to bound the size of the tree?
Label each node of the tree with some well-chosen Y C V/(G):

’
o ~a

ef@ﬁ
J;

V4

@ Each label is different from every other labels,
@ The number of candidates for labeling is bounded by a
polynomial.

B

27/38

Our algorithm
©00000

How to bound the size of the tree?
Label each node of the tree with some well-chosen Y C V/(G):

’
o ~a

ef@ﬁ
J;

V4

@ Each label is different from every other labels,
@ The number of candidates for labeling is bounded by a
polynomial.

B

27/38

Our algorithm
©00000

How to bound the size of the tree?

Label each node of the tree with some well-chosen Y C V/(G):
a
T~a
6,
r’s X ¥
™

@ Each label is different from every other labels,
@ The number of candidates for labeling is bounded by a
polynomial.

=

e

‘ﬁ
;

B

=- Bounds the number of nodes by a polynomial.

27/38

Our algorithm
©0®0000

Key ingredient: k-pellet

Definition: k-pellet

A subset Y C V(G) is a k-pellet if
@ Y contains a clique of size k,
@ Y is anticonnected,
e and |Y| = 2k.

clique of size k

anticonnected set of size 2k

Number of w(G)-pellets: at most O(n?*(G))l

28/38

Our algorithm
00®000

Good property of w(G)-pellet

An w(G)-pellet can not lie in the middle part B; U By of a BSP.

29/38

Our algorithm
00®000

Good property of w(G)-pellet

An w(G)-pellet can not lie in the middle part B; U By of a BSP.

..

29/38

Our algorithm
00®000

Good property of w(G)-pellet

An w(G)-pellet can not lie in the middle part B; U By of a BSP.

Y is anticonnected.

29/38

Our algorithm
00®000

Good property of w(G)-pellet

An w(G)-pellet can not lie in the middle part B; U By of a BSP.

Y is anticonnected.
Y contains a clique of size w(G) and any v € B, is complete to it.
=- Contradiction!

29/38

Our algorithm
00000

Unique labeling

Two nodes getting the same label Y7

30/38

Our algorithm

000e00

Unique labeling

Two nodes getting the same label Y7

30/38

Our algorithm

000e00

Unique labeling

Two nodes getting the same label Y7

30/38

Our algorithm

0000e0

I .
Q,

Where is Y7

31/38

Our algorithm

0000e0

Where is Y7

Y appears in left descendants.

31/38

Our algorithm
0000e0

Where is Y7

Y appears in left descendants.
Y appears in right descendants.

31/38

Our algorithm
0000e0

Where is Y7
. .

Y appears in left descendants.
Y appears in right descendants.
= Contradiction!

31/38

Our algorithm
oooo0e

Outline

Five intermediate steps to reach:

v Describe the decomposition tree that is used
v" Know how to algorithmically construct the tree

v" Know how to directly solve the problem on leaves
— time O(nmax(7’w(6)2))
v" Bound the size of the tree by a polynomial in n

@ Know how to go from children to father (combining solutions)

32/38

Our algorithm

@®0000

How to combine solutions?

Problem when gluing solutions

G
Il .
Q,,

33/38

Our algorithm

@®0000

How to combine solutions?

Problem when gluing solutions

33/38

Our algorithm
®0000

How to combine solutions?

Problem when gluing solutions
| %

) O (¢

33/38

Our algorithm

@®0000

How to combine solutions?

Problem when gluing solutions

33/38

Our algorithm
®0000

How to combine solutions?

Problem when gluing solutions

33/38

Our algorithm
0®000

Goal: Find a partition in two sets (F1, F2):

o w(F) =k <w(G);
o w(F) = ky <w(G);

Fi
o ki + ko :w(G). U
Fy

[
\J/

Then we will call Ax_1 on F; and F,.

34/38

Our algorithm
00®00

How to find such a partition (Fy, Fp)?

@ Compute ki = w(B1) < k (test every X s.t. |X]| < k).

35/38

Our algorithm
00®00

How to find such a partition (Fy, Fp)?

@ Compute ki = w(B1) < k (test every X s.t. |X]| < k).
@ Consider the solution on the left part:

‘more than k; colors
say /1 colors

35/38

Our algorithm
00®00

How to find such a partition (Fy, Fp)?

@ Compute ki = w(B1) < k (test every X s.t. |X]| < k).
@ Consider the solution on the left part:

more than k; colors
say /1 colors

35/38

Our algorithm
00®00

How to find such a partition (Fy, Fp)?

@ Compute ki = w(B1) < k (test every X s.t. |X]| < k).
@ Consider the solution on the left part:

clique size 1 — k;

35/38

Our algorithm
00®00

How to find such a partition (Fy, Fp)?

@ Compute ki = w(B1) < k (test every X s.t. |X]| < k).
@ Consider the solution on the left part:

clique size 1 — k;

35/38

Our algorithm
00®00

How to find such a partition (Fy, Fp)?

@ Compute ki = w(B1) < k (test every X s.t. |X]| < k).
@ Consider the solution on the left part:

clique size 1 — k;

exactly ki colors

35/38

Our algorithm
00®00

How to find such a partition (Fy, Fp)?

@ Compute ki = w(B1) < k (test every X s.t. |X]| < k).
@ Consider the solution on the left part:

clique size 1 — k;

exactly ki colors

35/38

Our algorithm

loJo] lele]

How to find such a partition (Fy, Fp)?
@ Compute ki = w(B1) < k (test every X s.t. |X]| < k).
@ Consider the solution on the left part:

© Do the same on the right part and set F; = F{ U F7.

clique size 1 — k; clique size 5 — ky

35/38

Our algorithm
00®00

How to find such a partition (Fy, Fp)?
@ Compute ki = w(B1) < k (test every X s.t. |X]| < k).

@ Consider the solution on the left part:
© Do the same on the right part and set F; = F} U F2.

w(F) = max(w(F}),w(F?) =k

35/38

Our algorithm

loJo] lele]

How to find such a partition (Fy, Fp)?

@ Compute ki = w(B1) < k (test every X s.t. |X]| < k).
@ Consider the solution on the left part:
© Do the same on the right part and set F; = F{ U F7.

35/38

Our algorithm
000e0

Goal: Find a partition in two sets (F1, F2):

] w(Fl) = k]_ < w(G);
o w(Fg) = kz < w(G);

Fy
o ki + ko :w(G). U
Fy

i [
\J/

Call Ax—1 on F; and F,. This gives a proper w(G)-coloring of G.

36/38

Our algorithm
000e0

Goal: Find a partition in two sets (F1, F2):

(k1 colors

AR

0 ki+ k= w(G).

Fi
o w(F1) = ki < w(G); m m
o w(Fg) = kz < w(G);

\ ()

%
L ko colors

Call Ax—1 on F; and F,. This gives a proper w(G)-coloring of G.

36/38

Our algorithm
0o00e

Outline

Five intermediate steps to reach:

v Describe the decomposition tree that is used
v" Know how to algorithmically construct the tree

v" Know how to directly solve the problem on leaves
— time O(nmax(7w(6)))

v" Bound the size of the tree by a polynomial in n
v" Know how to go from children to father (combining solutions)
— time O(n?(©))

37/38

Our algorithm
0o00e

Outline

Five intermediate steps to reach:

v Describe the decomposition tree that is used
v" Know how to algorithmically construct the tree

v" Know how to directly solve the problem on leaves
— time O(nmax(7w(6)))

v" Bound the size of the tree by a polynomial in n
v" Know how to go from children to father (combining solutions)
— time O(n?(©))

— Algorithm Ay is well-defined and runs in time
O(n«(G)+1)%)

37/38

Perspectives
°

Perspectives

Ultimate aim: Color perfect graphs in the general case!

38/38

Perspectives
°

Perspectives

Ultimate aim: Color perfect graphs in the general case!

@ How to bound the size of the tree?
@ Could we modify the decomposition theorem?

e Could we get a FPT algorithm with parameter w(G)?

38/38

Perspectives
°

Perspectives

Ultimate aim: Color perfect graphs in the general case!

@ How to bound the size of the tree?
@ Could we modify the decomposition theorem?

e Could we get a FPT algorithm with parameter w(G)?

Thank you for your attention!

38/38

	My thesis
	CS-Separation
	Positive Results

	Coloring
	Perfect graphs
	Our algorithm
	Outline
	Describing the tree
	Algorithmically construct the tree
	Leaves
	Bounding the size of the tree
	Combining solutions

	Perspectives

