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Clique vs Independent Set Problem

Goal
Find a CS-separator : a family of cuts that can separate all the
pairs Clique-Stable set.

Theorem, Yannakakis 1991
Non-det. communication complexity = log k
where k is the minimal size of a CS-separator.
If k = nc , then complexity=O(log n).

Upper Bound : there exists a CS-separator of size O(nlog n).
Lower Bound [Amano, Shigeta 2013] : there exists an infinite
family of graphs such that any CS-separator has size Ω(n2−ε)
Does there exist for all graph G on n vertices a CS-separator of
size poly(n) ? Or for which classes of graphs does it exist ?
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For which classes of graphs do we have a polynomial CS-separator ?
If ω (or α) is bounded by k (Take every (K ,V \ K ))

Polynomial number of cliques (or stable sets), e.g. in C4-free
graphs [Alekseev]
H-free with H split
Linear bipartite property, e.g. Pk ,Pk -free graphs.
Simple-neighbourhood property : ∃k, ∃v ∈ V s.t. N(v)
admits a O(nk) CS-separator.
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Perfect graph
We denote ω(G) the size of the biggest clique and χ(G) the
chromatic number of G . A graph is called perfect if for every
induced subgraph of H, we have :

χ(H) = ω(H)

Berge graph
A hole is an induced (chordless) cycle of length at least 4.
A graph G is Berge if neither G nor G has an odd hole.

Strong Perfect Graph Theorem [Chudnovsky, Roberston, Seymour,
Thomas, 2006]
A graph is perfect if and only if it is Berge.
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Decomposition [Chudnovsky, Roberston, Seymour, Thomas]
If a graph is Berge, then for G or G , one of the following holds :

It is a basique graph : bipartite, line graph of bipartite, or
double split.
There is a 2-join
There is a balanced skew partition.

+ all non-edges + all edges

Figure :
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Linear bipartite property [L., Trunck 2013]
Every Berge graph with no balanced skew partition admits two
subsets of vertices A and B of size at least n/148, with A complete
or anticomplete to B.

A B

G

|A| ≥ n
148 |B| ≥ n

148

Observe that this class is not closed under induced subgraph, so
this property does not imply the CS-separation (neither the
Erdos-Hajnal property, which is trivial in perfect graphs)
But there exist perfect graphs that do not verify the linear bipartite
property [Fox 2006] ⇒ Evidence of some structure
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[L., Trunck, 2013]
Let G be a Berge graph with no balanced skew partition, then
there exists a CS-separator for G of size O(n2).

Proof by induction :
For basic graphs
For a graph G with a 2-join :
from G , we build two Berge graphs G1 and G2 with no
balanced skew partition, each corresponding to a side of the
2-join + a gadget.
[Chudnovsky, Trotignon, Trunck, Vušković 2012]
⇒ CS-separators for G1 and G2 by induction hypothesis
⇒ we transform them into a CS-separator for G .
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Trigraphs [Chudnovsky, 2006]
A trigraph is composed of a set of vertices V , and between each
pair of vertices u and v , there can be either :

A strong edge : u v

A strong antiedge : u v ou u v

A switchable pair (which can play the role both of an edge
and an non-edge) : u v

A trigraph has a hole if we can chose the switchable pair in such a
way to create a hole. A trigaph T is Berge if neither T nor T has
odd holes.
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Clique-Stable set separation in trigraphs :
A clique (resp. a stable set) can contain switchable pairs.
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Decomposition [Chudnovsky, 2006]
If a trigraph T is Berge, then for T or T , one of the following
holds :

It is a basique trigraph : bipartite, line trigraph, or doubled.
It admits a 2-join
It admits a balanced skew partition
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In basic trigraphs :
In a bipartite trigraph, ω is bounded by 2.
⇒ CS-separator of size O(n2).

A line trigraph T is obtained from a line graph of a bipartite
graph G from which we change some edges into
non-determined edges. A clique of T is thus a clique of G , so
there are a linear number of them.
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Perspectives

Study the Clique-Stable Set separation on other classes of
graphs (perfect graphs ?)
Prove that there does not exist a polynomial CS-separator in
general.
What are the links between the CS-separation and other graph
classes properties ? (Erdős-Hajnal for example).

Thank you for your attention !
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