Clique-Stable Set separation	Perfect graphs	Results	Perspectives

Clique-Stable Set separation in Berge graphs with no balanced skew partition

Aurélie Lagoutte, Théophile Trunck

LIP, ENS Lyon

Thursday, December 19th 2013 Bertinoro Workshop on Algorithms and Graphs

Clique-Stable Set separation	Perfect graphs	Results	Perspectives

2 Perfect graphs

Perfect graph

00000000

Perspectives 0

Clique vs Independent Set Problem

Perfect graph

Results 00000000 Perspectives 0

Clique vs Independent Set Problem

Perfect graphs

Results 00000000 Perspectives 0

Clique vs Independent Set Problem

Perfect graphs

Results 00000000 Perspectives 0

Clique vs Independent Set Problem

Perfect graphs

Results 00000000 Perspectives 0

Clique vs Independent Set Problem

 Clique-Stable Set separation
 Perfect graphs
 Results
 Perspective

 ••••
 •••
 •••
 •••
 •••

Clique vs Independent Set Problem

Perfect graphs

Results 00000000 Perspectives 0

Clique vs Independent Set Problem

Perfect graph

Results 00000000 Perspectives 0

Clique vs Independent Set Problem

Perfect graphs

Results 00000000 Perspectives 0

Clique vs Independent Set Problem

 Clique-Stable Set separation
 Perfect graphs
 Results
 Perspective

 ••••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 ••

Clique vs Independent Set Problem

Clique-Stable	Set	separation	
000			

Goal

Find a CS-separator : a family of cuts that can separate all the pairs Clique-Stable set.

Clique-Stable	Set	separation	
000			

Goal

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Theorem, Yannakakis 1991

Non-det. communication complexity = log k where k is the minimal size of a CS-separator. If $k = n^c$, then complexity= $O(\log n)$.

Clique-Stable	Set	separation
000		

Goal

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Theorem, Yannakakis 1991

Non-det. communication complexity = log k where k is the minimal size of a CS-separator. If $k = n^c$, then complexity= $O(\log n)$.

Upper Bound : there exists a CS-separator of size $\mathcal{O}(n^{\log n})$. Lower Bound [Amano, Shigeta 2013] : there exists an infinite family of graphs such that any CS-separator has size $\Omega(n^{2-\varepsilon})$

Clique-Stable	Set	separation
000		

Goal

Find a *CS-separator* : a family of cuts that can separate all the pairs Clique-Stable set.

Theorem, Yannakakis 1991

Non-det. communication complexity = log k where k is the minimal size of a CS-separator. If $k = n^c$, then complexity= $O(\log n)$.

Upper Bound : there exists a CS-separator of size $O(n^{\log n})$. Lower Bound [Amano, Shigeta 2013] : there exists an infinite family of graphs such that any CS-separator has size $\Omega(n^{2-\varepsilon})$ Does there exist for all graph *G* on *n* vertices a CS-separator of size poly(*n*)? Or for which classes of graphs does it exist?

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
00•			

• If ω (or α) is bounded by k (Take every (K, V \ K))

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
000			

- If ω (or α) is bounded by k (Take every $(K, V \setminus K)$)
- Polynomial number of cliques (or stable sets), e.g. in C₄-free graphs [Alekseev]

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
00•	00	0000000	0

- If ω (or α) is bounded by k (Take every (K, V \ K))
- Polynomial number of cliques (or stable sets), e.g. in C₄-free graphs [Alekseev]
- *H*-free with *H* split

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
00•	00	0000000	0

- If ω (or α) is bounded by k (Take every ($K, V \setminus K$))
- Polynomial number of cliques (or stable sets), e.g. in C₄-free graphs [Alekseev]
- H-free with H split
- Linear bipartite property, e.g. P_k , $\overline{P_k}$ -free graphs.

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
00•	00	0000000	0

- If ω (or α) is bounded by k (Take every ($K, V \setminus K$))
- Polynomial number of cliques (or stable sets), e.g. in C₄-free graphs [Alekseev]
- H-free with H split
- Linear bipartite property, e.g. P_k , $\overline{P_k}$ -free graphs.
- Simple-neighbourhood property : ∃k, ∃v ∈ V s.t. N(v) admits a O(n^k) CS-separator.

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
000			

- If ω (or α) is bounded by k (Take every $(K, V \setminus K)$)
- Polynomial number of cliques (or stable sets), e.g. in C_4 -free graphs [Alekseev]
- *H*-free with *H* split
- Linear bipartite property, e.g. P_k , P_k -free graphs.
- Simple-neighbourhood property : $\exists k, \exists v \in V \text{ s.t. } N(v)$ admits a $\mathcal{O}(n^k)$ CS-separator.

ind. hyp

v in stable set side

Cuts every (K, S) with $v \in S$

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
00•	00	0000000	0

- If ω (or α) is bounded by k (Take every ($K, V \setminus K$))
- Polynomial number of cliques (or stable sets), e.g. in C₄-free graphs [Alekseev]
- *H*-free with *H* split
- Linear bipartite property, e.g. $P_k, \overline{P_k}$ -free graphs.
- Simple-neighbourhood property : ∃k, ∃v ∈ V s.t. N(v) admits a O(n^k) CS-separator.

v in clique side

 V_2 in stable set side

Cuts every (K, S) with $v \in K$

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
	•0		

Perfect graph

We denote $\omega(G)$ the size of the biggest clique and $\chi(G)$ the chromatic number of *G*. A graph is called *perfect* if for every induced subgraph of *H*, we have :

$$\chi(H)=\omega(H)$$

Berge graph

A *hole* is an induced (chordless) cycle of length at least 4. A graph G is Berge if neither G nor \overline{G} has an odd hole.

Strong Perfect Graph Theorem [Chudnovsky, Roberston, Seymour, Thomas, 2006]

A graph is perfect if and only if it is Berge.

Clique 000	-Stable Set separation	Perfect graphs ○●	Results 0000000	Perspectives O
	Decomposition [Chudno	ovsky, Roberston,	Seymour, Thomas]	
	If a graph is Berge, the	n for G or \overline{G} , one	of the following ho	lds :
	 It is a basique grap double split. 	oh : bipartite, line	graph of bipartite,	or

- There is a 2-join
- There is a balanced skew partition.

- It is a basique graph : bipartite, line graph of bipartite, or double split.
- There is a 2-join
- There is a balanced skew partition.

 $FIGURE: Double \ split$

- It is a basique graph : bipartite, line graph of bipartite, or double split.
- There is a 2-join
- There is a balanced skew partition.

 $FIGURE: Double \ split$

- It is a basique graph : bipartite, line graph of bipartite, or double split.
- There is a 2-join
- There is a balanced skew partition.

 $FIGURE: Double \ split$

If a graph is Berge, then for G or \overline{G} , one of the following holds :

- It is a basique graph : bipartite, line graph of bipartite, or double split.
- There is a 2-join
- There is a balanced skew partition.

 $FIGURE: Double \ split$

If a graph is Berge, then for G or \overline{G} , one of the following holds :

- It is a basique graph : bipartite, line graph of bipartite, or double split.
- There is a 2-join
- There is a balanced skew partition.

FIGURE : 2-join

- It is a basique graph : bipartite, line graph of bipartite, or double split.
- There is a 2-join
- There is a balanced skew partition.

 $\mathbf{F}_{\mathbf{IGURE}}: \quad \mathsf{Balanced} \ \mathsf{partition}$

If a graph is Berge, then for G or \overline{G} , one of the following holds :

- It is a basique graph : bipartite, line graph of bipartite, or double split.
- There is a 2-join
- There is a balanced skew partition.

FIGURE : Balanced skew partition

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		•0000000	

Every Berge graph with no balanced skew partition admits two subsets of vertices A and B of size at least n/148, with A complete or anticomplete to B.

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		•0000000	

Every Berge graph with no balanced skew partition admits two subsets of vertices A and B of size at least n/148, with A complete or anticomplete to B.

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		•0000000	

Every Berge graph with no balanced skew partition admits two subsets of vertices A and B of size at least n/148, with A complete or anticomplete to B.

Observe that this class is not closed under induced subgraph, so this property does not imply the CS-separation (neither the Erdos-Hajnal property, which is trivial in perfect graphs)

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		•••••	

Every Berge graph with no balanced skew partition admits two subsets of vertices A and B of size at least n/148, with A complete or anticomplete to B.

Observe that this class is not closed under induced subgraph, so this property does not imply the CS-separation (neither the Erdos-Hajnal property, which is trivial in perfect graphs)

But there exist perfect graphs that do not verify the linear bipartite property [Fox 2006] \Rightarrow Evidence of some structure

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		0000000	

[L., Trunck, 2013]

Let G be a Berge graph with no balanced skew partition, then there exists a CS-separator for G of size $O(n^2)$.

Proof by induction :

• For basic graphs

For a graph G with a 2-join : from G, we build two Berge graphs G₁ and G₂ with no balanced skew partition, each corresponding to a side of the 2-join + a gadget. [Chudnovsky, Trotignon, Trunck, Vušković 2012]
⇒ CS-separators for G₁ and G₂ by induction hypothesis
⇒ we transform them into a CS-separator for G.

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		000000	

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
000	00	0000000	0

 a_2

 b_2

 c_2

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		000000	

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		000000	

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		000000	

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		000000	

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
000	00	0000000	0

Trigraphs [Chudnovsky, 2006]

A trigraph is composed of a set of vertices V, and between each pair of vertices u and v, there can be either :

- A strong edge : $u \bullet v$
- A strong antiedge : $u \bullet - \bullet v$ ou $u \bullet \cdots \bullet v$

 A switchable pair (which can play the role both of an edge and an non-edge) : u • v

A trigraph has a hole if we can chose the switchable pair in such a way to create a hole. A trigaph T is Berge if neither T nor \overline{T} has odd holes.

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		0000000	

Clique-Stable set separation in trigraphs :

A clique (resp. a stable set) can contain switchable pairs.

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		00000000	

Decomposition [Chudnovsky, 2006]

- It is a basique trigraph : bipartite, line trigraph, or doubled.
- It admits a 2-join
- It admits a balanced skew partition

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		0000000	

In basic trigraphs :

- In a bipartite trigraph, ω is bounded by 2.
 - \Rightarrow CS-separator of size $\mathcal{O}(n^2)$.

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		0000000	

In basic trigraphs :

- In a bipartite trigraph, ω is bounded by 2.
 ⇒ CS-separator of size O(n²).
- A line trigraph *T* is obtained from a line graph of a bipartite graph *G* from which we change some edges into non-determined edges. A clique of *T* is thus a clique of *G*, so there are a linear number of them.

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
		0000000	

In basic trigraphs :

- In a bipartite trigraph, ω is bounded by 2.
 ⇒ CS-separator of size O(n²).
- A line trigraph *T* is obtained from a line graph of a bipartite graph *G* from which we change some edges into non-determined edges. A clique of *T* is thus a clique of *G*, so there are a linear number of them.

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
	00	0000000	●
Perspectives			

- Study the Clique-Stable Set separation on other classes of graphs (perfect graphs?)
- Prove that there does not exist a polynomial CS-separator in general.
- What are the links between the CS-separation and other graph classes properties? (Erdős-Hajnal for example).

Clique-Stable Set separation	Perfect graphs	Results	Perspectives
	00	0000000	●
Perspectives			

- Study the Clique-Stable Set separation on other classes of graphs (perfect graphs?)
- Prove that there does not exist a polynomial CS-separator in general.
- What are the links between the CS-separation and other graph classes properties? (Erdős-Hajnal for example).

Thank you for your attention !