Identifying codes and VC-dimension

Aurélie Lagoutte LIP, ENS Lyon

Joint work with:
N. Bousquet, Z. Li, A. Parreau and S. Tomassé

BGW - November 19, 2014

Contents

Identifying codes
VC-dimension

?

Part I

Identifying codes

Modelization with a graph

Identifying code $C=$ subset of vertices which is

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

Given a graph G, what is the size $\gamma^{I D}(G)$ of minimum identifying code?

Modelization with a graph

Identifying code $C=$ subset of vertices which is

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

Given a graph G, what is the size $\gamma^{I D}(G)$ of minimum identifying code?

Modelization with a graph

Identifying code $C=$ subset of vertices which is

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

Given a graph G, what is the size $\gamma^{I D}(G)$ of minimum identifying code?

Modelization with a graph

Identifying code $C=$ subset of vertices which is

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

Given a graph G, what is the size $\gamma^{I D}(G)$ of minimum identifying code?

Some facts about identifying codes

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Exists iff there is no twins

Twins: $N[u]=N[v]$

Some facts about identifying codes

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Exists iff there is no twins
- NP-complete (Charon, Hudry, Lobstein, 2001)

Some facts about identifying codes

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Exists iff there is no twins
- NP-complete (Charon, Hudry, Lobstein, 2001)
- Hard to approximate: best approximation factor $\log (|V|)$

Some facts about identifying codes

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Exists iff there is no twins
- NP-complete (Charon, Hudry, Lobstein, 2001)
- Hard to approximate: best approximation factor $\log (|V|)$
- Lower bound:
$\rightarrow A$ vertex is identified by a nonempty subset of $C \Rightarrow|V| \leq 2^{\gamma^{I D}(G)}-1$

$$
\gamma^{I D}(G) \geq \log (|V|+1)
$$

Tight example:

Some facts about identifying codes

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Exists iff there is no twins
- NP-complete (Charon, Hudry, Lobstein, 2001)
- Hard to approximate: best approximation factor $\log (|V|)$
- Lower bound:
\rightarrow A vertex is identified by a nonempty subset of $C \Rightarrow|V| \leq 2^{\gamma^{I D}(G)}-1$

$$
\gamma^{I D}(G) \geq \log (|V|+1)
$$

Tight example:

In restricted classes of graphs?

Example 1: Class of interval graphs

In restricted classes of graphs?

Example 1: Class of interval graphs

Proposition Foucaud, Naserasr, Parreau, Valicov, 2012+
If G is an interval graph, $\gamma^{I D}(G) \geq \sqrt{2|V|}$.

In restricted classes of graphs?

Example 2: Class of split graphs

In restricted classes of graphs?

Example 2: Class of split graphs

Stable set

Clique

Proposition

For infinitely many split graphs $G, \gamma^{I D}(G)=\log (|V|+1)$.

Proposition Foucaud, 2013

Min-Id-Code is log-APX-hard for split graphs.

Part II

VC-dimension

Shattered set

- $\mathcal{H}=(V, \mathcal{E})$ an hypergraph
- A set $X \subseteq V$ is shattered if for all $Y \subseteq X$, there exists $e \in \mathcal{E}$, s.t $e \cap X=Y$.

A 2-shattered set

A 3-shattered set

Vapnik Chervonenkis (VC) dimension of an hypergraph

- A set X is shattered if $\forall Y \subseteq X, \exists e \in \mathcal{E}$, s.t $e \cap X=Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.

Vapnik Chervonenkis (VC) dimension of an hypergraph

- A set X is shattered if $\forall Y \subseteq X, \exists e \in \mathcal{E}$, s.t $e \cap X=Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.

No 3-shattered set \Rightarrow VC-dim ≤ 2

Vapnik Chervonenkis (VC) dimension of an hypergraph

- A set X is shattered if $\forall Y \subseteq X, \exists e \in \mathcal{E}$, s.t $e \cap X=Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.

No 3-shattered set \Rightarrow VC-dim ≤ 2
A 2-shattered set $\Rightarrow \mathrm{VC}$ - $\operatorname{dim}=2$

Vapnik Chervonenkis (VC) dimension of an hypergraph

- A set X is shattered if $\forall Y \subseteq X, \exists e \in \mathcal{E}$, s.t $e \cap X=Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.

No 3-shattered set \Rightarrow VC-dim ≤ 2
A 2-shattered set $\Rightarrow \mathrm{VC}$ - $\operatorname{dim}=2$

Vapnik Chervonenkis (VC) dimension of an hypergraph

- A set X is shattered if $\forall Y \subseteq X, \exists e \in \mathcal{E}$, s.t $e \cap X=Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.

No 3-shattered set \Rightarrow VC-dim ≤ 2
A 2-shattered set $\Rightarrow \mathrm{VC}$ - $\operatorname{dim}=2$

Vapnik Chervonenkis (VC) dimension of an hypergraph

- A set X is shattered if $\forall Y \subseteq X, \exists e \in \mathcal{E}$, s.t $e \cap X=Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.

No 3-shattered set \Rightarrow VC-dim ≤ 2
A 2-shattered set $\Rightarrow \mathrm{VC}$ - $\operatorname{dim}=2$

Vapnik Chervonenkis (VC) dimension of an hypergraph

- A set X is shattered if $\forall Y \subseteq X, \exists e \in \mathcal{E}$, s.t $e \cap X=Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.

No 3-shattered set \Rightarrow VC-dim ≤ 2
A 2-shattered set $\Rightarrow \mathrm{VC}$ - $\operatorname{dim}=2$

VC dimension of a graph / of a class of graph

- VC-dimension of G : VC-dim of the hypergraph of closed neighborhoods

VC-dim $(G)=2$

VC dimension of a graph / of a class of graph

- VC-dimension of G: VC-dim of the hypergraph of closed neighborhoods

$$
\text { VC-dim }(G)=2
$$

- VC-dimension of a class \mathcal{C} : maximal VC-dimension over \mathcal{C}
- Class of interval graphs has VC-dimension 2.
- Class of split graphs has infinite VC-dimension.

Split graphs have infinite VC-dimension

For any k, there is a split graph with VC-dimension k.

Split graphs have infinite VC-dimension

For any k, there is a split graph with VC-dimension k.

Intervals have finite VC-dimension

There is no interval graph with VC-dimension 3.
Assume there is a shattered set $\{1,2,3\}$.
Shattered set

Intervals have finite VC-dimension

There is no interval graph with VC-dimension 3.
Assume there is a shattered set $\{1,2,3\}$.

Intervals have finite VC-dimension

There is no interval graph with VC-dimension 3.
Assume there is a shattered set $\{1,2,3\}$.
Shattered set

Intervals have finite VC-dimension

There is no interval graph with VC-dimension 3.
Assume there is a shattered set $\{1,2,3\}$.

Intervals have finite VC-dimension

There is no interval graph with VC-dimension 3.
Assume there is a shattered set $\{1,2,3\}$.
Shattered set

Interval graphs have VC-dimension at most 2.

Part III

Identifying codes and VC-dimension

Back to identifying codes

Graph class	Lower bound (order)	Approx
All	$\log n$	\log APX-h
Split	$\log n$	\log APX-h
Interval	$n^{1 / 2}$	open
Unit Interval	n	2
Bipartite	$\log n$	\log APX-h
Line graphs	$n^{1 / 2}$	4
Chordal	$\log n$	\log APX-h
Planar	n	7
Cograph	n	1

Back to identifying codes

Graph class	Lower bound (order)	Approx	VC dim
All	$\log n$	\log APX-h	∞
Split	$\log n$	\log APX-h	∞
Interval	$n^{1 / 2}$	open	2
Unit Interval	n	2	
Bipartite	$\log n$	\log APX-h	2
Line graphs	$n^{1 / 2}$	4	∞
Chordal	$\log n$	\log APX-h	4
Planar	n	7	∞
Cograph	n	1	2

Back to identifying codes

Graph class	Lower bound (order)	Approx	VC dim
All	$\log n$	\log APX-h	∞
Split	$\log n$	\log APX-h	∞
Interval	$n^{1 / 2}$	open	2
Unit Interval	n	2	2
Bipartite	$\log n$	\log APX-h	∞
Line graphs	$n^{1 / 2}$	4	4
Chordal	$\log n$	\log APX-h	∞
Planar	n	7	4
Cograph	n	1	2

Back to identifying codes

Graph class	Lower bound (order)	Approx	VC dim
All	$\log n$	\log APX-h	∞
Split	$\log n$	\log APX-h	∞
Bipartite	$\log n$	\log APX-h	∞
Chordal	$\log n$	\log APX-h	∞
Interval	$n^{1 / 2}$	open	2
Unit Interval	n	2	
Line graphs	$n^{1 / 2}$	4	
Planar	n	7	2
Cograph	n	1	4

A dichotomy result

Theorem

Infinite

There are infinitely many G,

$$
\gamma^{I D}(G) \approx \log |V|
$$

Finite d

$$
\Downarrow
$$

For all G,

$$
\gamma^{I D}(G) \geq(|V|-1)^{1 / d}
$$

Proof - Case with finite VC dimension

Proposition

If \mathcal{C} has finite $V C$-dimension $d, \forall G \in \mathcal{C}, \gamma^{I D}(G) \geq(|V|-1)^{1 / d}$.

Proof - Case with finite VC dimension

Proposition

If \mathcal{C} has finite VC-dimension $d, \forall G \in \mathcal{C}, \gamma^{I D}(G) \geq(|V|-1)^{1 / d}$.

Proof: direct consequence of:

Sauer's Lemma

Let X be a subset of vertices of graph G of VC-dimension d. The number of distinct traces on X is at most $\sum_{i=1}^{d}\binom{|X|}{i} \leq|X|^{d}+1$.

Proof - Case with finite VC dimension

Proposition

If \mathcal{C} has finite VC-dimension $d, \forall G \in \mathcal{C}, \gamma^{I D}(G) \geq(|V|-1)^{1 / d}$.

Proof: direct consequence of:

Sauer's Lemma

Let X be a subset of vertices of graph G of VC-dimension d. The number of distinct traces on X is at most $\sum_{i=1}^{d}\binom{|X|}{i} \leq|X|^{d}+1$.

Identifying code $\quad \gamma^{I D}(G)$

All vertices $|V| \leq \gamma^{I D}(G)^{d}+1$

Back to the table

Graph class	Lower bound	Approx	VC-dim
All	$\log n$	\log APX-h	∞
Split	$\log n$	\log APX-h	∞
Bipartite	$\log n$	\log APX-h	∞
Chordal	$\log n$	\log APX-h	∞
Interval	$n^{1 / 2}$	open	2
Unit Interval	n	2	2
Line graphs	$n^{1 / 2}$	4	4
Planar	n	7	4
Cograph	n	1	2
Permutation	$n^{1 / 3}$	open	3
Unit disk graphs	$n^{1 / 3}$	open	3

- Lower bound not optimal (ex: Line graphs)

Back to the table

Graph class	Lower bound	Approx ?	VC-dim
All	$\log n$	\log APX-h	∞
Split	$\log n$	\log APX-h	∞
Bipartite	$\log n$	\log APX-h	∞
Chordal	$\log n$	\log APX-h	∞
Interval	$n^{1 / 2}$	open	2
Unit Interval	n	2	2
Line graphs	$n^{1 / 2}$	4	4
Planar	n	7	4
Cograph	n	1	2
Permutation	$n^{1 / 3}$	open	3
Unit disk graphs	$n^{1 / 3}$	open	3

- Lower bound not optimal (ex: Line graphs)
- What about approximation ?

Inapproximability in infinite VC dimension

Theorem
If \mathcal{C} has ∞ VC-dimension, Min-Id-Code is log-APX-hard on \mathcal{C}.

Inapproximability in infinite VC dimension

Theorem

If \mathcal{C} has ∞ VC-dimension, Min-Id-Code is log-APX-hard on \mathcal{C}.
Consequence of:

Proposition

If \mathcal{C} has infinite VC-dimension, \mathcal{C} contains:

- all bipartite graphs, or
- all split graphs, or
- all cobipartite graphs.
and

Theorem Foucaud, 2013

Min-Id-Code is log-APX-hard on bipartite, split and cobipartite graphs.

In the finite case?

Graph class	Lower bound	Approx	VC-dim
All	$\log n$	\log APX-h	∞
Split	$\log n$	\log APX-h	∞
Bipartite	$\log n$	\log APX-h	∞
Chordal	$\log n$	\log APX-h	∞
Interval	$n^{1 / 2}$	open	2
Unit Interval	n	2	2
Line graphs	$n^{1 / 2}$	4	4
Planar	n	7	4
Cograph	n	1	2
Permutation	$n^{1 / 3}$	open	3
Unit disk graphs	$n^{1 / 3}$	open	3

Is there a constant approximation in finite VC-dimension?

A class of finite VC-dimension with no good approximation

Theorem

Min-ID-Code cannot be approximed within a o $(\log |V|)$ factor in polynomial time for the class of bipartite C_{4}-free graphs.

- Class of VC-dimension 2
- Reduction from Set covering with intersection 1.

What about open approximation ?

Graph class	Lower bound	Approx	VC-dim
All	$\log n$	\log APX-h	∞
Split	$\log n$	\log APX-h	∞
Bipartite	$\log n$	\log APX-h	∞
Chordal	$\log n$	\log APX-h	∞
Interval	$n^{1 / 2}$	open	2
Unit Interval	n	2	2
Line graphs	$n^{1 / 2}$	4	4
Planar	n	7	4
Cograph	n	1	2
Permutation	$n^{1 / 3}$	open	3
Unit disk graphs	$n^{1 / 3}$	open	3

What about open approximation ?

Graph class	Lower bound	Approx	VC-dim
All	$\log n$	\log APX-h	∞
Split	$\log n$	\log APX-h	∞
Bipartite	$\log n$	\log APX-h	∞
Chordal	$\log n$	\log APX-h	∞
Interval	$n^{1 / 2}$	open	2
Unit Interval	n	2	2
Line graphs	$n^{1 / 2}$	4	4
Planar	n	7	4
Cograph	n	1	2
Permutation	$n^{1 / 3}$	open	3
Unit disk graphs	$n^{1 / 3}$	open	3

What about open approximation ?

Graph class	Lower bound	Approx	VC-dim
All	$\log n$	\log APX-h	∞
Split	$\log n$	\log APX-h	∞
Bipartite	$\log n$	\log APX-h	∞
Chordal	$\log n$	\log APX-h	∞
Interval	$n^{1 / 2}$	6	2
Unit Interval	n	2	2
Line graphs	$n^{1 / 2}$	4	4
Planar	n	7	4
Cograph	n	1	2
Permutation	$n^{1 / 3}$	open	3
Unit disk graphs	$n^{1 / 3}$	open	3

What about open approximation ?

Graph class	Lower bound	Approx	VC-dim
All	$\log n$	\log APX-h	∞
Split	$\log n$	\log APX-h	∞
Bipartite	$\log n$	\log APX-h	∞
Chordal	$\log n$	\log APX-h	∞
Interval	$n^{1 / 2}$	6	2
Unit Interval	n	2	2
Line graphs	$n^{1 / 2}$	4	4
Planar	n	7	4
Cograph	n	1	2
Permutation	$n^{1 / 3}$	open	3
Unit disk graphs	$n^{1 / 3}$	open	3

Thank you for your attention!

