Characterizations of non-Seymour graphs

Zoltán Szigeti
Laboratoire G-SCOP
Grenoble, France

24th October 2014

Outline

(1) Motivation
(2) Definitions: joins, complete packing of cuts
(3) Seymour graphs
(9) Characterizations of non-Seymour graphs
(3) Ingredients from Matching Theory
(0) Equivalent forms
(1) Proof ideas
(3) Algorithmic aspects
(0) Open problem

Motivation

Edge-disjoint paths problem

Given a graph $H=(V, E)$ and k pairs of vertices $\left\{s_{i}, t_{i}\right\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_{i}, t_{i}.

Motivation

Edge-disjoint paths problem

Given a graph $H=(V, E)$ and k pairs of vertices $\left\{s_{i}, t_{i}\right\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_{i}, t_{i}.

Applications :

(1) Real-time communication,
(2) VLSI design,
(3) Transportation networks,

Motivation

Edge-disjoint paths problem

Given a graph $H=(V, E)$ and k pairs of vertices $\left\{s_{i}, t_{i}\right\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_{i}, t_{i}.

Reformulation by adding the set F of edges $s_{i} t_{i}$.

Motivation

Edge-disjoint paths problem

Given a graph $H=(V, E)$ and k pairs of vertices $\left\{s_{i}, t_{i}\right\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_{i}, t_{i}.

Reformulation by adding the set F of edges $s_{i} t_{i}$.

Complete packing of cycles

Given a graph $H^{\prime}=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cycles in H^{\prime}, each containing exactly one edge of F.

Motivation

Edge-disjoint paths problem

Given a graph $H=(V, E)$ and k pairs of vertices $\left\{s_{i}, t_{i}\right\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_{i}, t_{i}.

Reformulation by adding the set F of edges $s_{i} t_{i}$.

Complete packing of cycles

Given a graph $H^{\prime}=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cycles in H^{\prime}, each containing exactly one edge of F.

Suppose H^{\prime} is planar. The problem in the dual :

Motivation

Edge-disjoint paths problem

Given a graph $H=(V, E)$ and k pairs of vertices $\left\{s_{i}, t_{i}\right\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_{i}, t_{i}.

Reformulation by adding the set F of edges $s_{i} t_{i}$.

Complete packing of cycles

Given a graph $H^{\prime}=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cycles in H^{\prime}, each containing exactly one edge of F.

Suppose H^{\prime} is planar. The problem in the dual :

Complete packing of cuts

Given a graph $G=\left(V^{\prime}, E^{\prime}+F^{\prime}\right)$, decide whether there exist $\left|F^{\prime}\right|$ edge-disjoint cuts in G, each containing exactly one edge of F^{\prime}.

An example

Edge-disjoint paths problem

An example

Complete packing of paths

An example

Adding the edges $s_{i} t_{i}$

An example

The graph H^{\prime}

An example

Complete packing of cycles

An example

H^{\prime} is planar

An example

H^{\prime} and his dual G

An example

H^{\prime} and his dual G

An example

Complete packing of cycles and cuts

Complete packing of cuts

The graphs are not planar anymore!

Complete packing of cuts

The problem

Given a graph $G=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Complete packing of cuts

The problem

Given a graph $G=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G=(V, E+F)$ admits a complete packing of cuts, then F is a join : for every cycle $C,|C \cap F| \leq|C \backslash F|$.

Complete packing of cuts

The problem

Given a graph $G=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G=(V, E+F)$ admits a complete packing of cuts, then F is a join : for every cycle $C,|C \cap F| \leq|C \backslash F|$.

Sufficient condition?

If F is a join, the graph $G=(V, E+F)$ admits a complete packing of cuts?

Complete packing of cuts

The problem

Given a graph $G=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G=(V, E+F)$ admits a complete packing of cuts, then F is a join : for every cycle $C,|C \cap F| \leq|C \backslash F|$.

Sufficient condition?

If F is a join, the graph $G=(V, E+F)$ admits a complete packing of cuts?

NOT:

Complete packing of cuts

The problem

Given a graph $G=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G=(V, E+F)$ admits a complete packing of cuts, then F is a join: for every cycle $C,|C \cap F| \leq|C \backslash F|$.

Sufficient condition?

If F is a join, the graph $G=(V, E+F)$ admits a complete packing of cuts?

Theorem (Middendorf, Pfeiffer '93)

Given a join in a graph, decide whether there exists a complete packing of cuts is an NP-complete problem.

Seymour graphs

Theorem (Seymour '77)

If G is a series-parallel graph, then for every join there exists a complete packing of cuts.

Seymour graphs

Theorem (Seymour '77)

If G is a series-parallel graph, then for every join there exists a complete packing of cuts.

Theorem (Seymour '81)

If G is a bipartite graph, then for every join there exists a complete packing of cuts.

Seymour graphs

Theorem (Seymour '77)

If G is a series-parallel graph, then for every join there exists a complete packing of cuts.

Theorem (Seymour '81)

If G is a bipartite graph, then for every join there exists a complete packing of cuts.

```
Definition
G is a Seymour graph
if for every join there exists a complete packing of cuts.
```


Seymour graphs

Theorem (Seymour '77)

If G is a series-parallel graph, $\left(\Longleftrightarrow\right.$ no subdivision of $\left.K_{4}\right)$ then for every join there exists a complete packing of cuts.

Theorem (Seymour '81)

If G is a bipartite graph, then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph
if for every join there exists a complete packing of cuts.

Seymour graphs

Theorem (Seymour '77)

If G is a series-parallel graph, $\left(\Longleftrightarrow\right.$ no subdivision of $\left.K_{4}\right)$ then for every join there exists a complete packing of cuts.

Theorem (Seymour '81)

If G is a bipartite graph, (\Longleftrightarrow no odd cycle) then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph
if for every join there exists a complete packing of cuts.

Seymour graphs

Theorem (Seymour '77)

If G is a series-parallel graph, $\left(\Longleftrightarrow\right.$ no subdivision of $\left.K_{4}\right)$ then for every join there exists a complete packing of cuts.

Theorem (Seymour '81)

If G is a bipartite graph, (\Longleftrightarrow no odd cycle) then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph \Longleftrightarrow ?
if for every join there exists a complete packing of cuts.

Around Seymour graphs

Subclasses

(1) Seymour '77: Graphs without subdivision of K_{4},
(2) Seymour '81: Graphs without odd cycle,

83 Gerards '92 : Granhs without odd K_{1} and without odd prism,
(4) Szigeti '93 : Graphs without non-Seymour odd K_{4} and without non-Seymour odd prism.

Around Seymour graphs

Subclasses

(1) Seymour '77: Graphs without subdivision of K_{4},
(2) Seymour '81: Graphs without odd cycle,
(3) Gerards '92 Graphs without odd K_{4} and without odd prism,
(9) Szigeti '93: Graphs without non-Seymour odd K_{4} and without non-Seymour odd prism.

Around Seymour graphs

Subclasses

(1) Seymour '77: Graphs without subdivision of K_{4},
(2) Seymour '81: Graphs without odd cycle,
(3) Gerards '92 : Graphs without odd K_{4} and without odd prism,
(9) Szigeti '93 : Graphs without non-Seymour odd K_{4} and without non-Seymour odd prism.

Around Seymour graphs

Subclasses

(1) Seymour '77: Graphs without subdivision of K_{4},
(2) Seymour '81: Graphs without odd cycle,
(3) Gerards '92 : Graphs without odd K_{4} and without odd prism, (1) Szigeti '93 : Graphs without non-Seymour odd K_{4} and without

Around Seymour graphs

Subclasses

(1) Seymour '77: Graphs without subdivision of K_{4},
(2) Seymour '81: Graphs without odd cycle,
(3) Gerards '92 : Graphs without odd K_{4} and without odd prism, (1) Szigeti '93 : Graphs without non-Seymour odd K_{4} and without

Around Seymour graphs

Subclasses

(1) Seymour '77: Graphs without subdivision of K_{4},
(2) Seymour '81: Graphs without odd cycle,
(3) Gerards '92 : Graphs without odd K_{4} and without odd prism, (1) Szigeti '93 : Graphs without non-Seymour odd K_{4} and without

Around Seymour graphs

Subclasses

(1) Seymour '77: Graphs without subdivision of K_{4},
(2) Seymour '81: Graphs without odd cycle,
(3) Gerards '92 : Graphs without odd K_{4} and without odd prism,
(9) Szigeti '93 : Graphs without non-Seymour odd K_{4} and without non-Seymour odd prism.

Around Seymour graphs

Subclasses

(1) Seymour '77: Graphs without subdivision of K_{4},
(2) Seymour '81: Graphs without odd cycle,
(3) Gerards '92 : Graphs without odd K_{4} and without odd prism,
(9) Szigeti '93 : Graphs without non-Seymour odd K_{4} and without non-Seymour odd prism.

even subdivisions

Superclass

Seymour graph \Longrightarrow no even subdivision of K_{4} and of prism.

Preliminaries

Seymour odd K_{4}

non-Seymour odd K_{4}

Preliminaries

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Preliminaries

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Preliminaries

Seymour odd K_{4}

non-Seymour odd K_{4}

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Lemma (Sebő '92)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Preliminaries

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Lemma (Sebő '92)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Preliminaries

Seymour odd K_{4}

non-Seymour odd K_{4}

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Lemma (Sebő '92)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Preliminaries

Seymour

non-Seymour odd K_{4}

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Lemma (Sebő '92)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Conjecture (Sebő '92)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Characterizations of non-Seymour graphs

Theorem (Ageev, Kostochka, Szigeti '97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Characterizations of non-Seymour graphs

Theorem (Ageev, Kostochka, Szigeti '97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Examples

non-Seymour odd prism

Characterizations of non-Seymour graphs

Theorem (Ageev, Kostochka, Szigeti '97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Examples

non-Seymour odd prism

Characterizations of non-Seymour graphs

Theorem (Ageev, Kostochka, Szigeti '97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Examples

Characterizations of non-Seymour graphs

Theorem (Ageev, Kostochka, Szigeti '97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Examples

non-Seymour

Characterizations of non-Seymour graphs

Theorem (Ageev, Kostochka, Szigeti '97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Examples

non-Seymour odd prism

Characterizations of non-Seymour graphs

Theorem (Ageev, Kostochka, Szigeti '97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Examples

non-Seymour odd prism

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

G is non-Seymour if and only if contracting stars and odd cycles it contains an even subdivision of K_{4}.

Matching Theory : Graphs

Definitions

(1) Matching-covered $=$ connected and any edge belongs to a perfect matching,
(2) Flementary = edges belonging to a perfect matching form a connected subgraph,
(3) Barrier of elementary graph $G=$ vertex set X such that the number of odd components of $G-X$ is $|X|$.

Matching Theory : Graphs

Definitions

(1) Matching-covered $=$ connected and any edge belongs to a perfect matching,
(2) Elementary $=$ edges belonging to a perfect matching form a connected subgraph,
(3) Barrier of elementary or oph $G=$ vertex set X such that the number of odd components of $G-X$ is $|X|$.

Matching Theory : Graphs

Definitions

(1) Matching-covered $=$ connected and any edge belongs to a perfect matching, examples: K_{2}^{3}, K_{4}, prism
(2) Elementary $=$ edges belonging to a perfect matching form a connected subgraph,
(3) Rarrier of elementary oraph $G=$ vertex set X such that the number of odd components of $G-X$ is $|X|$.

Matching Theory : Graphs

Definitions

(1) Matching-covered $=$ connected and any edge belongs to a perfect matching, examples: K_{2}^{3}, K_{4}, prism and their even subdivisions.
(2) Elementary $=$ edges belonging to a perfect matching form a connected subgraph,
© Barrier of elementary graph $G=$ vertex set X such that the number of odd components of $G-X$ is $|X|$.

even subdivision of K_{2}^{3}

Matching Theory : Graphs

Definitions

(1) Matching-covered $=$ connected and any edge belongs to a perfect matching, examples: K_{2}^{3}, K_{4}, prism and their even subdivisions.
(2) Elementary $=$ edges belonging to a perfect matching form a connected subgraph,
(3) Barrier of elementary graph $G=$ vertex set X such that the number of odd components of $G-X$ is $|X|$.

Matching Theory : Graphs

Definitions

(1) Matching-covered $=$ connected and any edge belongs to a perfect matching, examples: K_{2}^{3}, K_{4}, prism and their even subdivisions.
(2) Elementary $=$ edges belonging to a perfect matching form a connected subgraph, examples: matching-covered plus some edges.
(3) Barrier of elementary graph $G=$ vertex set X such that the number of odd components of $G-X$ is $|X|$.

Matching Theory : Graphs

Definitions

(1) Matching-covered $=$ connected and any edge belongs to a perfect matching, examples: K_{2}^{3}, K_{4}, prism and their even subdivisions.
(2) Elementary $=$ edges belonging to a perfect matching form a connected subgraph, examples : matching-covered plus some edges.
(3) Barrier of elementary graph $G=$ vertex set X such that the number of odd components of $G-X$ is $|X|$.

Matching Theory : Graphs

Definitions

(1) Factor-critical $=$ deleting any vertex results in a graph having a perfect matching,
(2) bicritical $=$ deleting any vertex results in a factor-critical graph,
(3) Star $=$ vertex together with its neighbor.
(9) Sun $=$ factor-critical together with its neigh bors,

Matching Theory : Graphs

Definitions

(1) Factor-critical $=$ deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
(2) bicritical $=$ deleting any vertex results in a factor-critical graph,
(3) Star $=$ vertex together with its neighbor.
(9) Sun $=$ factor-critical together with its neigh bors,

Matching Theory : Graphs

Definitions

(1) Factor-critical $=$ deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
(2) bicritical $=$ deleting any vertex results in a factor-critical graph,
(3) Star $=$ vertex together with its neighbor.
(9) Sun $=$ factor-critical together with its neighbors,

Matching Theory : Graphs

Definitions

(1) Factor-critical $=$ deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
(2) bicritical $=$ deleting any vertex results in a factor-critical graph, examples: K_{2}, K_{4}, prism ; non-trivial $=$ at least 4 vertices.
(ㅇ) Star $=$ vertex together with its neighbor.
(9) Sun $=$ factor-critical together with its neighbors,

Matching Theory : Graphs

Definitions

(1) Factor-critical $=$ deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
(2) bicritical $=$ deleting any vertex results in a factor-critical graph, examples: K_{2}, K_{4}, prism ; non-trivial $=$ at least 4 vertices.
(3) Star $=$ vertex together with its neighbor.
(1) Sun $=$ factor-critical together with its neighbors,

Matching Theory : Graphs

Definitions

(1) Factor-critical $=$ deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
(2) bicritical $=$ deleting any vertex results in a factor-critical graph, examples: K_{2}, K_{4}, prism; non-trivial $=$ at least 4 vertices.
(3) Star $=$ vertex together with its neighbor.
(9) Sun $=$ factor-critical together with its neighbors,

Matching Theory : Graphs

Definitions

(1) Factor-critical $=$ deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
(2) bicritical $=$ deleting any vertex results in a factor-critical graph, examples: K_{2}, K_{4}, prism ; non-trivial $=$ at least 4 vertices.
(3) Star $=$ vertex together with its neighbor.
(9) Sun $=$ factor-critical together with its neighbors, example : star.

Matching Theory : Results

Theorems

(1) Lovász '75: A graph is factor-critical if and only contracting odd cycles it can be reduced to a vertex.
(2) Lovász-Plummer '86: Every non-bipartite matching-covered graph contains an even subdivision of K_{4} or of the prism.

Matching Theory : Results

Theorems

(1) Lovász '75: A graph is factor-critical if and only contracting odd cycles it can be reduced to a vertex.
(2) Lovász-Plummer '86: Every non-bipartite matching-covered graph contains an even subdivision of K_{4} or of the prism.

Matching Theory : Remarks

Remarks

(1) Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
(2) Let H be obtained by gluing G_{1} and G_{2} in a vertex set Y. If H / G_{2} is elementary then H / G_{1} can be obtained from H by contracting suns.

Matching Theory : Remarks

Remarks

(1) Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
(2) Let H be obtained by gluing G_{1} and G_{2} in a vertex set Y. If H / G_{2} is elementary then H / G_{1} can be obtained from H by contracting suns.

Matching Theory : Remarks

Remarks

(1) Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
(2) Let H be obtained by gluing G_{1} and G_{2} in a vertex set Y. If H / G_{2} is elementary then H / G_{1} can be obtained from H by contracting suns.

Matching Theory : Remarks

Remarks

(1) Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
(2) Let H be obtained by gluing G_{1} and G_{2} in a vertex set Y. If H / G_{2} is elementary then H / G_{1} can be obtained from H by contracting suns.

Matching Theory : Remarks

Remarks

(1) Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
(2) Let H be obtained by gluing G_{1} and G_{2} in a vertex set Y. If H / G_{2} is elementary then H / G_{1} can be obtained from H by contracting suns.

Matching Theory : Remarks

Remarks

(1) Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
(2) Let H be obtained by gluing G_{1} and G_{2} in a vertex set Y. If H / G_{2} is elementary then H / G_{1} can be obtained from H by contracting suns.

maximal barrier

Matching Theory : Remarks

Remarks

(1) Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
(2) Let H be obtained by gluing G_{1} and G_{2} in a vertex set Y. If H / G_{2} is elementary then H / G_{1} can be obtained from H by contracting suns.

Matching Theory : Remarks

Remarks

(1) Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
(2) Let H be obtained by gluing G_{1} and G_{2} in a vertex set Y. If H / G_{2} is elementary then H / G_{1} can be obtained from H by contracting suns.

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)
The following conditions are equivalent for any graph G :
(1) Contracting suns it contains a non-trivial bicritical graph,
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(3) Contracting stars and odd cycles it contains an even subdivision of K_{2} or of the prism,
(6) Contracting stars and odd cycles it contains an even subdivision of K_{4},
(7) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :
(1) Contracting suns it contains a non-trivial bicritical graph,
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,
(7) Contracting stars and factor-critical graphs it contains an even subdivision of K_{Λ} or of the prism,
(3) Contracting stars and odd cycles it contains an even subdivision of K or of the prism,

- Contracting stars and odd cycles it contains an even subdivision of K_{4}
(7) Contracting cores it contains an even subdivision of K_{4} or of the nrism or of the hinrism

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :
(1) Contracting suns it contains a non-trivial bicritical graph,
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism
(9) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(3) Contracting stars and odd cycles it contains an even subdivision of K or of the prism,
(8) Contracting stars and odd cycles it contains an even subdivision of K_{2}
(Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :
(1) Contracting suns it contains a non-trivial bicritical graph,
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,
(1) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(5) Contracting stars and odd cycles it contains an even subdivision of K or of the prism,
(6) Contracting stars and odd cycles it contains an even subdivision of K_{4}
(1) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :
(1) Contracting suns it contains a non-trivial bicritical graph,
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,
(9) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(3) Contracting stars and odd cycles it contains an even subdivision of K or of the prism,
(3) Contracting stavs and odd cycles it contains an even subdivision of Ka
(7) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :
(1) Contracting suns it contains a non-trivial bicritical graph,
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,
(9) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(5) Contracting stars and odd cycles it contains an even subdivision of K_{4} or of the prism,
(0) Contracting stars and odd cycles it contains an even subdivision of K
(Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :
(1) Contracting suns it contains a non-trivial bicritical graph,
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,
(9) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(5) Contracting stars and odd cycles it contains an even subdivision of K_{4} or of the prism,
(0) Contracting stars and odd cycles it contains an even subdivision of K_{4}, (1) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :
(1) Contracting suns it contains a non-trivial bicritical graph,
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,
(9) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(5) Contracting stars and odd cycles it contains an even subdivision of K_{4} or of the prism,
(0) Contracting stars and odd cycles it contains an even subdivision of K_{4},
(1) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :
(1) Contracting suns it contains a non-trivial bicritical graph,
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism
(9) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(3) Contracting stars and odd cycles it contains an even subdivision of K or of the prism,
(a) Contracting stars and odd cycles it contains an even subdivision of K
(1) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.
$(1) \Longrightarrow(2):$ OK, $(2) \Longrightarrow(1)$: Contract suns of a maximal barrier

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :
(1) Contracting suns it contains a non-trivial bicritical graph
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism, (4) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(3) Contracting stars and add cyeles it contains an even subdivision of K or of the prism,
(6) Contracting stars and odd cycles it contains an even subdivision of K
(7) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism
$(2) \Longrightarrow(3)$: Lovász-Plummer ' $86,(3) \Longrightarrow(2):$ OK

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :Contracting suns it contains a non-trivial bicritical graph
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,
(9) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(3) Contracting stars and odd cycles it contains an even subdivision of K_{4} or of the prism,
(a) Contracting stars and odd cycles it contains an even subdivision of K
(7) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism
$(3) \Longrightarrow(4):$ OK, $(4) \Longrightarrow(3): ~ ? ~$

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :

(1)Contracting suns it contains a non-trivial bicritical graph
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,
(4) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(5) Contracting stars and odd cycles it contains an even subdivision of K_{4} or of the prism,
(0) Contracting stars and odd cycles it contains an even subdivision of K
(7) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.
$(4) \Longrightarrow(5):$ Lovász '75, $(5) \Longrightarrow(4):$ OK

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :

(1)Contracting t contains a Contracting suns it contains a non-bipartite matching-covered graph
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(5) Contracting stars and odd cycles it contains an even subdivision of K_{4} or of the prism,
(0) Contracting stars and odd cycles it contains an even subdivision of K_{4}, (1) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.
$(5) \Longrightarrow(6):$ Contract an odd cycle of the even subdivision of the prism to get an even subdivision of $K_{\Lambda},(6) \Longrightarrow(5):$ OK
Z. Szigeti $(G-S C O P$, Grenoble)

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)
The following conditions are equivalent for any graph G :Contracting suns it contains a non-trivial bicritical graph
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,
(1) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(5) Contracting stars and odd cycles it contains an even subdivision of K
(0) Contracting stars and odd cycles it contains an even subdivision of K_{4},
(Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.

To see that $(6) \Longrightarrow(3)$, we need (7).

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :

。Contracting it contains Contracting suns it contains a non-bipartite matching-covered graph,Contracting suns it contains an even subdivision of K_{4} or of the prism 4. Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(5) Contracting stars and odd cycles it contains an even subdivision of K or of the prism,
(3) Contracting stars and odd cycles it contains an even subdivision of K_{4}
(1) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :

(1)

Contracting suns it contains a r Contracting suns it contains a non-bipartite matching-covered graph,Contracting suns it contains an even subdivision of K_{4} or of the prism, 4. Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(3) Contracting stars and odd cycles it contains an even subdivision of K
(0) Contracting stars and odd cycles it contains an even subdivision of K_{4},
(1) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.

We will see that $(6) \Longrightarrow(7)$.

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :Contracting suns it contains a non-trivial bicritical graph
(2) Contracting suns it contains a non-bipartite matching-covered graph
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(3) Contracting stars and add cyeles it contains an even subdivision of K or of the prism,
(0) Contracting stars and odd cycles it contains an even subdivision of K
(1) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.

We will see that $(7) \Longrightarrow(3)$.

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G :
(1) Contracting suns it contains a non-trivial bicritical graph,
(2) Contracting suns it contains a non-bipartite matching-covered graph,
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism,
(9) Contracting stars and factor-critical graphs it contains an even subdivision of K_{4} or of the prism,
(5) Contracting stars and odd cycles it contains an even subdivision of K_{4} or of the prism,
(0) Contracting stars and odd cycles it contains an even subdivision of K_{4},
(1) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.

Graphs

3 graphs

Graphs

3 graphs

K_{4}

prism

bi-prism

and their even subdivisions

Graphs

3 graphs

K_{4}

prism

bi-prism

and their even subdivisions

Graphs

3 graphs

K_{4}

prism

bi-prism

and their even subdivisions

Core-contraction to K_{4}

K_{4}-obstruction

An odd K_{4} subgraph H of G with disjoint sets $U_{i} \subseteq V(H)$ such that
(1) $H\left[U_{i} \cup N_{H}\left(U_{i}\right)\right]$ is an even subdivision of a 3-star,
(2) contracting each $U_{i} \cup N_{G}\left(U_{i}\right), H$ transforms into an even subdivision of K_{4}.

Core-contraction to the prism or to the biprism

Prism- or biprism-obstruction

An odd prism subgraph H of G with disjoint sets $U_{i} \subseteq V(H)$ such that
(1) $H\left[U_{i} \cup N_{H}\left(U_{i}\right)\right]$ is an even subdivision of a 2- or 3-star,
(2) contracting each $U_{i} \cup N_{G}\left(U_{i}\right), H$ transforms into an even subdivision of the prism or of the biprism (no edge of G connects the two connected components of the biprism minus its separator).

About obstructions

Remark :

(1) The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.
(2) Their main role is to be able to change the odd K_{4} (or odd prism) into an even subdivision of K_{4} (or of the prism).

About obstructions

Remark :

(1) The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.
(2) Their main role is to be able to change the odd K_{4} (or odd prism) into an even subdivision of K_{4} (or of the prism).

About obstructions

Remark :

(1) The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.
(2) Their main role is to be able to change the odd K_{4} (or odd prism) into an even subdivision of K_{4} (or of the prism).

About obstructions

Remark :

(1) The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.
(2) Their main role is to be able to change the odd K_{4} (or odd prism) into an even subdivision of K_{4} (or of the prism).

About obstructions

Remark :

(1) The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.
(2) Their main role is to be able to change the odd K_{4} (or odd prism) into an even subdivision of K_{4} (or of the prism).

Seymour odd K_{4}

even subdivision of K_{4}

(6) implies (7)

(6) and (7)
(6) Contracting stars and odd cycles it contains an even subdivision of K_{4},
(7) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.

(6) implies (7)

(6) and (7)
(6) Contracting stars and odd cycles it contains an even subdivision of K_{4}, (7) It contains an K_{4} - or prism- or biprism-obstruction.

(6) implies (7)

(6) and (7)
(6) Contracting stars and odd cycles it contains an even subdivision of K_{4}, (7) It contains an K_{4} - or prism- or biprism-obstruction.

Lemma

If G / C (C : star or odd cycle) contains an obstruction then so does G.

(7) implies (3)

(7) and (3)

(7) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism.

(7) implies (3)

(7) and (3)

(7) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism.

Lemma

(1) A core-contraction can be replaced by some sun-contractions.
(2) An even subdivision of the biprism can be sun-contracted to an even subdivision of the

(7) implies (3)

(7) and (3)
(7) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism.

Lemma

(1) A core-contraction can be replaced by some sun-contractions.
(2) An even subdivision of the biprism can be sun-contracted to an even subdivision of the

(7) implies (3)

(7) and (3)
(7) Contracting cores it contains an even subdivision of K_{4} or of the prism or of the biprism.
(3) Contracting suns it contains an even subdivision of K_{4} or of the prism.

Lemma

(1) A core-contraction can be replaced by some sun-contractions.
(2) An even subdivision of the biprism can be sun-contracted to an even subdivision of the K_{4}.

(7) implies (3)

Lemma

(1) A core-contraction can be replaced by some sun-contractions.
(2) An even subdivision of the biprism can be sun-contracted to an even subdivision of the K_{4}.

Both are implied by the lemma about the contraction of elementary graphs because an even subdivision of K_{2}^{3} (and of K_{4}) is matching-covered.

Returning to non-Seymour graphs

Equivalence to non-Seymour graphs

(1) Non-Seymour graph implies (1) : by structure theorem of Sebő ' 90 . (2) (7) implies non-Seymour graph : by lemma of Sebő '92: a join of G and two tight cycles whose union is an odd K_{4} or an odd prism can be easily found in an obstruction.

Returning to non-Seymour graphs

Equivalence to non-Seymour graphs

(1) Non-Seymour graph implies (1) : by structure theorem of Sebő ' 90 .
(2) (7) implies non-Seymour graph : by lemma of Sebő ' 92 : a join of G and two tight cycles whose union is an odd K_{4} or an odd prism can be easily found in an obstruction.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G, (1) either provide an F-complete packing of cuts (2) or show that G is not Seymour.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,
(1) either provide an F-complete packing of cuts
(2) or show that G is not Seymour.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,
(1) either provide an F-complete packing of cuts
(2) or show that G is not Seymour.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,
(1) either provide an F-complete packing of cuts
(2) or show that G is not Seymour.

What we can do

Given a matching-covered graph, decide if it is Seymour or not :

$$
\begin{aligned}
& \text { (1) if it is bipartite then it is Seymour, } \\
& \text { (2) if it is not bipartite then it is not Seymour. }
\end{aligned}
$$

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,
(1) either provide an F-complete packing of cuts
(2) or show that G is not Seymour.

What we can do

Given a matching-covered graph, decide if it is Seymour or not :
(1) if it is bipartite then it is Seymour,
(2) if it is not bipartite then it is not Seymour.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,
(1) either provide an F-complete packing of cuts
(2) or show that G is not Seymour.

What we can do

Given a matching-covered graph, decide if it is Seymour or not :
(1) if it is bipartite then it is Seymour,
(2) if it is not bipartite then it is not Seymour.

Open problem

NP characterization?

Open problem

NP characterization?

Find a construction for Seymour graphs!

Thanks!

