Characterizations of non-Seymour graphs

Zoltán Szigeti

Laboratoire G-SCOP Grenoble, France

24th October 2014

Z. Szigeti (G-SCOP, Grenoble) Characterizations of non-Seymour graphs 24th Oc

Motivation

- Definitions : joins, complete packing of cuts
- Seymour graphs
- Characterizations of non-Seymour graphs
- **Ingredients from Matching Theory**
- Equivalent forms
- Proof ideas
- Algorithmic aspects
- Open problem

Given a graph H = (V, E) and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i .

Motivation

Edge-disjoint paths problem

Given a graph H = (V, E) and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i .

Applications :

- Real-time communication,
- VLSI design,
- Transportation networks,

3 / 26

Given a graph H = (V, E) and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i .

Reformulation by adding the set F of edges $s_i t_i$.

Given a graph H = (V, E) and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i .

Reformulation by adding the set F of edges $s_i t_i$.

Complete packing of cycles

Given a graph H' = (V, E + F), decide whether there exist |F| edge-disjoint cycles in H', each containing exactly one edge of F.

3 / 26

Given a graph H = (V, E) and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i .

Reformulation by adding the set F of edges $s_i t_i$.

Complete packing of cycles

Given a graph H' = (V, E + F), decide whether there exist |F| edge-disjoint cycles in H', each containing exactly one edge of F.

Suppose H' is planar. The problem in the dual :

3 / 26

Given a graph H = (V, E) and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i .

Reformulation by adding the set F of edges $s_i t_i$.

Complete packing of cycles

Given a graph H' = (V, E + F), decide whether there exist |F|edge-disjoint cycles in H', each containing exactly one edge of F.

Suppose H' is planar. The problem in the dual :

Complete packing of cuts

Given a graph G = (V', E' + F'), decide whether there exist |F'|edge-disjoint cuts in G, each containing exactly one edge of F'.

・ロト ・同ト ・ヨト ・ヨト

3

4 / 26

Complete packing of paths

Adding the edges $s_i t_i$

The graph H'

э

Complete packing of cycles

H' is planar

H' and his dual G

э

H' and his dual G

Complete packing of cycles and cuts

24th October 2014 4 / 26

The graphs are not planar anymore !

The problem

Given a graph G = (V, E + F), decide whether there exist |F| edge-disjoint cuts in G, each containing exactly one edge of F.

The problem

Given a graph G = (V, E + F), decide whether there exist |F| edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph G = (V, E + F) admits a complete packing of cuts, then F is a join : for every cycle C, $|C \cap F| \le |C \setminus F|$.

5 / 26

The problem

Given a graph G = (V, E + F), decide whether there exist |F| edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph G = (V, E + F) admits a complete packing of cuts, then F is a join : for every cycle C, $|C \cap F| \le |C \setminus F|$.

Sufficient condition?

If F is a join, the graph G = (V, E + F) admits a complete packing of cuts?

The problem

Given a graph G = (V, E + F), decide whether there exist |F| edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph G = (V, E + F) admits a complete packing of cuts, then F is a join : for every cycle C, $|C \cap F| \le |C \setminus F|$.

Sufficient condition?

If F is a join, the graph G = (V, E + F) admits a complete packing of cuts?

5 / 26

The problem

Given a graph G = (V, E + F), decide whether there exist |F| edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph G = (V, E + F) admits a complete packing of cuts, then F is a join : for every cycle C, $|C \cap F| \le |C \setminus F|$.

Sufficient condition?

If F is a join, the graph G = (V, E + F) admits a complete packing of cuts?

Theorem (Middendorf, Pfeiffer '93)

Given a join in a graph, decide whether there exists a complete packing of cuts is an NP-complete problem.

If G is a series-parallel graph,

then for every join there exists a complete packing of cuts.

If G is a series-parallel graph,

then for every join there exists a complete packing of cuts.

Theorem (Seymour '81)

If G is a bipartite graph,

then for every join there exists a complete packing of cuts.

If G is a series-parallel graph,

then for every join there exists a complete packing of cuts.

Theorem (Seymour '81)

If G is a bipartite graph,

then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph

if for every join there exists a complete packing of cuts.

▲ 同 ▶ ▲ 三 ▶

If G is a series-parallel graph, (\iff no subdivision of K_4) then for every join there exists a complete packing of cuts.

Theorem (Seymour '81)

If G is a bipartite graph,

then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph

if for every join there exists a complete packing of cuts.

- 4 同 6 - 4 三 6 - 4 三 6

If G is a series-parallel graph, (\iff no subdivision of K_4) then for every join there exists a complete packing of cuts.

Theorem (Seymour '81)

If G is a bipartite graph, (\iff no odd cycle)

then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph if for every join there exists a complete packing of cuts.

If G is a series-parallel graph, (\iff no subdivision of K_4) then for every join there exists a complete packing of cuts.

Theorem (Seymour '81)

If G is a bipartite graph, (\iff no odd cycle)

then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph \iff ?

if for every join there exists a complete packing of cuts.

・ロト ・同ト ・ヨト ・ヨト

Subclasses Seymour '77 : Graphs without subdivision of K₄, Seymour '81 : Graphs without odd cycle, Gerards '92 : Graphs without odd K₄ and without odd prism, Szigeti '93 : Graphs without non-Seymour odd K₄ and without

Z. Szigeti (G-SCOP, Grenoble) Characterizations of non-Seymour graphs

Subclasses

- **O** Seymour '77 : Graphs without subdivision of K_4 ,
- Seymour '81 : Graphs without odd cycle,
- **③** Gerards '92 : Graphs without odd K_4 and without odd prism,
- Szigeti '93 : Graphs without non-Seymour odd K₄ and without non-Seymour odd prism.

Subclasses

- **O** Seymour '77 : Graphs without subdivision of K_4 ,
- Seymour '81 : Graphs without odd cycle,
- **3** Gerards '92 : Graphs without odd K_4 and without odd prism,
- Szigeti '93 : Graphs without non-Seymour odd K₄ and without non-Seymour odd prism.

Subclasses

- **O** Seymour '77 : Graphs without subdivision of K_4 ,
- Seymour '81 : Graphs without odd cycle,
- **③** Gerards '92 : Graphs without odd K_4 and without odd prism,
- Szigeti '93 : Graphs without non-Seymour odd K₄ and without non-Seymour odd prism.

Around Seymour graphs

Subclasses

- Seymour '77 : Graphs without subdivision of K_4 ,
- Seymour '81 : Graphs without odd cycle,
- **3** Gerards '92 : Graphs without odd K_4 and without odd prism,
- Szigeti '93 : Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.

Superclass

Seymour graph \implies no even subdivision of K_4 and of prism.

Z. Szigeti (G-SCOP, Grenoble)

Characterizations of non-Seymour graphs

24th October 2014 7 / 26

<ロ> (日) (日) (日) (日) (日)

Definition Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

э 8 / 26

э

< (17) > < .

Definition Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

э

< (17) > < .

Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő '92)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

< A > <

Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő '92)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

A > 4

Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő '92)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő '92)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Conjecture (Sebő '92)

G is not Seymour if and only if *G* admits a join *F* and two *F*-tight cycles whose union is an odd K_4 or an odd prism. **Z.** Szigeti (G-SCOP, Grenoble) Characterizations of non-Seymour graphs 24th October 2014 8 / 26

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples f_{1} f_{2} f_{3} f_{4} $f_$

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

G is non-Seymour if and only if contracting stars and odd cycles it contains an even subdivision of K_4 .

Z. Szigeti (G-SCOP, Grenoble) Characterizations of non-Seymour graphs

- Matching-covered = connected and any edge belongs to a perfect matching,
- Elementary = edges belonging to a perfect matching form a connected subgraph,
- **3** Barrier of elementary graph G = vertex set X such that the number of odd components of G X is |X|.

Definitions

 Matching-covered = connected and any edge belongs to a perfect matching,

- Elementary = edges belonging to a perfect matching form a connected subgraph,
- **3** Barrier of elementary graph G = vertex set X such that the number of odd components of G X is |X|.

Definitions

- Matching-covered = connected and any edge belongs to a perfect matching, examples : K_2^3 , K_4 , prism
- Elementary = edges belonging to a perfect matching form a connected subgraph,
- **3** Barrier of elementary graph G = vertex set X such that the number of odd components of G X is |X|.

10 / 26

Definitions

- Matching-covered = connected and any edge belongs to a perfect matching, examples : K_2^3 , K_4 , prism and their even subdivisions.
- Elementary = edges belonging to a perfect matching form a connected subgraph,
- **3** Barrier of elementary graph G = vertex set X such that the number of odd components of G X is |X|.

10 / 26

- Matching-covered = connected and any edge belongs to a perfect matching, examples : K₂³, K₄, prism and their even subdivisions.
- Elementary = edges belonging to a perfect matching form a connected subgraph,
- **3** Barrier of elementary graph G = vertex set X such that the number of odd components of G X is |X|.

- Matching-covered = connected and any edge belongs to a perfect matching, examples : K₂³, K₄, prism and their even subdivisions.
- Elementary = edges belonging to a perfect matching form a connected subgraph, examples : matching-covered plus some edges.
- **3** Barrier of elementary graph G = vertex set X such that the number of odd components of G X is |X|.

Definitions

- Matching-covered = connected and any edge belongs to a perfect matching, examples : K_2^3 , K_4 , prism and their even subdivisions.
- Elementary = edges belonging to a perfect matching form a connected subgraph, examples : matching-covered plus some edges.
- Solution Barrier of elementary graph G = vertex set X such that the number of odd components of G X is |X|.

10 / 26

Definitions

 Factor-critical = deleting any vertex results in a graph having a perfect matching,

Objective bit is been used by the provide the provided and the provided

Star = vertex together with its neighbor.

• Sun = factor-critical together with its neighbors,

- Factor-critical = deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
- Objective bit is been used by the provide the provided and the provided
- Star = vertex together with its neighbor.
- Sun = factor-critical together with its neighbors,

- Factor-critical = deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
- Objective bicritical = deleting any vertex results in a factor-critical graph,
- Star = vertex together with its neighbor.
- Sun = factor-critical together with its neighbors,

- Factor-critical = deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
- **2** bicritical = deleting any vertex results in a factor-critical graph, examples : K_2 , K_4 , prism; non-trivial = at least 4 vertices.
- Star = vertex together with its neighbor.
- Sun = factor-critical together with its neighbors,

- Factor-critical = deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
- **2** bicritical = deleting any vertex results in a factor-critical graph, examples : K_2 , K_4 , prism; non-trivial = at least 4 vertices.
- Star = vertex together with its neighbor.
- Sun = factor-critical together with its neighbors,

- Factor-critical = deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
- **2** bicritical = deleting any vertex results in a factor-critical graph, examples : K_2 , K_4 , prism; non-trivial = at least 4 vertices.
- Star = vertex together with its neighbor.
- Sun = factor-critical together with its neighbors,

- Factor-critical = deleting any vertex results in a graph having a perfect matching, examples : vertex, odd cycle.
- **2** bicritical = deleting any vertex results in a factor-critical graph, examples : K_2 , K_4 , prism; non-trivial = at least 4 vertices.
- Star = vertex together with its neighbor.
- Sun = factor-critical together with its neighbors, example : star.

Matching Theory : Results

Theorems

- Lovász '75 : A graph is factor-critical if and only contracting odd cycles it can be reduced to a vertex.
- Lovász-Plummer '86 : Every non-bipartite matching-covered graph contains an even subdivision of K₄ or of the prism.

Matching Theory : Results

Theorems

- Lovász '75 : A graph is factor-critical if and only contracting odd cycles it can be reduced to a vertex.
- Output State St

- Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
- 2 Let H be obtained by gluing G_1 and G_2 in a vertex set Y. If H/G_2 is elementary then H/G_1 can be obtained from H by contracting suns.

- Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
- 2 Let *H* be obtained by gluing G_1 and G_2 in a vertex set *Y*. If H/G_2 is elementary then H/G_1 can be obtained from *H* by contracting suns.

- Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
- 2 Let *H* be obtained by gluing G_1 and G_2 in a vertex set *Y*. If H/G_2 is elementary then H/G_1 can be obtained from *H* by contracting suns.

- Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
- 2 Let *H* be obtained by gluing G_1 and G_2 in a vertex set *Y*. If H/G_2 is elementary then H/G_1 can be obtained from *H* by contracting suns.

- Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
- 2 Let *H* be obtained by gluing G_1 and G_2 in a vertex set *Y*. If H/G_2 is elementary then H/G_1 can be obtained from *H* by contracting suns.

Matching Theory : Remarks

Remarks

- Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
- 2 Let *H* be obtained by gluing G_1 and G_2 in a vertex set *Y*. If H/G_2 is elementary then H/G_1 can be obtained from *H* by contracting suns.

Matching Theory : Remarks

Remarks

- Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
- 2 Let *H* be obtained by gluing G_1 and G_2 in a vertex set *Y*. If H/G_2 is elementary then H/G_1 can be obtained from *H* by contracting suns.

Matching Theory : Remarks

Remarks

- Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.
- 2 Let *H* be obtained by gluing G_1 and G_2 in a vertex set *Y*. If H/G_2 is elementary then H/G_1 can be obtained from *H* by contracting suns.

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- Ontracting suns it contains a non-bipartite matching-covered graph,
- 3 Contracting suns it contains an even subdivision of K_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- O Contracting stars and odd cycles it contains an even subdivision of K₄,

15 / 26

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- Ontracting suns it contains a non-bipartite matching-covered graph,
- Ontracting suns it contains an even subdivision of K₄ or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- O Contracting stars and odd cycles it contains an even subdivision of K₄,

15 / 26

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- 2 Contracting suns it contains a non-bipartite matching-covered graph,
- Ontracting suns it contains an even subdivision of K₄ or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- **(**) Contracting stars and odd cycles it contains an even subdivision of K_4 ,

15 / 26

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- 2 Contracting suns it contains a non-bipartite matching-covered graph,
- **③** Contracting suns it contains an even subdivision of K_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K_4 ,

15 / 26

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- 2 Contracting suns it contains a non-bipartite matching-covered graph,
- Solution \mathcal{S}_4 or of the prism, \mathcal{S}_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Ontracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Ontracting stars and odd cycles it contains an even subdivision of K₄,

15 / 26

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- 2 Contracting suns it contains a non-bipartite matching-covered graph,
- Solution \mathcal{S}_4 or of the prism, \mathcal{S}_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Ontracting stars and odd cycles it contains an even subdivision of K₄,

15 / 26

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- 2 Contracting suns it contains a non-bipartite matching-covered graph,
- Solution \mathcal{S}_4 or of the prism, \mathcal{S}_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Solution of K_4 , Solution of K_4 ,

15 / 26

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- 2 Contracting suns it contains a non-bipartite matching-covered graph,
- Solution \mathcal{S}_4 or of the prism, \mathcal{S}_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Solution Contracting stars and odd cycles it contains an even subdivision of K_4 ,
- Contracting cores it contains an even subdivision of K₄ or of the prism or of the biprism.

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- ② Contracting suns it contains a non-bipartite matching-covered graph,
- Ontracting suns it contains an even subdivision of K₄ or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Ontracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K_4 ,
- Contracting cores it contains an even subdivision of K₄ or of the prism or of the biprism.

 $(1) \Longrightarrow (2) : \mathsf{OK}, (2) \Longrightarrow (1) : \mathsf{Contract} \mathsf{ suns} \mathsf{ of a maximal barrier}$

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- 2 Contracting suns it contains a non-bipartite matching-covered graph,
- So Contracting suns it contains an even subdivision of K_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Ontracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K_4 ,
- Contracting cores it contains an even subdivision of K₄ or of the prism or of the biprism.

 $(2) \Longrightarrow (3) : Lovász-Plummer '86, (3) \Longrightarrow (2) : OK$

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- 2 Contracting suns it contains a non-bipartite matching-covered graph,
- Solution \mathcal{S}_4 or of the prism, \mathcal{S}_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K_4 ,
- O Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.

$$(3) \Longrightarrow (4) : \mathsf{OK}, (4) \Longrightarrow (3) : ?$$

16 / 26

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- Ontracting suns it contains a non-bipartite matching-covered graph,
- 3 Contracting suns it contains an even subdivision of K_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- O Contracting stars and odd cycles it contains an even subdivision of K₄,

16 / 26

$$(4) \Longrightarrow (5)$$
 : Lovász '75, $(5) \Longrightarrow (4)$: OK

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- Ontracting suns it contains a non-bipartite matching-covered graph,
- Ontracting suns it contains an even subdivision of K₄ or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Solution Contracting stars and odd cycles it contains an even subdivision of K_4 ,
- Contracting cores it contains an even subdivision of K₄ or of the prism or of the biprism.

 $(5) \implies (6)$: Contract an odd cycle of the even subdivision of the prism to get an even subdivision of K_4 . $(6) \implies (5)$: OK $(2) \times (2) \times$

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- 2 Contracting suns it contains a non-bipartite matching-covered graph,
- Solution \mathcal{S}_4 or of the prism, \mathcal{S}_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Ontracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Solution Contracting stars and odd cycles it contains an even subdivision of K_4 ,
- Contracting cores it contains an even subdivision of K₄ or of the prism or of the biprism.

To see that (6)
$$\Longrightarrow$$
 (3), we need (7).

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- Ontracting suns it contains a non-bipartite matching-covered graph,
- 3 Contracting suns it contains an even subdivision of K_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Ontracting stars and odd cycles it contains an even subdivision of K₄,
- Contracting cores it contains an even subdivision of K₄ or of the prism or of the biprism.

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- Ontracting suns it contains a non-bipartite matching-covered graph,
- 3 Contracting suns it contains an even subdivision of K_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Ontracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Southartian Stars and odd cycles it contains an even subdivision of K_4 ,
- Contracting cores it contains an even subdivision of K₄ or of the prism or of the biprism.

We will see that $(6) \Longrightarrow (7)$.

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- 2 Contracting suns it contains a non-bipartite matching-covered graph,
- Solution \mathcal{S}_4 or of the prism, \mathcal{S}_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K_4 ,
- Contracting cores it contains an even subdivision of K₄ or of the prism or of the biprism.

We will see that
$$(7) \Longrightarrow (3)$$
.

The following conditions are equivalent for any graph G:

- Contracting suns it contains a non-trivial bicritical graph,
- 2 Contracting suns it contains a non-bipartite matching-covered graph,
- **③** Contracting suns it contains an even subdivision of K_4 or of the prism,
- Contracting stars and factor-critical graphs it contains an even subdivision of K₄ or of the prism,
- Contracting stars and odd cycles it contains an even subdivision of K₄ or of the prism,
- Solution Contracting stars and odd cycles it contains an even subdivision of K_4 ,
- Contracting cores it contains an even subdivision of K₄ or of the prism or of the biprism.

3 graphs

< ∃⇒

3

< 17 >

æ

3 graphs

and their even subdivisions

э

17 / 26

3 graphs

and their even subdivisions

э

3 graphs

and their even subdivisions

э

Core-contraction to K_4

K_4 -obstruction

An odd K_4 subgraph H of G with disjoint sets $U_i \subseteq V(H)$ such that

- $H[U_i \cup N_H(U_i)]$ is an even subdivision of a 3-star,
- Contracting each U_i ∪ N_G(U_i), H transforms into an even subdivision of K₄.

Prism- or biprism-obstruction

An odd prism subgraph H of G with disjoint sets $U_i \subseteq V(H)$ such that

- $H[U_i \cup N_H(U_i)]$ is an even subdivision of a 2- or 3-star,
- ② contracting each $U_i \cup N_G(U_i)$, *H* transforms into an even subdivision of the prism or of the biprism (no edge of *G* connects the two connected components of the biprism minus its separator).

- The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.
- Their main role is to be able to change the odd K₄ (or odd prism) into an even subdivision of K₄ (or of the prism).

- The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.
- Their main role is to be able to change the odd K₄ (or odd prism) into an even subdivision of K₄ (or of the prism).

- The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.
- 2 Their main role is to be able to change the odd K_4 (or odd prism) into an even subdivision of K_4 (or of the prism).

- The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.
- 2 Their main role is to be able to change the odd K_4 (or odd prism) into an even subdivision of K_4 (or of the prism).

- The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.
- Their main role is to be able to change the odd K₄ (or odd prism) into an even subdivision of K₄ (or of the prism).

(6) implies (7)

(6) and (7)

- (6) Contracting stars and odd cycles it contains an even subdivision of K_4 ,
- (7) Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.

(6) implies (7)

(6) and (7)

(6) Contracting stars and odd cycles it contains an even subdivision of K_4 ,

(7) It contains an K_4 - or prism- or biprism-obstruction.

(6) implies (7)

(6) and (7)

(6) Contracting stars and odd cycles it contains an even subdivision of K_4 ,

(7) It contains an K_4 - or prism- or biprism-obstruction.

Lemma

If G/C (C : star or odd cycle) contains an obstruction then so does G.

(7) implies (3)

(7) and (3)

- (7) Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.
- (3) Contracting suns it contains an even subdivision of K_4 or of the prism.

(7) and (3)

- (7) Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.
- (3) Contracting suns it contains an even subdivision of K_4 or of the prism.

Lemma

- A core-contraction can be replaced by some sun-contractions.
- An even subdivision of the biprism can be sun-contracted to an even subdivision of the *K*₄.

(7) and (3)

- (7) Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.
- (3) Contracting suns it contains an even subdivision of K_4 or of the prism.

Lemma

A core-contraction can be replaced by some sun-contractions.

An even subdivision of the biprism can be sun-contracted to an even subdivision of the *K*₄.

(7) and (3)

- (7) Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.
- (3) Contracting suns it contains an even subdivision of K_4 or of the prism.

Lemma

- A core-contraction can be replaced by some sun-contractions.
- An even subdivision of the biprism can be sun-contracted to an even subdivision of the K₄.

Lemma

- **Q** A core-contraction can be replaced by some sun-contractions.
- An even subdivision of the biprism can be sun-contracted to an even subdivision of the K₄.

Both are implied by the lemma about the contraction of elementary graphs because an even subdivision of K_2^3 (and of K_4) is matching-covered.

Returning to non-Seymour graphs

Equivalence to non-Seymour graphs

- Non-Seymour graph implies (1) : by structure theorem of Sebő '90.
- (7) implies non-Seymour graph : by lemma of Sebő '92 : a join of G and two tight cycles whose union is an odd K₄ or an odd prism can be easily found in an obstruction.

Equivalence to non-Seymour graphs

- Non-Seymour graph implies (1) : by structure theorem of Sebő '90.
- (7) implies non-Seymour graph : by lemma of Sebő '92 : a join of G and two tight cycles whose union is an odd K_4 or an odd prism can be easily found in an obstruction.

What we can not do

- Given a graph G, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can not do

• Given a graph G, decide whether it is a Seymour graph.

What we can not do

- **Q** Given a graph G, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can not do

Q Given a graph *G*, decide whether it is a Seymour graph.

Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

• either provide an *F*-complete packing of cuts

2 or show that G is not Seymour.

What we can not do

Q Given a graph *G*, decide whether it is a Seymour graph.

Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

• either provide an *F*-complete packing of cuts

or show that *G* is not Seymour.

What we can not do

- **Q** Given a graph *G*, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

- either provide an *F*-complete packing of cuts
- **2** or show that G is not Seymour.

What we can not do

- **Q** Given a graph *G*, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

- either provide an F-complete packing of cuts
- **2** or show that G is not Seymour.

What we can do

Given a matching-covered graph, decide if it is Seymour or not :

- if it is bipartite then it is Seymour,
- **2** if it is not bipartite then it is not Seymour.

What we can not do

- **Q** Given a graph *G*, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

- either provide an *F*-complete packing of cuts
- **2** or show that G is not Seymour.

What we can do

Given a matching-covered graph, decide if it is Seymour or not :

if it is bipartite then it is Seymour,

if it is not bipartite then it is not Seymour.

What we can not do

- **Q** Given a graph *G*, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

- either provide an F-complete packing of cuts
- **2** or show that G is not Seymour.

What we can do

Given a matching-covered graph, decide if it is Seymour or not :

- if it is bipartite then it is Seymour,
- If it is not bipartite then it is not Seymour.

NP characterization?

э

NP characterization?

Find a construction for Seymour graphs!

3

Thanks!

문 제 문