DEFINITION: A GRADED EAR-DECOMPOSITION

OF G IS A SEQUENCE Go, G, ..., GEG

- · GA IS A CYCLE, (OF EVEN LENGTH)
- Gin = Gi + Pi + ... + Pi, DISJOINT ODD PATHS
- · G: IS MATCHING-COVERED, NICE.

DEFINITION: 2-GRADED EAR-DECOMPOSITION IF IN EACH STEP WE ADD \$2 EARS.

THEOREM: (LOVASZ-PLUMMER)

A GRAPH IS MATCHING-COVERED

IV(G)134

IT HAS A 2-GRADED EAR-DECOMPOSITION.

DEFINITION: G IS ELEMENTARY IF THE EDGES WHICH BELONG TO SOME PERFECT MATCHING OF G FORM A CONNECTED SPANNING SUBGRAPH.

Φ(G):= NUMBER OF PERFECT MATCHINGS OF G.

THEOREM (LOVA'SZ-PLUMMER)

G IS ELEMENTARY, $e_1, e_2, ..., e_k \in E(G)$.

IF $\phi(G+e_1+e_2+...+e_k) > \phi(G)$ THEN $\exists i,j: \phi(G+e_i+e_j) > \phi(G)$.

SHORT PROOF: 2.52.

THEOREM (LOUASZ-PLUMMER)

G IS MATCHING-COVERED, e,,..., e, e (E):

G+e,+...+e, IS MATCHING-COVERED.

THEN 3 i's; G+e; +e; IS MATCHING
COVERED.

SHORT PROOF : Z.SZ.

- THEOREM: G IS ELEMENTARY, e,, e, e, e E(G)
 - · G+e,+e2+e3 HAS A PERFECT MATCHING M CONTAINING e1, e2, e3.
 - · G+e; HAS NO PERFECT MATCHING CONTAINING e; (1=1,2,3.)
 - THEN Ve; Jej: G+e,+ej HAS A PERFECT MATCHING CONTAINING e; AND ej.
- DEFINITION: G IS ELEMENTARY, XCV6).

 X IS A STRONG BARRIER IF G-X HAS

 [X] COMPONENTS AND ALL OF THEM ARE

 FACTOR-CRITICAL.
- LEMMA: IF G IS ELEMENTARY AND X IS A STRONG BARRIER OF G, THEN EACH EDGE LEAVING X BELONGS TO A PERFECT MATCHING OF G.

PROOF: SUPPOSE G':=G+e,+e, HAS NO PERFECT MATCHING CONTAINING & AND &.

(4) 3 A STRONG BARRIER X IN 6' CONTAINING 4.

0000

(2) e2 E F4.

(3) C3 CONNECTS F. AND Fj.

y G+C2 HAS A PERFECT HATCHING CONTAINING CL

