On minimally 2-T-connected digraphs

Zoltán Szigeti

Combinatorial Optimization Group, G-SCOP Univ. Grenoble Alpes, Grenoble INP, CNRS, France

2017 May 2

Joint work with:

Olivier Durand de Gevigney

Outline

- Definitions on connectivity
- Motivation
- Result
- Definitions on bi-sets
- Proof

Definition

1 k-ac: $\forall (u, v) \in V^2$, $\exists k$ arc disjoint (u, v)-paths,

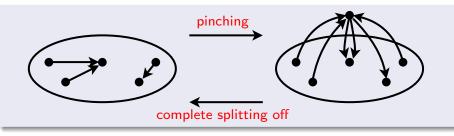
Definition

• k-ac: $\forall (u, v) \in V^2$, $\exists k$ arc disjoint (u, v)-paths, \iff (Menger) $|\partial^-(X)| \ge k \ \forall \emptyset \ne X \subset V$,

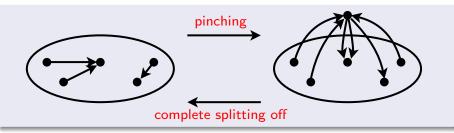
- k-ac: $\forall (u, v) \in V^2$, $\exists k$ arc disjoint (u, v)-paths, \iff (Menger) $|\partial^-(X)| \ge k \ \forall \emptyset \ne X \subset V$,
- 2 adding an arc

- $k\text{-ac}: \forall (u,v) \in V^2, \exists k \text{ arc disjoint } (u,v)\text{-paths,} \iff (\mathsf{Menger})$ $|\partial^-(X)| \geq k \ \forall \emptyset \neq X \subset V,$
- adding an arc /deleting an arc,

- $k\text{-ac}: \forall (u,v) \in V^2, \exists k \text{ arc disjoint } (u,v)\text{-paths,} \iff (\text{Menger})$ $|\partial^-(X)| \geq k \ \forall \emptyset \neq X \subset V,$
- adding an arc /deleting an arc,
- pinching k arcs



- k-ac: $\forall (u, v) \in V^2$, $\exists k$ arc disjoint (u, v)-paths, \iff (Menger) $|\partial^-(X)| \ge k \ \forall \emptyset \ne X \subset V$,
- 2 adding an arc /deleting an arc,
- **3** pinching k arcs /complete splitting off at $v: |\partial^-(v)| = |\partial^+(v)| = k$,



Definition

- k-ac: $\forall (u, v) \in V^2$, $\exists k$ arc disjoint (u, v)-paths, \iff (Menger) $|\partial^-(X)| \ge k \ \forall \emptyset \ne X \subset V$,
- adding an arc /deleting an arc,
- **3** pinching k arcs /complete splitting off at $v: |\partial^-(v)| = |\partial^+(v)| = k$,

Theorem 1 (Mader 1978)

1 A digraph is k-ac \iff it can be constructed from a vertex by repeated applications of operations 2 and 3.

Definition

- $k\text{-ac}: \forall (u,v) \in V^2, \exists k \text{ arc disjoint } (u,v)\text{-paths,} \iff (\mathsf{Menger})$ $|\partial^-(X)| \geq k \ \forall \emptyset \neq X \subset V,$
- 2 adding an arc /deleting an arc,
- **3** pinching k arcs /complete splitting off at $v: |\partial^-(v)| = |\partial^+(v)| = k$,
- **1** minimally k-ac : D is k-ac and $\forall a \in A$, D-a is not k-ac.

Theorem 1 (Mader 1978)

1 A digraph is k-ac \iff it can be constructed from a vertex by repeated applications of operations 2 and 3.

Definition

- k-ac: $\forall (u, v) \in V^2$, $\exists k$ arc disjoint (u, v)-paths, \iff (Menger) $|\partial^-(X)| \ge k \ \forall \emptyset \ne X \subset V$,
- 2 adding an arc /deleting an arc,
- 3 pinching k arcs /complete splitting off at $v: |\partial^-(v)| = |\partial^+(v)| = k$,
- **1** minimally k-ac : D is k-ac and $\forall a \in A$, D-a is not k-ac.

Theorem 1 (Mader 1978)

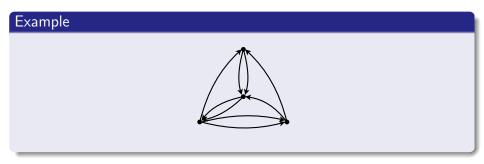
- **1** A digraph is k-ac \iff it can be constructed from a vertex by repeated applications of operations 2 and 3.
- ② In a minimally k-ac digraph \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = k$.

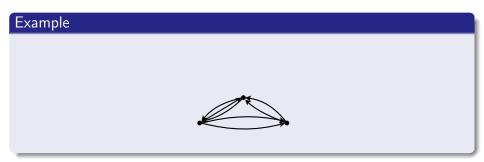
Definition

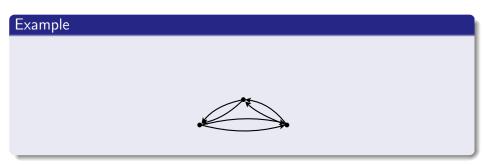
- k-ac: $\forall (u, v) \in V^2$, $\exists k$ arc disjoint (u, v)-paths, \iff (Menger) $|\partial^-(X)| \ge k \ \forall \emptyset \ne X \subset V$,
- 2 adding an arc /deleting an arc,
- **3** pinching k arcs /complete splitting off at $v: |\partial^-(v)| = |\partial^+(v)| = k$,
- **1** minimally k-ac : D is k-ac and $\forall a \in A$, D a is not k-ac.

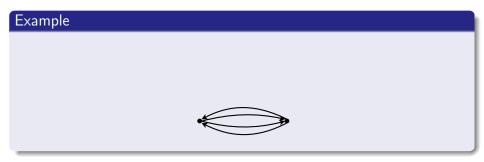
Theorem 1 (Mader 1978)

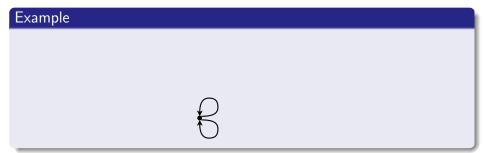
- **1** A digraph is k-ac \iff it can be constructed from a vertex by repeated applications of operations 2 and 3.
- ② In a minimally k-ac digraph \exists a vertex $v : |\partial^-(v)| = |\partial^+(v)| = k$.
- **③** In a *k*-ac digraph for $|\partial^-(s)| = |\partial^+(s)|$, ∃ a complete splitting off at *s* resulting in a *k*-ac digraph.

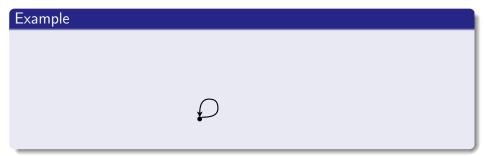












Definition

• k-vc : $|V| \ge k + 1$, $\forall (u, v) \in V^2$, $\exists k$ vertex disjoint (u, v)-paths

Definition

• k-vc: $|V| \ge k+1$, $\forall (u,v) \in V^2$, $\exists k$ vertex disjoint (u,v)-paths \iff (Menger) D-X is 1-ac $\forall X \subset V, |X|=k-1$,

- k-vc: $|V| \ge k+1$, $\forall (u,v) \in V^2$, $\exists k$ vertex disjoint (u,v)-paths \iff (Menger) D-X is 1-ac $\forall X \subset V, |X| = k-1$,
- 2 minimally k-vc : D is k-vc and $\forall a \in A, D-a$ is not k-vc.

Definition

- k-vc: $|V| \ge k + 1$, $\forall (u, v) \in V^2$, $\exists k$ vertex disjoint (u, v)-paths \iff (Menger) D X is 1-ac $\forall X \subset V, |X| = k 1$,
- 2 minimally k-vc : D is k-vc and $\forall a \in A, D-a$ is not k-vc.

Conjecture (Mader 1979)

In a minimally k-vc digraph \exists a vertex $v : |\partial^-(v)| = |\partial^+(v)| = k$.

Definition

- k-vc: $|V| \ge k+1$, $\forall (u,v) \in V^2$, $\exists k$ vertex disjoint (u,v)-paths \iff (Menger) D-X is 1-ac $\forall X \subset V, |X|=k-1$,
- 2 minimally k-vc : D is k-vc and $\forall a \in A, D-a$ is not k-vc.

Conjecture (Mader 1979)

In a minimally k-vc digraph \exists a vertex $v : |\partial^-(v)| = |\partial^+(v)| = k$.

Theorem 2 (Mader 2002)

In a minimally 2-vc digraph \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Definition

- k-vc: $|V| \ge k+1$, $\forall (u,v) \in V^2$, $\exists k$ vertex disjoint (u,v)-paths \iff (Menger) D-X is 1-ac $\forall X \subset V, |X|=k-1$,
- 2 minimally k-vc : D is k-vc and $\forall a \in A, D-a$ is not k-vc.

Conjecture (Mader 1979)

In a minimally k-vc digraph \exists a vertex $v : |\partial^-(v)| = |\partial^+(v)| = k$.

Theorem 2 (Mader 2002)

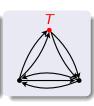
In a minimally 2-vc digraph \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Open problem

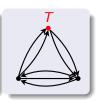
Find a constructive characterization of 2-vc digraphs.

Definition

1 2-T-c : $|V| \ge 3$, $\forall (u, v) \in V^2$, \exists 2 arc disjoint (u, v)-paths that are innerly vertex disjoint in $T \subseteq V$,



- **2-**T-c : $|V| \ge 3$, $\forall (u, v) \in V^2$, \exists 2 arc disjoint (u, v)-paths that are innerly vertex disjoint in $T \subseteq V$,
- ② minimally 2-T-c : D 2-T-c ; $\forall a \in A, D a$ not 2-T-c.



Definition

- **2-**T-c : $|V| \ge 3$, $\forall (u, v) \in V^2$, \exists 2 arc disjoint (u, v)-paths that are innerly vertex disjoint in $T \subseteq V$,
- **a** minimally 2-T-c: D 2-T-c; $\forall a \in A$, D a not 2-T-c.

Remark

1 $2-\emptyset$ -c = 2-ac and 2-V-c = 2-vc.

Definition

- **1** 2-T-c: $|V| \ge 3$, $\forall (u, v) \in V^2$, \exists 2 arc disjoint (u, v)-paths that are innerly vertex disjoint in $T \subseteq V$,
- ② minimally 2-T-c : D 2-T-c ; $\forall a \in A, D a$ not 2-T-c.

Remark

- **1** $2-\emptyset$ -c = 2-ac and 2-V-c = 2-vc.
- ② D is 2-T-c $\iff \forall a \in A, D-a$ is 1-ac and $\forall t \in T, D-t$ is 1-ac.

Definition

- **1** 2-T-c : $|V| \ge 3$, $\forall (u, v) \in V^2$, \exists 2 arc disjoint (u, v)-paths that are innerly vertex disjoint in $T \subseteq V$,
- **2** minimally 2-T-c : D 2-T-c ; $\forall a \in A, D-a$ not 2-T-c.

Remark

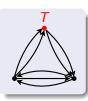
- **1** $2-\emptyset$ -c = 2-ac and 2-V-c = 2-vc.
- ② D is 2-T-c $\iff \forall a \in A, D-a$ is 1-ac and $\forall t \in T, D-t$ is 1-ac.

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-T-c digraph with (\star) no parallel arc leaving a vertex in T, \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Definition

- **2-**T-c: $|V| \ge 3$, $\forall (u, v) \in V^2$, \exists 2 arc disjoint (u, v)-paths that are innerly vertex disjoint in $T \subseteq V$,
- 2 minimally 2-T-c: D 2-T-c; $\forall a \in A, D-a$ not 2-T-c.



Remark

- **1** $2-\emptyset$ -c = 2-ac and 2-V-c = 2-vc.
- ② D is 2-T-c $\iff \forall a \in A, D-a$ is 1-ac and $\forall t \in T, D-t$ is 1-ac.

Theorem 3 (Durand de Gevigney, Szigeti)

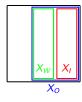
In a minimally 2-T-c digraph with (\star) no parallel arc leaving a vertex in T, \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Remark

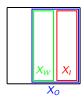
Theorem 3 implies Theorem 1 (2) for k = 2 and Theorem 2.

Definition

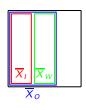
• bi-set $X := (X_O, X_I)$ with outer-set $X_O = \text{inner-set } X_I \cup \text{wall } X_W$.



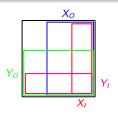
- **1** bi-set $X := (X_O, X_I)$ with outer-set $X_O = \text{inner-set } X_I \cup \text{wall } X_W$.
- 2 nontrivial bi-set : $X_I \neq \emptyset, X_O \neq V$.



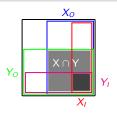
- **1** bi-set $X := (X_O, X_I)$ with outer-set $X_O = \text{inner-set } X_I \cup \text{wall } X_W$.
- 2 nontrivial bi-set : $X_I \neq \emptyset$, $X_O \neq V$.
- **3** complement of bi-set $X : \overline{X} = (\overline{X_I}, \overline{X_O})$.



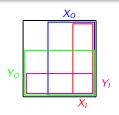
- **1** bi-set $X := (X_O, X_I)$ with outer-set $X_O = \text{inner-set } X_I \cup \text{wall } X_W$.
- **2** nontrivial bi-set : $X_I \neq \emptyset, X_O \neq V$.
- **3** complement of bi-set $X : \overline{X} = (\overline{X_I}, \overline{X_O})$.
- **1** intersection of bi-sets X and Y : $X \cap Y = (X_O \cap Y_O, X_I \cap Y_I)$,



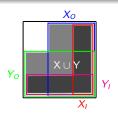
- **1** bi-set $X := (X_O, X_I)$ with outer-set $X_O = \text{inner-set } X_I \cup \text{wall } X_W$.
- **2** nontrivial bi-set : $X_I \neq \emptyset, X_O \neq V$.
- **3** complement of bi-set $X : \overline{X} = (\overline{X_I}, \overline{X_O})$.
- **1** intersection of bi-sets X and Y : $X \cap Y = (X_O \cap Y_O, X_I \cap Y_I)$,



- **1** bi-set $X := (X_O, X_I)$ with outer-set $X_O = \text{inner-set } X_I \cup \text{wall } X_W$.
- **2** nontrivial bi-set : $X_I \neq \emptyset, X_O \neq V$.
- **3** complement of bi-set $X : \overline{X} = (\overline{X_I}, \overline{X_O})$.
- **1** intersection of bi-sets X and Y : $X \sqcap Y = (X_O \cap Y_O, X_I \cap Y_I)$,
- \bullet union of bi-sets X and Y : $X \sqcup Y = (X_O \cup Y_O, X_I \cup Y_I)$,

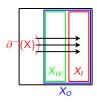


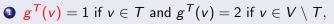
- bi-set $X := (X_O, X_I)$ with outer-set $X_O = \text{inner-set } X_I \cup \text{wall } X_W$.
- **2** nontrivial bi-set : $X_I \neq \emptyset, X_O \neq V$.
- **3** complement of bi-set $X : \overline{X} = (\overline{X_I}, \overline{X_O})$.
- **1** intersection of bi-sets X and Y : $X \sqcap Y = (X_O \cap Y_O, X_I \cap Y_I)$,
- \bullet union of bi-sets X and Y : $X \sqcup Y = (X_O \cup Y_O, X_I \cup Y_I)$,



- bi-set $X := (X_O, X_I)$ with outer-set $X_O = \text{inner-set } X_I \cup \text{wall } X_W$.
- **2** nontrivial bi-set : $X_I \neq \emptyset, X_O \neq V$.
- **3** complement of bi-set $X : \overline{X} = (\overline{X_I}, \overline{X_O})$.
- **1** intersection of bi-sets X and Y : $X \sqcap Y = (X_O \cap Y_O, X_I \cap Y_I)$,
- **1** union of bi-sets X and Y : $X \sqcup Y = (X_O \cup Y_O, X_I \cup Y_I)$,
- entering arc of bi-set $X : xy \in A$ with $x \in \overline{X_O}$ and $y \in X_I$.

- bi-set $X := (X_O, X_I)$ with outer-set $X_O = \text{inner-set } X_I \cup \text{wall } X_W$.
- **2** nontrivial bi-set : $X_I \neq \emptyset, X_O \neq V$.
- **3** complement of bi-set $X : \overline{X} = (\overline{X_I}, \overline{X_O})$.
- **1** intersection of bi-sets X and Y : $X \sqcap Y = (X_O \cap Y_O, X_I \cap Y_I)$,
- \bullet union of bi-sets X and Y : $X \sqcup Y = (X_O \cup Y_O, X_I \cup Y_I)$,
- entering arc of bi-set $X : xy \in A$ with $x \in \overline{X_O}$ and $y \in X_I$.
- in-degree of bi-set $X : |\partial^{-}(X)| = \text{number of arcs entering } X$.





- $g^T(v) = 1$ if $v \in T$ and $g^T(v) = 2$ if $v \in V \setminus T$,
- **2** $f_D^T(X) := |\partial_D^-(X)| + g^T(X_W),$

Definition

- $g^T(v) = 1$ if $v \in T$ and $g^T(v) = 2$ if $v \in V \setminus T$,
- **2** $f_D^T(X) := |\partial_D^-(X)| + g^T(X_W),$

Remark

1 D is 2-T-c $\iff f_D^T(X) \ge 2 \ \forall$ nontrivial bi-set X,

Definition

- $\mathbf{Q} \ f_D^T(X) := |\partial_D^-(X)| + g^T(X_W),$
- **3** tight bi-set $X : f_D^T(X) = 2$.

Remark

1 D is 2-T-c $\iff f_D^T(X) \ge 2 \ \forall$ nontrivial bi-set X,

Definition

- $f_D^T(X) := |\partial_D^-(X)| + g^T(X_W),$
- 3 tight bi-set $X : f_D^T(X) = 2$.

Remark

- **1** D is 2-T-c $\iff f_D^T(X) \ge 2 \ \forall$ nontrivial bi-set X,
- ② minimally 2-T- $c \iff 2$ -T-c and each arc enters a tight bi-set.

Definition

- $g^T(v) = 1$ if $v \in T$ and $g^T(v) = 2$ if $v \in V \setminus T$,
- $\mathbf{Q} \ f_D^T(X) := |\partial_D^-(X)| + g^T(X_W),$
- 3 tight bi-set $X : f_D^T(X) = 2$.

Remark

- ① D is 2-T- $c \iff f_D^T(X) \ge 2 \ \forall$ nontrivial bi-set X,
- **②** minimally 2-T- $c \iff 2$ -T-c and each arc enters a tight bi-set.

Claim

 f_D^T is a submodular bi-set function :

$$f_D^T(X) + f_D^T(Y) \ge f_D^T(X \sqcap Y) + f_D^T(X \sqcup Y).$$

Definition

- $g^T(v) = 1$ if $v \in T$ and $g^T(v) = 2$ if $v \in V \setminus T$,
- 3 tight bi-set $X : f_D^T(X) = 2$.

Remark

- ① D is 2-T- $c \iff f_D^T(X) \ge 2 \ \forall$ nontrivial bi-set X,

Claim

 f_D^T is a submodular bi-set function:

$$f_D^T(X) + f_D^T(Y) \ge f_D^T(X \sqcap Y) + f_D^T(X \sqcup Y).$$

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-T-c digraph with (\star) no parallel arc leaving a vertex in T, \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Beginning of the proof

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-T-c digraph with (\star) no parallel arc leaving a vertex in T, \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Beginning of the proof

- \bigcirc D = (V, A): counterexample.
- **2** $A_0 = \{xy \in A : |\partial^+(x)| > 2 \text{ and } |\partial^-(y)| > 2\}.$

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-T-c digraph with (\star) no parallel arc leaving a vertex in T, \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Beginning of the proof

- $\mathbf{O} D = (V, A)$: counterexample.
- **2** $A_0 = \{xy \in A : |\partial^+(x)| > 2 \text{ and } |\partial^-(y)| > 2\}.$

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-*T*-c digraph with (\star) no parallel arc leaving a vertex in *T*, \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Beginning of the proof

- $\mathbf{0} \ \mathbf{D} = (V, A)$: counterexample.
- **2** $A_0 = \{xy \in A : |\partial^+(x)| > 2 \text{ and } |\partial^-(y)| > 2\}.$

Lemma 1 : $A_0 \neq \emptyset$.

① $u \text{ covers } a : |\partial^-(u)| = 2 \text{ and } a \text{ enters } u \text{ or } |\partial^+(u)| = 2 \text{ and } a \text{ leaves } u$,

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-*T*-c digraph with (\star) no parallel arc leaving a vertex in *T*, \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Beginning of the proof

- $\mathbf{O} = (V, A)$: counterexample.
- ② $A_0 = \{xy \in A : |\partial^+(x)| > 2 \text{ and } |\partial^-(y)| > 2\}.$

- ① $u \text{ covers } a : |\partial^-(u)| = 2 \text{ and } a \text{ enters } u \text{ or } |\partial^+(u)| = 2 \text{ and } a \text{ leaves } u,$
- ② If $A_0 = \emptyset$, then every arc is covered by at least one of its end-vertices,

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-T-c digraph with (\star) no parallel arc leaving a vertex in T, \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Beginning of the proof

- \bigcirc D = (V, A) : counterexample.
- **2** $A_0 = \{xy \in A : |\partial^+(x)| > 2 \text{ and } |\partial^-(y)| > 2\}.$

- ① $u ext{ covers } a: |\partial^-(u)| = 2 ext{ and } a ext{ enters } u ext{ or } |\partial^+(u)| = 2 ext{ and } a ext{ leaves } u,$
- ② If $A_0 = \emptyset$, then every arc is covered by at least one of its end-vertices,
- 3 a vertex can cover at most 2 arcs,

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-T-c digraph with (\star) no parallel arc leaving a vertex in T, \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Beginning of the proof

- \bigcirc D = (V, A): counterexample.
- **2** $A_0 = \{xy \in A : |\partial^+(x)| > 2 \text{ and } |\partial^-(y)| > 2\}.$

- ① $u ext{ covers } a: |\partial^-(u)| = 2 ext{ and } a ext{ enters } u ext{ or } |\partial^+(u)| = 2 ext{ and } a ext{ leaves } u,$
- ② If $A_0 = \emptyset$, then every arc is covered by at least one of its end-vertices,
- 3 a vertex can cover at most 2 arcs,
- $|\partial^-(v)| + |\partial^+(v)| \ge 5 \ \forall v \in V,$

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-*T*-c digraph with (\star) no parallel arc leaving a vertex in *T*, \exists a vertex $v: |\partial^-(v)| = |\partial^+(v)| = 2$.

Beginning of the proof

- $\mathbf{0} \ \mathbf{D} = (V, A)$: counterexample.
- **2** $A_0 = \{xy \in A : |\partial^+(x)| > 2 \text{ and } |\partial^-(y)| > 2\}.$

- ① $u ext{ covers } a: |\partial^-(u)| = 2 ext{ and } a ext{ enters } u ext{ or } |\partial^+(u)| = 2 ext{ and } a ext{ leaves } u,$
- ② If $A_0 = \emptyset$, then every arc is covered by at least one of its end-vertices,
- 3 a vertex can cover at most 2 arcs,
- $|\partial^{-}(v)| + |\partial^{+}(v)| \geq 5 \ \forall v \in V,$
- **3** $2|V| \ge |A| = \frac{1}{2} \sum_{v \in V} (|\partial^-(v)| + |\partial^+(v)|) \ge \frac{5}{2} |V|$, contradiction.

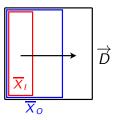
Definition

Definition

① $T := \{T : T \text{ or } \overline{T} \text{ is a tight bi-set entered by an arc of } A_0\} (\neq \emptyset.)$

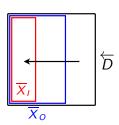
- **1** $\mathcal{T} := \{T : T \text{ or } \overline{T} \text{ is a tight bi-set entered by an arc of } A_0\} (\neq \emptyset.)$
- $X := (X_O, X_I) \in \mathcal{T}$ such that $|X_O| + |X_I|$ is minimum.

- ① $\mathcal{T} := \{T : T \text{ or } \overline{T} \text{ is a tight bi-set entered by an arc of } A_0\} \ (\neq \emptyset.)$
- $X := (X_O, X_I) \in \mathcal{T}$ such that $|X_O| + |X_I|$ is minimum.
- **3** Wlog. X is a tight bi-set entered by the arc ab of A_0 .



- ① $\mathcal{T} := \{T : T \text{ or } \overline{T} \text{ is a tight bi-set entered by an arc of } A_0\} \ (\neq \emptyset.)$
- $X := (X_O, X_I) \in \mathcal{T}$ such that $|X_O| + |X_I|$ is minimum.
- **3** Wlog. X is a tight bi-set entered by the arc ab of A_0 .

•
$$f_{\overline{D}}^{T}(\overline{X}) = |\partial_{\overline{D}}^{-}(\overline{X})| + g^{T}(\overline{X}_{W}) = |\partial_{\overline{D}}^{-}(X)| + g^{T}(X_{W}) = 2, ab \in \partial_{\overline{D}}^{-}(\overline{X}).$$



- **1** $\mathcal{T} := \{T : T \text{ or } \overline{T} \text{ is a tight bi-set entered by an arc of } A_0\} (\neq \emptyset.)$
- $X := (X_O, X_I) \in \mathcal{T}$ such that $|X_O| + |X_I|$ is minimum.
- 3 Wlog. X is a tight bi-set entered by the arc ab of A_0 .
- **1** Rem. : $X_W = \emptyset$ and $|\partial_D^-(X)| = 2$ or $X_W \in \mathcal{T}$ and $|\partial_D^-(X)| = 1$.

Definition

- ① $\mathcal{T} := \{T : T \text{ or } \overline{T} \text{ is a tight bi-set entered by an arc of } A_0\} \ (\neq \emptyset.)$
- $X := (X_O, X_I) \in \mathcal{T}$ such that $|X_O| + |X_I|$ is minimum.
- **3** Wlog. X is a tight bi-set entered by the arc ab of A_0 .
- **③** Rem. : $X_W = \emptyset$ and $|\partial_D^-(X)| = 2$ or $X_W \in \mathcal{T}$ and $|\partial_D^-(X)| = 1$.

Definition

- ① $\mathcal{T} := \{T : T \text{ or } \overline{T} \text{ is a tight bi-set entered by an arc of } A_0\} \ (\neq \emptyset.)$
- $X := (X_O, X_I) \in \mathcal{T}$ such that $|X_O| + |X_I|$ is minimum.
- 3 Wlog. X is a tight bi-set entered by the arc ab of A_0 .
- **③** Rem. : $X_W = \emptyset$ and $|\partial_D^-(X)| = 2$ or $X_W \in \mathcal{T}$ and $|\partial_D^-(X)| = 1$.

Lemma 2 : $\not\exists xy \in A_0, y \in X_I, x \in X_O$.

① Suppose $xy \in A_0, y \in X_I, x \in X_O$.

Definition

- ① $\mathcal{T} := \{T : T \text{ or } \overline{T} \text{ is a tight bi-set entered by an arc of } A_0\} \ (\neq \emptyset.)$
- $X := (X_O, X_I) \in \mathcal{T}$ such that $|X_O| + |X_I|$ is minimum.
- **3** Wlog. X is a tight bi-set entered by the arc ab of A_0 .
- **③** Rem. : $X_W = \emptyset$ and $|\partial_D^-(X)| = 2$ or $X_W \in \mathcal{T}$ and $|\partial_D^-(X)| = 1$.

- **①** Suppose xy ∈ A_0 , y ∈ X_I , x ∈ X_O .
- 2 xy enters a tight bi-set $Y = (Y_O, Y_I)$, $(Y \in \mathcal{T})$.

Definition

- ① $\mathcal{T} := \{T : T \text{ or } \overline{T} \text{ is a tight bi-set entered by an arc of } A_0\} \ (\neq \emptyset.)$
- $X := (X_O, X_I) \in \mathcal{T}$ such that $|X_O| + |X_I|$ is minimum.
- 3 Wlog. X is a tight bi-set entered by the arc ab of A_0 .
- **1** Rem. : $X_W = \emptyset$ and $|\partial_D^-(X)| = 2$ or $X_W \in \mathcal{T}$ and $|\partial_D^-(X)| = 1$.

- **1** Suppose $xy \in A_0, y \in X_I, x \in X_O$.
- 2 xy enters a tight bi-set $Y = (Y_O, Y_I)$, $(Y \in T)$.

Definition

- **1** $\mathcal{T} := \{T : T \text{ or } \overline{T} \text{ is a tight bi-set entered by an arc of } A_0\} (\neq \emptyset.)$
- $X := (X_O, X_I) \in \mathcal{T}$ such that $|X_O| + |X_I|$ is minimum.
- 3 Wlog. X is a tight bi-set entered by the arc ab of A_0 .
- **1** Rem. : $X_W = \emptyset$ and $|\partial_D^-(X)| = 2$ or $X_W \in \mathcal{T}$ and $|\partial_D^-(X)| = 1$.

- **1** Suppose $xy \in A_0, y \in X_I, x \in X_O$.
- 2 xy enters a tight bi-set $Y = (Y_O, Y_I)$, $(Y \in T)$.
- **3** Claim : $X_I \cap Y_I = y$, $(X \cap Y)_W = \emptyset$, $|X_W| = |Y_W| = 1$.
- **3** $2 < |\partial_D^-(y)| = |\partial_D^-(X \sqcap Y)| \le |\partial_D^-(X)| + |\partial_D^-(Y)| = 2.$

Claim :
$$X_I \cap Y_I = y$$
, $(X \cap Y)_W = \emptyset$ and $|X_W| = |Y_W| = 1$.

Claim :
$$X_I \cap Y_I = y$$
, $(X \cap Y)_W = \emptyset$ and $|X_W| = |Y_W| = 1$.

Claim :
$$X_I \cap Y_I = y$$
, $(X \cap Y)_W = \emptyset$ and $|X_W| = |Y_W| = 1$.

- - ① Otherwise, $X \sqcup Y$, and by $y \in X_l \cap Y_l$, $X \cap Y$ are nontrivial bi-sets.

Claim :
$$X_I \cap Y_I = y$$
, $(X \cap Y)_W = \emptyset$ and $|X_W| = |Y_W| = 1$.

- - **1** Otherwise, $X \sqcup Y$, and by $y \in X_I \cap Y_I$, $X \sqcap Y$ are nontrivial bi-sets.
 - Then, by submodularity of f_D^T , $X \sqcap Y$ is tight : $2 + 2 \ge f_D^T(X) + f_D^T(Y) \ge f_D^T(X \sqcap Y) + f_D^T(X \sqcup Y) \ge 2 + 2$.

Claim : $X_I \cap Y_I = y$, $(X \cap Y)_W = \emptyset$ and $|X_W| = |Y_W| = 1$.

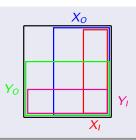
- - **1** Otherwise, $X \sqcup Y$, and by $y \in X_I \cap Y_I$, $X \cap Y$ are nontrivial bi-sets.
 - **②** Then, by submodularity of f_D^T , $X \sqcap Y$ is tight : $2+2 \ge f_D^T(X) + f_D^T(Y) \ge f_D^T(X \sqcap Y) + f_D^T(X \sqcup Y) \ge 2+2$.
 - **3** Then, since xy enters $X \sqcap Y$, $X \sqcap Y \in \mathcal{T}$.

Claim : $X_I \cap Y_I = y$, $(X \cap Y)_W = \emptyset$ and $|X_W| = |Y_W| = 1$.

- - **1** Otherwise, $X \sqcup Y$, and by $y \in X_I \cap Y_I$, $X \sqcap Y$ are nontrivial bi-sets.
 - **Q** Then, by submodularity of f_D^T , $X \sqcap Y$ is tight : $2+2 \ge f_D^T(X) + f_D^T(Y) \ge f_D^T(X \sqcap Y) + f_D^T(X \sqcup Y) \ge 2+2$.
 - **3** Then, since xy enters $X \sqcap Y$, $X \sqcap Y \in \mathcal{T}$.

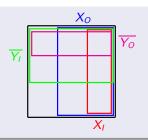
Claim :
$$X_I \cap Y_I = y$$
, $(X \cap Y)_W = \emptyset$ and $|X_W| = |Y_W| = 1$.

- ② By $\overline{Y} = (\overline{Y_I}, \overline{Y_O}) \in \mathcal{T}$ and minimality of X, $|\overline{Y_I}| + |\overline{Y_O}| \ge |X_O| + |X_I|$.



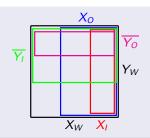
Claim :
$$X_I \cap Y_I = y$$
, $(X \cap Y)_W = \emptyset$ and $|X_W| = |Y_W| = 1$.

- **②** By $\overline{Y} = (\overline{Y_I}, \overline{Y_O}) \in \mathcal{T}$ and minimality of X, $|\overline{Y_I}| + |\overline{Y_O}| \ge |X_O| + |X_I|$.



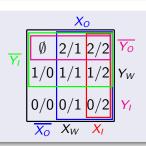
Claim :
$$X_I \cap Y_I = y$$
, $(X \cap Y)_W = \emptyset$ and $|X_W| = |Y_W| = 1$.

- ② By $\overline{Y} = (\overline{Y_I}, \overline{Y_O}) \in \mathcal{T}$ and minimality of X, $|\overline{Y_I}| + |\overline{Y_O}| \ge |X_O| + |X_I|$.



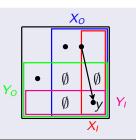
Claim :
$$X_I \cap Y_I = y$$
, $(X \cap Y)_W = \emptyset$ and $|X_W| = |Y_W| = 1$.

- $2 \ge |X_W| + |Y_W| \ge |\overline{Y_O} \cap X_W| + |Y_W \cap \overline{X_O}| \\ \ge |X_I \cap Y_W| + 2|X_I \cap Y_I| + |X_W \cap Y_I| \ge 2.$



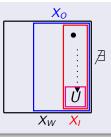
Claim :
$$X_I \cap Y_I = y$$
, $(X \cap Y)_W = \emptyset$ and $|X_W| = |Y_W| = 1$.

- ② By $\overline{Y} = (\overline{Y_I}, \overline{Y_O}) \in \mathcal{T}$ and minimality of X, $|\overline{Y_I}| + |\overline{Y_O}| \ge |X_O| + |X_I|$.
- $2 \ge |X_W| + |Y_W| \ge |\overline{Y_O} \cap X_W| + |Y_W \cap \overline{X_O}| \\ \ge |X_I \cap Y_W| + 2|X_I \cap Y_I| + |X_W \cap Y_I| \ge 2.$
- Thus we have equality everywhere and the claim follows.

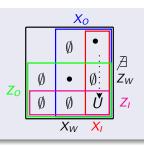


Lemma 3 : $D[X_I]$ is 1-ac.

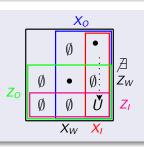
① Otherwise, $\exists \emptyset \neq \begin{cases} U \subset X_I : \partial_{D[X_I]}^-(U) = \emptyset. \end{cases}$



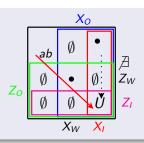
- $\textbf{0} \text{ Otherwise, } \exists \emptyset \neq \textcolor{red}{U} \subset X_I : \partial_{D[X_I]}^-(U) = \emptyset.$
- **2** $\mathbf{Z} := (Z_O, Z_I) = (U \cup X_W, U).$



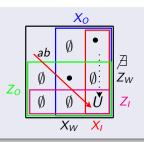
- ① Otherwise, $\exists \emptyset \neq \begin{cases} U \subset X_I : \partial_{D[X_I]}^-(U) = \emptyset. \end{cases}$
- **2** $Z := (Z_O, Z_I) = (U \cup X_W, U).$



- ① Otherwise, $\exists \emptyset \neq \begin{cases} U \subset X_I : \partial_{D[X_I]}^-(U) = \emptyset. \end{cases}$
- **2** $Z := (Z_O, Z_I) = (U \cup X_W, U).$
- **3** $2 \le f_D^T(\mathsf{Z}) = |\partial_D^-(\mathsf{Z})| + g^T(\mathsf{Z}_W) \le |\partial_D^-(\mathsf{X})| + g^T(\mathsf{X}_W) = f_D^T(\mathsf{X}) = 2.$
- **①** Z is tight and $\partial_D^-(Z) = \partial_D^-(X)$, so *ab* enters Z, thus $Z \in \mathcal{T}$.



- ① Otherwise, $\exists \emptyset \neq \begin{cases} U \subset X_I : \partial_{D[X_I]}^-(U) = \emptyset. \end{cases}$
- **2** $Z := (Z_O, Z_I) = (U \cup X_W, U).$
- **3** Z is tight and $\partial_D^-(Z) = \partial_D^-(X)$, so ab enters Z, thus $Z \in \mathcal{T}$.
- **3** By $|Z_O| + |Z_I| < |X_O| + |X_I|$, contradiction.



Lemma 4 :
$$X_O \subseteq V_+ = \{v \in V : |\partial_D^-(v)| > 2 = |\partial_D^+(v)|\}$$
 if $X_I \neq b$.

Lemma 4 :
$$X_O \subseteq V_+ = \{v \in V : |\partial_D^-(v)| > 2 = |\partial_D^+(v)|\}$$
 if $X_I \neq b$.

Lemma 4 :
$$X_O \subseteq V_+ = \{v \in V : |\partial_D^-(v)| > 2 = |\partial_D^+(v)|\}$$
 if $X_I \neq b$.

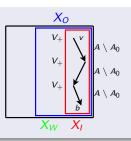
- - By condition, $|\partial_D^+(u)| = 2$, and then, since D is a counterexample, $|\partial_D^-(u)| > 2$ and hence $u \in V_+$.

Lemma 4 :
$$X_O \subseteq V_+ = \{v \in V : |\partial_D^-(v)| > 2 = |\partial_D^+(v)|\}$$
 if $X_I \neq b$.

- $2 X_I \subseteq V_+.$

Lemma 4 :
$$X_O \subseteq V_+ = \{v \in V : |\partial_D^-(v)| > 2 = |\partial_D^+(v)|\}$$
 if $X_I \neq b$.

- $X_I \subseteq V_+$.
 - By Lemmas 2, 3, and (1) :
 - $X_I \subseteq \{v : \exists \text{ nontrivial } (v, b) \text{-path in } D A_0\} \subseteq V_+$.

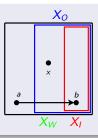


Lemma 4 :
$$X_O \subseteq V_+ = \{v \in V : |\partial_D^-(v)| > 2 = |\partial_D^+(v)|\}$$
 if $X_I \neq b$.

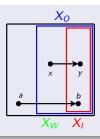
- $2 X_I \subseteq V_+$

Lemma 4 :
$$X_O \subseteq V_+ = \{v \in V : |\partial_D^-(v)| > 2 = |\partial_D^+(v)|\}$$
 if $X_I \neq b$.

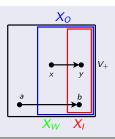
- $X_I \subseteq V_+$.
- - By $x = X_W, \partial_D^-(X) = ab$



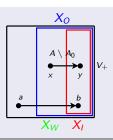
- $2 X_I \subseteq V_+.$
- - By $x = X_W, \partial_D^-(X) = ab$ and hence $\exists xy \in \partial_D(X_W, X_I)$,



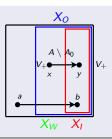
- $2 X_I \subseteq V_+.$
- - By $x = X_W, \partial_D^-(X) = ab$ and hence $\exists xy \in \partial_D(X_W, X_I)$,
 - so, by (2), $y \in V_+$



- $2 X_I \subseteq V_+.$
- - By $x = X_W, \partial_D^-(X) = ab$ and hence $\exists xy \in \partial_D(X_W, X_I)$,
 - so, by (2), $y \in V_+$ and then, by Lemma 2 and (1), $X_W = x \in V_+$.



- $X_I \subseteq V_+$.
- - By $x = X_W, \partial_D^-(X) = ab$ and hence $\exists xy \in \partial_D(X_W, X_I)$,
 - so, by (2), $y \in V_+$ and then, by Lemma 2 and (1), $X_W = x \in V_+$.



- ① If $X_l \neq b$: by Lemma 4 (3) and (2), we have a contradiction:
- ② If $X_I = b$: by $ab \in A_0$, (\star) and X is tight, we have a contradiction:
- **3** These contradictions complete the proof of the theorem.

- ① If $X_I \neq b$: by Lemma 4 (3) and (2), we have a contradiction: $3-2 \geq |\partial_D^-(X)| + 2|X_W| 2 \geq |\partial_D^-(X)| + |\partial_D(X_W, X_I)| |\partial^+(X_I)| = |\partial_D^-(X_I)| |\partial_D^+(X_I)| = \sum_{v \in X_I} (|\partial_D^-(v)| |\partial_D^+(v)|) \geq |X_I| \geq 2.$
- ② If $X_I = b$: by $ab \in A_0$, (\star) and X is tight, we have a contradiction:
- These contradictions complete the proof of the theorem.

- ① If $X_l \neq b$: by Lemma 4 (3) and (2), we have a contradiction:
- ② If $X_I = b$: by $ab \in A_0$, (*) and X is tight, we have a contradiction: $2 < |\partial_D^-(b)| = |\partial_D^-(X)| + |\partial_D(X_W, b)| \le |\partial_D^-(X)| + g^T(X_W) = 2$.
- These contradictions complete the proof of the theorem.

- ① If $X_l \neq b$: by Lemma 4 (3) and (2), we have a contradiction:
- ② If $X_I = b$: by $ab \in A_0$, (\star) and X is tight, we have a contradiction:
- 3 These contradictions complete the proof of the theorem.

Tha	nk	you
for	yo	ur
Att	ent	ion