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Theorem 1 (Mader 1978)
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k-arc-connected (k-ac) digraphs

Q k-ac: V(u,v) € V2, 3 k arc disjoint (u, v)-paths, (Menger)
|0~ (X)| >k VD #X C V,

© adding an arc /deleting an arc,
© pinching k arcs /complete splitting off at v : |07 (v)| = |07 (v)| = k,
@ minimally k-ac : D is k-ac and Va € A, D — a is not k-ac.

Theorem 1 (Mader 1978)

O A digraph is k-ac it can be constructed from a vertex by
repeated applications of operations 2 and 3.

@ In a minimally k-ac digraph 3 a vertex v : |07 (v)| = |07 (v)| = k.

© In a k-ac digraph for |07 (s)| = |07 (s)|, 3 a complete splitting off at
s resulting in a k-ac digraph.
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k-vertex-connected (k-vc) digraphs

Definition
Q k-vc: |V|>k+1,¥(u,v) € V2 3 k vertex disjoint (u, v)-paths
(Menger) D — X is 1-ac VX C V,|X| =k — 1,
© minimally k-vc : D is k-vc and Ya € A, D — a is not k-vc.

Conjecture (Mader 1979)
In a minimally k-vc digraph 3 a vertex v : |0~ (v)| = |07 (v)| = k.

Theorem 2 (Mader 2002)

In a minimally 2-vc digraph 3 a vertex v : |07 (v)| =07 (v)| = 2.

Open problem

Find a constructive characterization of 2-vc digraphs.
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2-T-connected (2-T-c) digraphs

Definition
Q 2-T-c:|V|>3,¥(u,v) € V2 32 arc disjoint
(u, v)-paths that are innerly vertex disjoint in T C V/,
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2-T-connected (2-T-c) digraphs

Definition
Q 2-Tc:|V|>3,¥(u,v) € V2 32 arc disjoint
(u, v)-paths that are innerly vertex disjoint in T C V/,
© minimally 2-T-c: D 2-T-c; Va€ A, D — a not 2-T-c.

Remark
© 2-(-c = 2-ac and 2-V-c = 2-vc.
Q Dis2-T-c Vae AD—aisl-acandVte T, D —tis l-ac.

Theorem 3 (Durand de Gevigney, Szigeti)

In @ minimally 2-T-c digraph with (%) no parallel arc leaving a vertex in T,
Javertex v : [0 (v)| = 0T (v)| = 2.

Theorem 3 implies Theorem 1 (2) for k = 2 and Theorem 2.
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Bi-sets

© bi-set X : = (Xp, X;) with outer-set Xp = inner-set X; U wall Xyy.

Xw || Xi

Xo
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Bi-sets

© bi-set X : = (Xp, X;) with outer-set Xp = inner-set X; U wall Xyy.
@ nontrivial bi-set : X; # 0, Xo # V.
© complement of bi-set X : X = (X}, Xo).
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Bi-sets

© bi-set X : = (Xp, X;) with outer-set Xp = inner-set X; U wall Xyy.
@ nontrivial bi-set : X; # 0, Xo # V.

© complement of bi-set X : X = (X}, Xo).

©Q intersection of bi-sets X and Y : XY = (Xo N Yo, X; N Y)),

© union of bi-sets X and Y : XUUY = (Xpo U Yo, X; U Y)),

@ entering arc of bi-set X : xy € A with x € Xp and y € X].
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Bi-sets

© bi-set X : = (Xp, X;) with outer-set Xp = inner-set X; U wall Xyy.
@ nontrivial bi-set : X; # 0, Xo # V.

© complement of bi-set X : X = (X}, Xo).

©Q intersection of bi-sets X and Y : XY = (Xo N Yo, X; N Y)),

© union of bi-sets X and Y : XUUY = (Xpo U Yo, X; U Y)),

@ entering arc of bi-set X : xy € A with x € Xp and y € X].

@ in-degree of bi-set X : |0~ (X)| = number of arcs entering X.

Xw || Xi

Xo
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Bi-sets and 2-T-c

Definition _
@ ¢'(v)=1lifve TandgT(v)=2ifve V\T, 4
X X
= Xo
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Bi-sets and 2-T-c

Definition _
@ ¢'(v)=1lifve TandgT(v)=2ifve V\T, 4
@ f1(X) =05 (X)] + &7 (Xw), T
Q tight bi-set X : 7 (X) = 2. = %o

Q Dis2-T-c — fJ(X) > 2V nontrivial bi-set X,
© minimally 2-T-c < 2-T-c and each arc enters a tight bi-set.
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Bi-sets and 2-T-c

Definition _
@ ¢'(v)=1lifve TandgT(v)=2ifve V\T, 4
@ f1(X) =05 (X)] + &7 (Xw), T
Q tight bi-set X : 7 (X) = 2. = %o

Q Dis2-T-c — fJ(X) > 2V nontrivial bi-set X,
© minimally 2-T-c < 2-T-c and each arc enters a tight bi-set.

fDT is a submodular bi-set function :
fo (X)+ g (Y) > f3(XNY)+ 2 (XuY).
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Proof of Theorem 3

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-T-c digraph with (%) no parallel arc leaving a vertex in T,
Javertex v : [0~ (v)| = 0T (v)| = 2.

v

Beginning of the proof

© D = (V,A) : counterexample.
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| \

© D = (V,A) : counterexample.
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Proof of Theorem 3

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-T-c digraph with (%) no parallel arc leaving a vertex in T,
Javertex v : [0~ (v)| = 0T (v)| = 2.

Beginning of the proof
© D = (V,A) : counterexample.
Q@ Ay={xy € A:|07(x)| >2and |0~ (y)| > 2}.

| \

Lemma 1 : Ay # 0.

Q wucovers a: |07 (u)| =2 and aenters u or [0 (u)| =2 and a leaves v,
Q If Ag = (), then every arc is covered by at least one of its end-vertices,
© a vertex can cover at most 2 arcs,

Q |07 (v)|+ |0t (v)| >5Vv eV,

| \
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Proof of Theorem 3

Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally 2-T-c digraph with (%) no parallel arc leaving a vertex in T,
Javertex v : [0~ (v)| = 0T (v)| = 2.

Beginning of the proof
© D = (V,A) : counterexample.
Q@ Ay={xy € A:|07(x)| >2and |0~ (y)| > 2}.

| \

Lemma 1 : Ay # 0.

Q wucovers a: |07 (u)| =2 and aenters u or [0 (u)| =2 and a leaves v,

Q If Ag = (), then every arc is covered by at least one of its end-vertices,

| \

© a vertex can cover at most 2 arcs,
Q [0 (v)|+1]0F(v)|>5VveV,
Q 2|V|>|A =13 v (J07(v)| + 10T (v)|) > 3|V|, contradiction.
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Proof of Theorem 3

Definition
@ 7 :={T:TorTis a tight bi-set entered by an arc of Ay}
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Proof of Theorem 3

Definition
@ 7 :={T:TorTis a tight bi-set entered by an arc of Ag} (# ().)
Q X : = (Xo, X)) €T such that | Xo| + |X;| is minimum.
© Wilog. X is a tight bi-set entered by the arc ab of Ap.
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Proof of Theorem 3

Definition
@ 7 :={T:TorTis a tight bi-set entered by an arc of Ag} (# ().)
Q X : = (Xo, X)) €T such that | Xo| + |X;| is minimum.
© Wilog. X is a tight bi-set entered by the arc ab of Ap.
o F1(X) = 0=(X)| + &7 (Rw) = |05(X)| + g7 (Xw) = 2, ab € I=(X).
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Proof of Theorem 3

Definition

©Q 7 :={T:TorTis a tight bi-set entered by an arc of Ag} (# 0.)
Q X :=(Xp,X;) €T such that | Xo| + | X;| is minimum.

© Wilog. X is a tight bi-set entered by the arc ab of Ap.

O Rem. : Xy =0 and [05(X)| =2 o0or Xy € T and [0, (X)| = 1.
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Proof of Theorem 3

Definition

©Q 7 :={T:TorTis a tight bi-set entered by an arc of Ag} (# 0.)
Q X :=(Xp,X;) €T such that | Xo| + | X;| is minimum.

© Wilog. X is a tight bi-set entered by the arc ab of Ap.

O Rem. : Xy =0 and [05(X)| =2 o0or Xy € T and [0, (X)| = 1.

Lemma 2 : A xy € Ag,y € X, x € Xo.
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© Wilog. X is a tight bi-set entered by the arc ab of Ap.

O Rem. : Xy =0 and [05(X)| =2 o0or Xy € T and [0, (X)| = 1.
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© Wilog. X is a tight bi-set entered by the arc ab of Ap.

O Rem. : Xy =0 and [05(X)| =2 o0or Xy € T and [0, (X)| = 1.

Lemma 2 : A xy € Ag,y € X, x € Xo.

© Suppose xy € Ag,y € X, x € Xo.
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©Q 7 :={T:TorTis a tight bi-set entered by an arc of Ag} (# 0.)
Q X :=(Xp,X;) €T such that | Xo| + | X;| is minimum.

© Wilog. X is a tight bi-set entered by the arc ab of Ap.

O Rem. : Xy =0 and [05(X)| =2 o0or Xy € T and [0, (X)| = 1.

Lemma 2 : A xy € Ag,y € X, x € Xo.

© Suppose xy € Ag,y € X, x € Xo.
Q xy enters a tight bi-set Y = (Yo, Y1), (Y € T).
Q Claim: X, nY; =y, XnY)w =0, Xw|=|Yw| = 1.
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Proof of Theorem 3

Definition

©Q 7 :={T:TorTis a tight bi-set entered by an arc of Ag} (# 0.)
Q X :=(Xp,X;) €T such that | Xo| + | X;| is minimum.

© Wilog. X is a tight bi-set entered by the arc ab of Ap.

O Rem. : Xy =0 and [05(X)| =2 o0or Xy € T and [0, (X)| = 1.

Lemma 2 : A xy € Ag,y € X, x € Xo.

© Suppose xy € Ag,y € X, x € Xo.

Q xy enters a tight bi-set Y = (Yo, Y1), (Y € T).

Q Claim: X, nY; =y, XnY)w =0, Xw|=|Yw| = 1.
Q 2 <[0p(y)l = [0 (XTTY)| < |05 (X)| + [9p(Y)[ = 2.
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Proof of Theorem 3

Claim: X,N Y, =y, XM Y)w =0 and [Xpw| = [Yw| = 1.
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Proof of Theorem 3

O XoUYp=V.
©® Otherwise, XY, and by y € X; N Y}, XY are nontrivial bi-sets.
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Proof of Theorem 3

O XoUYp=V.
©® Otherwise, XY, and by y € X; N Y}, XY are nontrivial bi-sets.
© Then, by submodularity of 7, XY is tight :
242> FI(X)+ FI(Y) > FI(XAY) + £I(XUY) > 2 +2.

Z. Szigeti (G-SCOP, Grenoble) On minimally 2- T-connected digraphs 2017 May 2 11 /14



Proof of Theorem 3

Claim: X,NnY, =y, XNY)w =0and Xw| = [Yw|=1.

O XoUYp=V.
@ Otherwise, XLIY, and by y € X; N Y), XY are nontrivial bi-sets.
© Then, by submodularity of fJ, XY is tight :
242> fFT(X)+ (V) > (T(XNY)+ 1 (XUY)>2+2.
© Then, since xy enters XMY, XMY e 7.
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Proof of Theorem 3

Claim: X,NnY, =y, XNY)w =0and Xw| = [Yw|=1.

O XoUYp=V.
@ Otherwise, XLIY, and by y € X; N Y), XY are nontrivial bi-sets.
© Then, by submodularity of fJ, XY is tight :
242> fFT(X)+ (V) > (T(XNY)+ 1 (XUY)>2+2.
© Then, since xy enters XMY, XMY e 7.
Q By xe Xo \ Yo, [(XT1Y)o| + [(XT1Y),] < |Xo| + | Xi|, contradiction.
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Y
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Proof of Theorem 3

Claim : X[ N Y[ =Yy, (Xl—]Y)W = @ and |Xw| = ‘Yw‘ = 1,
O XoUYp=V.
Q By Y = (Y], Yo) € T and minimality of X, |Y)| +|Yo| > |Xo| + |X|.
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Q By Y = (Y], Yo) € T and minimality of X, |Y)| +|Yo| > |Xo| + |X|.
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Proof of Theorem 3

Claim: X,NnY, =y, XNY)w =0 and Xw| = [Yw| = 1.

O XoUYp=V.
Q By Y = (Y], Yo) € T and minimality of X, |Y)| +|Yo| > |Xo| + |X|.
©Q 2> [Xw|+[Yw| > [Yo N Xw| +[Yw N Xo|
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Yi
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Xw X

Z. Szigeti (G-SCOP, Grenoble) On minimally 2- T-connected digraphs 2017 May 2 11 /14



Proof of Theorem 3

Claim: X,NnY, =y, XNY)w =0 and Xw| = [Yw| = 1.

O XoUYp=V.
Q By Y = (Y], Yo) € T and minimality of X, |Y)| +|Yo| > |Xo| + |X|.
Q 2> [Xw|+|Yw| > [Yo N Xw| + |Yw N Xo|

> |X[ N Yw| —|—2|X/ N Y[| aF |XW N Y[| > 2.
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Proof of Theorem 3

Claim: X,NnY, =y, XNY)w =0 and Xw| = [Yw| = 1.

O XoUYp=V.
Q By Y = (Y], Yo) € T and minimality of X, |Y)| +|Yo| > |Xo| + |X|.
Q 2> [Xw|+|Yw| > [Yo N Xw| + |Yw N Xo|

> |X[ N Yw| —|—2|X/ N Y[| aF |XW N Y[| > 2.

© Thus we have equality everywhere and the claim follows.
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Proof of Theorem 3

Lemma 3 : D[X]] is 1-ac.
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Proof of Theorem 3

Lemma 3 : D[X)] is 1-ac.

© Otherwise, 30 # U C X; : 85[X,](U) = 0.
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Proof of Theorem 3

Lemma 3 : D[X)] is 1-ac.

O Otherwise, 30 # U C X; : 9, (U) = 0.
Q Z:=(Zo0,2) = (UUXw, U).
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Proof of Theorem 3

Lemma 3 : D[X)] is 1-ac.

O Otherwise, 30 # U C X; : 9, (U) = 0.
Q Z:=(Zo0,2) = (UUXw, U).
Q@ 2<1J(2)=0p(2)| + &7 (Zw) < 19p(X)| + &7 (Xw) = f5 (X) = 2.
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Proof of Theorem 3

Lemma 3 : D[X)] is 1-ac.

© Otherwise, 30 # U C X; : 85[X,](U) = 0.

Q Z:=(Z0,2) = (UUXw, U).

Q@ 2<1J(2)=0p(2)| + &7 (Zw) < 19p(X)| + &7 (Xw) = f5 (X) = 2.
Q Zis tight and 0,5 (Z) = 0p(X), so ab enters Z, thus Z € T
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Proof of Theorem 3

© Otherwise, 30 # U C X; : 85[X,](U) = (.

Q Z:=(Zo0,2) = (UUXw, U).

© 2<f7(2)=10p(2)| + &7 (Zw) < 195 (X)| + &7 (Xw) = f7 (X) = 2.
Q Zis tight and 0,5 (Z) = 0p(X), so ab enters Z, thus Z € T

O By |Zo| + |Z)| < |Xo| + | Xi|, contradiction.

o0 ],

0 Q @ Zy
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Proof of Theorem 3

Lemmad: Xo C  ={veV:|05(v)|>2=195)|}if X; #b.
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Proof of Theorem 3

Lemmad: Xo C  ={veV:|05(v)|>2=195)|}if X; #b.

Q If |05(v)| >2and uv € A\ Ag, then u e V,.

o By condition, |0/,(u)| = 2, and then, since D is a counterexample,
|0p (u)] > 2 and hence u € V.
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Proof of Theorem 3

Lemmad: Xo C  ={veV:|05(v)|>2=195)|}if X; #b.
Q If |05(v)| >2and uv € A\ Ag, then u e V,.
Q X CV,.

e By Lemmas 2, 3, and (1) :
@ X; C {v: 3 nontrivial (v, b)-path in D — Ay} C V.
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A\ A

Vi
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Proof of Theorem 3

Lemmad: Xo C  ={veV:|05(v)|>2=195)|}if X; #b.
Q If |05(v)| >2and uv € A\ Ag, then u e V,.
Q X CV,.

Q If Xy # 0, then Xy € V..
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Proof of Theorem 3

Lemmad: Xo C  ={veV:|05(v)|>2=195)|}if X; #b.
Q If |05(v)| >2and uv € A\ Ag, then u e V,.
Q X CV,.

Q If Xw # 0, then Xy € V4.
o By x = Xw, 0, (X) = ab
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Proof of Theorem 3

Lemmad: Xo C  ={veV:|05(v)|>2=195)|}if X; #b.
Q If |05(v)| >2and uv € A\ Ag, then u e V,.
Q X CV,.

Q If Xw # 0, then Xy € V4.
o By x = Xw, 9 (X) = ab and hence Ixy € dp(Xw, Xj),
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Proof of Theorem 3

Lemmad: Xo C  ={veV:|05(v)|>2=195)|}if X; #b.
Q If |05(v)| >2and uv € A\ Ag, then u e V,.
Q X CV,.

Q If Xw # 0, then Xy € V4.
o By x = Xw, 9 (X) = ab and hence Ixy € dp(Xw, Xj),
e so, by (2), y € V4
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Proof of Theorem 3

Lemmad: Xo C  ={veV:|05(v)|>2=195)|}if X; #b.
Q If |05(v)| >2and uv € A\ Ag, then u e V,.
Q X CV,.

Q If Xy #0, then Xy € V.
o By x = Xw, 9 (X) = ab and hence Ixy € dp(Xw, Xj),
@ so, by (2), y € V4 and then, by Lemma 2 and (1), X =x € V.
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Proof of Theorem 3

Lemmad: Xo C  ={veV:|05(v)|>2=195)|}if X; #b.
Q If |05(v)| >2and uv € A\ Ag, then u e V,.
Q X CV,.

Q If Xy #0, then Xy € V.
o By x = Xw, 9 (X) = ab and hence Ixy € dp(Xw, Xj),
@ so, by (2), y € V4 and then, by Lemma 2 and (1), X =x € V.
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Everything has to come to an end, sometime.

Q If X; # b: by Lemma 4 (3) and (2), we have a contradiction :
Q If X; = b: by abe Ay, () and X is tight, we have a contradiction :

© These contradictions complete the proof of the theorem.
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Everything has to come to an end, sometime.

© If X; # b: by Lemma 4 (3) and (2), we have a contradiction :
3—-2>105(X) + 2AXw| =2 > |95 (X)] + [0p(Xw, X)) — 07 (X))
=105 (XD)| = 185X = D (195 = 105(V)]) > IXi| > 2.
veX
Q If X; = b: by ab e Ay, () and X is tight, we have a contradiction :

© These contradictions complete the proof of the theorem.
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Everything has to come to an end, sometime.

Q If X; # b: by Lemma 4 (3) and (2), we have a contradiction :

Q If X; = b: by abe Ay, () and X is tight, we have a contradiction :
2 < [9p(b)| = 105 (X)| + 10p(Xw, b)| < [9p(X) + &7 (Xw) = 2.

© These contradictions complete the proof of the theorem.
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Everything has to come to an end, sometime.

Q If X; # b: by Lemma 4 (3) and (2), we have a contradiction :
Q If X; = b: by abe Ay, () and X is tight, we have a contradiction :

© These contradictions complete the proof of the theorem.
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