Packing arborescences : a survey

Zoltán Szigeti

Combinatorial Optimization Group, G-SCOP Univ. Grenoble Alpes, Grenoble INP, CNRS, France

2017 April 20

- Definitions, Applications
- Old results

New results

- Definitions, Applications
- Old results
 - Digraphs

New results

• Algorithmic aspects

Z. Szigeti (G-SCOP, Grenoble)

Packing of arborescences

- Definitions, Applications
- Old results
 - Digraphs
 - Matroid-based rooted-digraphs

New results

- Definitions, Applications
- Old results
 - Digraphs
 - Matroid-based rooted-digraphs
 - Digraphs with matroid
- New results

- Definitions, Applications
- Old results
 - Digraphs
 - Matroid-based rooted-digraphs
 - Digraphs with matroid
- New results
 - Matroid-rooted digraphs

- Definitions, Applications
- Old results
 - Digraphs
 - Packing spanning arborescences
 - Matroid-based rooted-digraphs
 - Digraphs with matroid
- New results
 - Matroid-rooted digraphs

- Definitions, Applications
- Old results
 - Digraphs
 - Packing spanning arborescences
 - Packing reachability arborescences
 - Matroid-based rooted-digraphs
 - Digraphs with matroid
- New results
 - Matroid-rooted digraphs

- Definitions, Applications
- Old results
 - Digraphs
 - Packing spanning arborescences
 - Packing reachability arborescences
 - Matroid-based rooted-digraphs
 - Matroid-based packing of rooted-arborescences
 - Digraphs with matroid
- New results
 - Matroid-rooted digraphs

- Definitions, Applications
- Old results
 - Digraphs
 - Packing spanning arborescences
 - Packing reachability arborescences
 - Matroid-based rooted-digraphs
 - Matroid-based packing of rooted-arborescences
 - Reachability-based packing of rooted-arborescences
 - Digraphs with matroid
- New results
 - Matroid-rooted digraphs

- Definitions, Applications
- Old results
 - Digraphs
 - Packing spanning arborescences
 - Packing reachability arborescences
 - Matroid-based rooted-digraphs
 - Matroid-based packing of rooted-arborescences
 - Reachability-based packing of rooted-arborescences
 - Digraphs with matroid
 - Matroid-restricted packing of spanning arborescences
- New results
 - Matroid-rooted digraphs

- Definitions, Applications
- Old results
 - Digraphs
 - Packing spanning arborescences
 - Packing reachability arborescences
 - Matroid-based rooted-digraphs
 - Matroid-based packing of rooted-arborescences
 - Reachability-based packing of rooted-arborescences
 - Digraphs with matroid
 - Matroid-restricted packing of spanning arborescences
- New results
 - Matroid-rooted digraphs
 - Matroid-based packing of spanning arborescences

- Definitions, Applications
- Old results
 - Digraphs
 - Packing spanning arborescences
 - Packing reachability arborescences
 - Matroid-based rooted-digraphs
 - Matroid-based packing of rooted-arborescences
 - Reachability-based packing of rooted-arborescences
 - Digraphs with matroid
 - Matroid-restricted packing of spanning arborescences
- New results
 - Matroid-rooted digraphs
 - Matroid-based packing of spanning arborescences
 - Matroid-based matroid-restricted packing of arborescences
- Algorithmic aspects

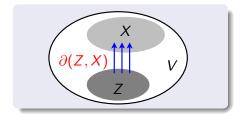
- Definitions, Applications
- Old results
 - Digraphs
 - Packing spanning arborescences
 - Packing reachability arborescences
 - Matroid-based rooted-digraphs
 - Matroid-based packing of rooted-arborescences
 - Reachability-based packing of rooted-arborescences
 - Digraphs with matroid
 - Matroid-restricted packing of spanning arborescences
- New results
 - Matroid-rooted digraphs
 - Matroid-based packing of spanning arborescences
 - Matroid-based matroid-restricted packing of arborescences
 - Reachability-based matroid-restricted packing of arborescences
- Algorithmic aspects

Definition

Let $\vec{G} = (V, A)$ be a digraph and $X \subseteq V$.

Definition

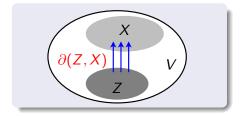
Let $\vec{G} = (V, A)$ be a digraph and $X \subseteq V$. **a** $\partial(Z, X)$: set of arcs from Z to X, for $Z \subseteq V \setminus X$,



Definition

Let $ec{G}=(V,A)$ be a digraph and $X\subseteq V.$

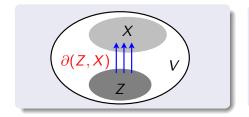
- **Q** $\partial(Z,X)$: set of arcs from Z to X, for $Z \subseteq V \setminus X$,
- $(\partial(X)) = |\partial(V \setminus X, X)| : \text{ in-degree of } X,$

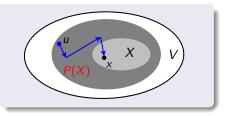


Definition

Let $\vec{G} = (V, A)$ be a digraph and $X \subseteq V$.

- **1** $\partial(Z,X)$: set of arcs from Z to X, for $Z \subseteq V \setminus X$,
- $(\partial(X)) = |\partial(V \setminus X, X)| : \text{ in-degree of } X,$
- **3** P(X) : set of vertices from which X can be reached in \vec{G} .



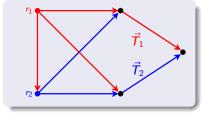


Definition

Let $\vec{G} = (V, A)$ be a digraph and $r \in V$.

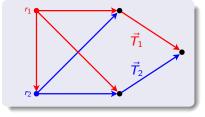
Definition

Let $\vec{G} = (V, A)$ be a digraph and $r \in V$. A subgraph $\vec{T} = (U, B)$ of \vec{G} is an *r*-arborescence if



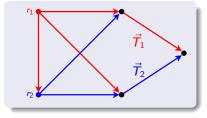
Definition

Let $\vec{G} = (V, A)$ be a digraph and $r \in V$. A subgraph $\vec{T} = (U, B)$ of \vec{G} is an *r*-arborescence if T is a tree.



Definition

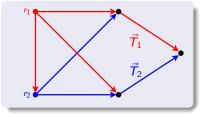
Let $\vec{G} = (V, A)$ be a digraph and $r \in V$. A subgraph $\vec{T} = (U, B)$ of \vec{G} is an *r*-arborescence if T is a tree, $r \in U$ with $|\partial_B(r)| = 0$,



Definition

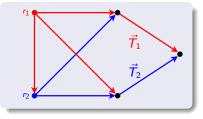
Let $\vec{G} = (V, A)$ be a digraph and $r \in V$. A subgraph $\vec{T} = (U, B)$ of \vec{G} is an *r*-arborescence if T is a tree, \vec{O} $r \in U$ with $|\partial_B(r)| = 0$,

$$|\partial_B(u)| = 1 \text{ for all } u \in U \setminus r.$$



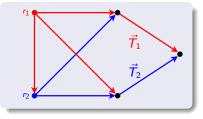
Definition

Let G = (V, A) be a digraph and r ∈ V.
A subgraph T = (U, B) of G is an r-arborescence if
T is a tree,
r ∈ U with |∂_B(r)| = 0,
|∂_B(u)| = 1 for all u ∈ U \ r.
An r-arborescence T is



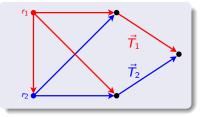
Definition

Let G = (V, A) be a digraph and r ∈ V.
A subgraph T = (U, B) of G is an r-arborescence if
T is a tree,
r ∈ U with |∂_B(r)| = 0,
|∂_B(u)| = 1 for all u ∈ U \ r.
An r-arborescence T is
spanning if U = V,



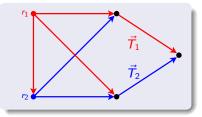
Definition

Let $\vec{G} = (V, A)$ be a digraph and $r \in V$. A subgraph $\vec{T} = (U, B)$ of \vec{G} is an *r*-arborescence if T is a tree, $r \in U$ with $|\partial_B(r)| = 0$, $|\partial_B(u)| = 1$ for all $u \in U \setminus r$. An *r*-arborescence \vec{T} is spanning if U = V, reachability if $U = \{v : r \in P(v)\}$.



Definition

Let $\vec{G} = (V, A)$ be a digraph and $r \in V$. • A subgraph $\vec{T} = (U, B)$ of \vec{G} is an *r*-arborescence if **1** T is a tree. 2 $r \in U$ with $|\partial_B(r)| = 0$, $|\partial_B(u)| = 1 \text{ for all } u \in U \setminus r.$ **2** An *r*-arborescence \vec{T} is • spanning if U = V, **2** reachability if $U = \{v : r \in P(v)\}$. Packing of arborescences is a set of pairwise arc-disjoint arborescences.



Z. Szigeti (G-SCOP, Grenoble)

Z. Szigeti (G-SCOP, Grenoble)

- From each agent to any other agent some secret channels exist.
- Some messages were created and assigned to agents :
 - each message was assigned to one agent and
 - an agent could have been assigned to zero, one or more messages.
- The messages can then be propagated through the network :
 - any agent may send any message they know to any of their contacts.
- Can each agent receive each message?

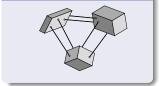
- From each agent to any other agent some secret channels exist.
- Some messages were created and assigned to agents :
 - each message was assigned to one agent and
 - an agent could have been assigned to zero, one or more messages.
- The messages can then be propagated through the network :
 - any agent may send any message they know to any of their contacts.
- Can each agent receive each message?
- Today the security rules changed :
 - the transmission of at most one message is allowed via any channel.
- Can now each agent receive each message?
- and the messages that they could have received before?

- The created messages were not independent :
 - it is possible that given a subset of messages, one would get no extra information by adding another message to the set.
- Can now each agent receive only independent messages that contain
 - all the information?
 - and all information they could have received before?

- The created messages were not independent :
 - it is possible that given a subset of messages, one would get no extra information by adding another message to the set.
- Can now each agent receive only independent messages that contain
 - all the information?
 - and all information they could have received before?
- For each channel, one must decide which message is sent (if any).
- The minimal set of channels through which the same message is sent forms an arborescence.

Applications : Rigidity

Body-Bar Framework

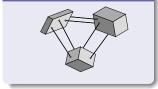


Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Applications : Rigidity

Body-Bar Framework



Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Body-Bar Framework with Bar-Boundary

Theorem (Katoh, Tanigawa 2013)

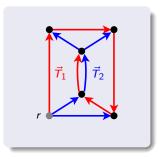
"Rigidity" of a Body-Bar Framework with Bar-Boundary can be characterized by the existence of a matroid-based rooted-tree decomposition.

Theorem (Edmonds 1973)

Let $\vec{G} = (V, A)$ be a digraph, $r \in V$ and k a positive integer.

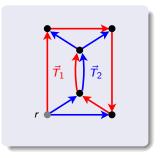
Let $\vec{G} = (V, A)$ be a digraph, $r \in V$ and k a positive integer.

• There exists a packing of k spanning r-arborescences



Let $\vec{G} = (V, A)$ be a digraph, $r \in V$ and k a positive integer.

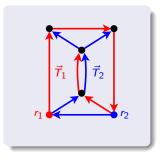
- There exists a packing of k spanning r-arborescences
- $(\partial(X)| \ge k \text{ for all } \emptyset \neq X \subseteq V \setminus r.$



Let $\vec{G} = (V, A)$ be a digraph and $(r_1, \ldots, r_t) \in V^t$.

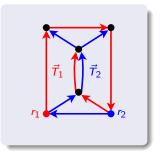
Let $\vec{G} = (V, A)$ be a digraph and $(r_1, \ldots, r_t) \in V^t$.

1 There exists a packing of spanning r_i-arborescences



Let $\vec{G} = (V, A)$ be a digraph and $(r_1, \ldots, r_t) \in V^t$.

- There exists a packing of spanning r_i-arborescences
- $2 |\partial(X)| \ge |\{r_i \in V \setminus X\}| \text{ for all } \emptyset \neq X \subseteq V.$



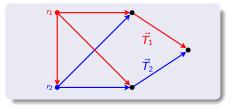
Definition

Let $\vec{G} = (V, A)$ be a digraph and $(r_1, \ldots, r_t) \in V^t$.

Definition

Let $\vec{G} = (V, A)$ be a digraph and $(r_1, \ldots, r_t) \in V^t$.

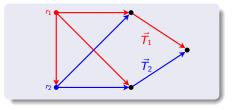
• A packing of reachability arborescences is a set $\{\vec{T}_1, \ldots, \vec{T}_t\}$ of pairwise arc-disjoint reachability r_i -arborescences \vec{T}_i in \vec{G} ;



Definition

Let $\vec{G} = (V, A)$ be a digraph and $(r_1, \ldots, r_t) \in V^t$.

A packing of reachability arborescences is a set { *T*₁,..., *T*_t} of pairwise arc-disjoint reachability *r_i*-arborescences *T_i* in *G*; that is for every *v* ∈ *V*, {*r_i* : *v* ∈ *V*(*T_i*)} = {*r_i* ∈ *P*(*v*)}.

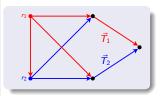


Theorem (Kamiyama, Katoh, Takizawa 2009)

Let $\vec{G} = (V, A)$ be a digraph, $(r_1, \ldots, r_t) \in V^t$.

Let $\vec{G} = (V, A)$ be a digraph, $(r_1, \ldots, r_t) \in V^t$.

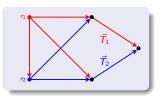
∃ a packing of reachability arborescences
 ⇔



Theorem (Kamiyama, Katoh, Takizawa 2009)

Let
$$\vec{G} = (V, A)$$
 be a digraph, $(r_1, \ldots, r_t) \in V^t$.

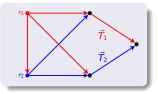
- ∃ a packing of reachability arborescences
 ⇔
- $|\partial(X)| \geq |\{r_i \in P(X) \setminus X\}| \text{ for all } X \subseteq V.$



Theorem (Kamiyama, Katoh, Takizawa 2009)

Let
$$\vec{G} = (V, A)$$
 be a digraph, $(r_1, \ldots, r_t) \in V^t$.

- ∃ a packing of reachability arborescences
 ⇔
- $|\partial(X)| \geq |\{r_i \in P(X) \setminus X\}| \text{ for all } X \subseteq V.$



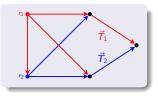
Remark

It implies Edmonds' theorem.

Theorem (Kamiyama, Katoh, Takizawa 2009)

Let
$$\vec{G} = (V, A)$$
 be a digraph, $(r_1, \ldots, r_t) \in V^t$.

- ∃ a packing of reachability arborescences
 ⇔
- $|\partial(X)| \geq |\{r_i \in P(X) \setminus X\}| \text{ for all } X \subseteq V.$



Remark

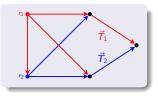
It implies Edmonds' theorem.

● $|\partial(X)| \ge |\{r_i \in V \setminus X\}|$ for all $\emptyset \ne X \subseteq V$ implies the above condition

Theorem (Kamiyama, Katoh, Takizawa 2009)

Let
$$\vec{G} = (V, A)$$
 be a digraph, $(r_1, \ldots, r_t) \in V^t$.

- ∃ a packing of reachability arborescences
 ⇔
- $|\partial(X)| \geq |\{r_i \in P(X) \setminus X\}| \text{ for all } X \subseteq V.$



Remark

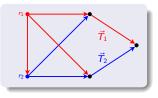
It implies Edmonds' theorem.

● $|\partial(X)| \ge |\{r_i \in V \setminus X\}|$ for all $\emptyset \ne X \subseteq V$ implies the above condition and that each vertex is reachable from each r_i .

Theorem (Kamiyama, Katoh, Takizawa 2009)

Let
$$\vec{G} = (V, A)$$
 be a digraph, $(r_1, \ldots, r_t) \in V^t$.

- ∃ a packing of reachability arborescences
 ⇔
- $|\partial(X)| \geq |\{r_i \in P(X) \setminus X\}| \text{ for all } X \subseteq V.$



Remark

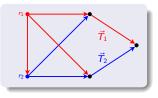
It implies Edmonds' theorem.

- $|\partial(X)| \ge |\{r_i \in V \setminus X\}|$ for all $\emptyset \ne X \subseteq V$ implies the above condition and that each vertex is reachable from each r_i .
- **2** Thus there exists a packing of reachability r_i -arborescences

Theorem (Kamiyama, Katoh, Takizawa 2009)

Let
$$\vec{G} = (V, A)$$
 be a digraph, $(r_1, \ldots, r_t) \in V^t$.

- ∃ a packing of reachability arborescences
 ⇔
- $|\partial(X)| \geq |\{r_i \in P(X) \setminus X\}| \text{ for all } X \subseteq V.$



Remark

It implies Edmonds' theorem.

- $|\partial(X)| \ge |\{r_i \in V \setminus X\}|$ for all $\emptyset \ne X \subseteq V$ implies the above condition and that each vertex is reachable from each r_i .
- Thus there exists a packing of reachability r_i-arborescences and hence spanning r_i-arborescences.

Definition

For $\mathcal{I} \subseteq 2^{E}$ (independent sets), $\mathcal{M} = (E, \mathcal{I})$ is a matroid if

- **2** If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
- **3** If $X, Y \in \mathcal{I}$ with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Definition

For $\mathcal{I} \subseteq 2^{\mathcal{E}}$ (independent sets), $\mathcal{M} = (\mathcal{E}, \mathcal{I})$ is a matroid if

- $\bullet \ \mathcal{I} \neq \emptyset,$
- **2** If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
- **3** If $X, Y \in \mathcal{I}$ with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Examples for matroids

- Linear : Sets of linearly independent vectors in a vector space,
- **Oraphic** : Edge-sets of forests of a graph,
- **3** Uniform : $U_{n,k} = \{X \subseteq E : |X| \le k\}$ where |E| = n,
- Free : $U_{n,n}$,
- **Transversal** : end-vertices in S of matchings of bipartite graph (S, T; E)

Notion

base : maximal independent set,

2 rank function :
$$r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}$$
, submodular

Notion

base : maximal independent set,

② rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}$, submodular

Theorem (Grötschel, Lovász, Schrijver 1981; Iwata, Fleischer, Fujishige 2001; Schrijver 2000)

The minimum of a submodular function can be found in polynomial time.

Notion

base : maximal independent set,

② rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}$, submodular

Theorem (Grötschel, Lovász, Schrijver 1981; Iwata, Fleischer, Fujishige 2001; Schrijver 2000)

The minimum of a submodular function can be found in polynomial time.

Theorem (Edmonds 1970,1979)

Let $\mathcal{M}_1 = (E, r_1), \mathcal{M}_2 = (E, r_2)$ be matroids on $E, k \in \mathbb{Z}_+, w : E \to \mathbb{R}$.

• \mathcal{M}_1 and \mathcal{M}_2 have a common independent set of size $k \iff r_1(X) + r_2(E \setminus X) \ge k \quad \forall X \subseteq E$.

A common base of M₁ and M₂ of minimum weight can be found in polynomial time.

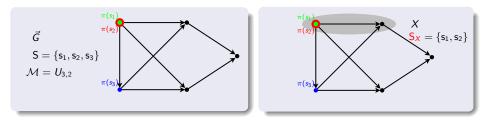
Definition

A matroid-based rooted-digraph is a quadruple $(\vec{G}, \mathcal{M}, S, \pi)$:

• $\vec{G} = (V, A)$ is a digraph,

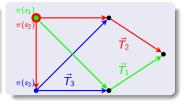
 $\textcircled{O} \ \mathcal{M} \text{ is a matroid on a set } \verb|S] = \{ \mathsf{s}_1, \ldots, \mathsf{s}_t \}.$

π is a placement of the elements of S at vertices of V such that
 S_v ∈ I for every v ∈ V, where S_X = π⁻¹(X), the elements of S
 placed at X.



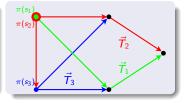
Definition

A rooted-arborescence is a pair (\vec{T}, s) where



Definition

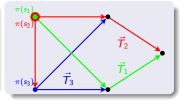
A rooted-arborescence is a pair (\vec{T}, s) where $s \in S$,



Definition

A rooted-arborescence is a pair (\vec{T}, s) where

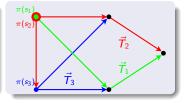
- \circ s \in S,
- **2** \vec{T} is a $\pi(s)$ -arborescence.



Definition

A rooted-arborescence is a pair (\vec{T}, s) where

- $\ \, \bullet \ \, \mathsf{s} \in \mathsf{S},$
- **2** \vec{T} is a $\pi(s)$ -arborescence.



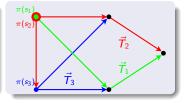
Definition

A packing $\{(\vec{\mathcal{T}}_1,s_1),\ldots,(\vec{\mathcal{T}}_{|S|},s_{|S|})\}$ of rooted-arborescences is matroid-based if

Definition

A rooted-arborescence is a pair (\vec{T}, s) where

- \circ s \in S,
- **2** \vec{T} is a $\pi(s)$ -arborescence.



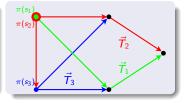
Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is matroid-based if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of S for every $v \in V$.

Definition

A rooted-arborescence is a pair (\vec{T}, s) where

- \circ s \in S,
- **2** \vec{T} is a $\pi(s)$ -arborescence.



Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is matroid-based if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of S for every $v \in V$.

Remark

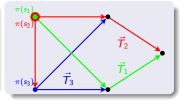
For the free matroid \mathcal{M} ,

Z. Szigeti (G-SCOP, Grenoble)

Definition

A rooted-arborescence is a pair (\vec{T}, s) where

- \circ s \in S,
- **2** \vec{T} is a $\pi(s)$ -arborescence.



Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is matroid-based if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of S for every $v \in V$.

Remark

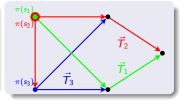
For the free matroid \mathcal{M} ,

matroid-based packing of rooted-arborescences

Definition

A rooted-arborescence is a pair (\vec{T}, s) where

- \circ s \in S,
- **2** \vec{T} is a $\pi(s)$ -arborescence.



Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is matroid-based if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of S for every $v \in V$.

Remark

For the free matroid \mathcal{M} ,

- Matroid-based packing of rooted-arborescences
- **2** packing of spanning $\pi(s_i)$ -arborescences.

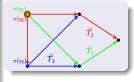
Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

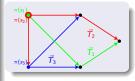
I matroid-based packing of rooted-arborescences ↔



Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

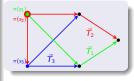
- I matroid-based packing of rooted-arborescences ↔
- $(\partial(X)| \ge r_{\mathcal{M}}(\mathsf{S}) r_{\mathcal{M}}(\mathsf{S}_X) \text{ for all } \emptyset \neq X \subseteq V.$



Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

- I matroid-based packing of rooted-arborescences ↔
- $\ 2 \ \ |\partial(X)| \geq r_{\mathcal{M}}(\mathsf{S}) r_{\mathcal{M}}(\mathsf{S}_X) \ \, \text{for all} \ \, \emptyset \neq X \subseteq V.$



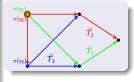
Remark

It implies Edmonds' theorem if \mathcal{M} is the free matroid and $\pi(s_i) = r_i$.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

- I matroid-based packing of rooted-arborescences ↔
- $\ 2 \ \ |\partial(X)| \geq r_{\mathcal{M}}(\mathsf{S}) r_{\mathcal{M}}(\mathsf{S}_X) \ \, \text{for all} \ \, \emptyset \neq X \subseteq V.$



Remark

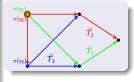
It implies Edmonds' theorem if \mathcal{M} is the free matroid and $\pi(s_i) = r_i$.

■ $|\partial(X)| \ge |\{r_i \in V \setminus X\}| = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)$ for all $\emptyset \ne X \subseteq V$ implies the above condition.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

- I matroid-based packing of rooted-arborescences ↔
- $|\partial(X)| \ge r_{\mathcal{M}}(\mathsf{S}) r_{\mathcal{M}}(\mathsf{S}_X) \text{ for all } \emptyset \neq X \subseteq V.$



Remark

It implies Edmonds' theorem if \mathcal{M} is the free matroid and $\pi(s_i) = r_i$.

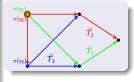
- $|\partial(X)| \ge |\{r_i \in V \setminus X\}| = r_{\mathcal{M}}(S) r_{\mathcal{M}}(S_X)$ for all $\emptyset \neq X \subseteq V$ implies the above condition.
- **②** Thus there exists a matroid-based packing of rooted-arborescences

Matroid-based packing of rooted-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

- I matroid-based packing of rooted-arborescences ↔
- $|\partial(X)| \ge r_{\mathcal{M}}(\mathsf{S}) r_{\mathcal{M}}(\mathsf{S}_X) \text{ for all } \emptyset \neq X \subseteq V.$



Remark

It implies Edmonds' theorem if \mathcal{M} is the free matroid and $\pi(s_i) = r_i$.

- $|\partial(X)| \ge |\{r_i \in V \setminus X\}| = r_{\mathcal{M}}(S) r_{\mathcal{M}}(S_X)$ for all $\emptyset \ne X \subseteq V$ implies the above condition.
- Thus there exists a matroid-based packing of rooted-arborescences and, by Remark, a packing of spanning r_i-arborescences.

Definition

A packing $\{(\vec{\mathcal{T}}_1,s_1),\ldots,(\vec{\mathcal{T}}_{|S|},s_{|S|})\}$ of rooted-arborescences is reachability-based if

Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is reachability-based if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of $S_{P(v)}$ for every $v \in V$.

Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is reachability-based if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of $S_{P(v)}$ for every $v \in V$.

Theorem (Cs. Király 2016)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is reachability-based if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of $S_{P(v)}$ for every $v \in V$.

Theorem (Cs. Király 2016)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

● There exists a reachability-based packing of rooted-arborescences <</p>

Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is reachability-based if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of $S_{P(v)}$ for every $v \in V$.

Theorem (Cs. Király 2016)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

- There exists a reachability-based packing of rooted-arborescences <</p>

Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is reachability-based if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of $S_{P(v)}$ for every $v \in V$.

Theorem (Cs. Király 2016)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

- There exists a reachability-based packing of rooted-arborescences

Remark

It implies

• DdG-N-Sz' theorem if $|\partial(X)| \ge r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_X)$ for all $\emptyset \neq X \subseteq V$,

Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is reachability-based if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of $S_{P(v)}$ for every $v \in V$.

Theorem (Cs. Király 2016)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

- There exists a reachability-based packing of rooted-arborescences <</p>

Remark

It implies

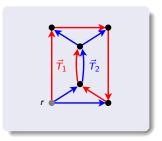
- DdG-N-Sz' theorem if $|\partial(X)| \ge r_{\mathcal{M}}(S) r_{\mathcal{M}}(S_X)$ for all $\emptyset \neq X \subseteq V$,
- $\textcircled{O} \quad \text{Kamiyama, Katoh, Takizawa's theorem if } \mathcal{M} \text{ is the free matroid.}$

Remark

Let $\vec{G} = (V + s, A)$ and G be the underlying undirected graph of \vec{G} .

Remark

Let $\vec{G} = (V + s, A)$ and G be the underlying undirected graph of \vec{G} . **Q** $\vec{F} \subseteq A$ is a packing of k spanning *s*-arborescences of $\vec{G} \iff$

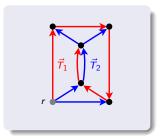


Z. Szigeti (G-SCOP, Grenoble)

Packing of arborescences

Remark

Let $\vec{G} = (V + s, A)$ and G be the underlying undirected graph of \vec{G} . **1** $\vec{F} \subseteq A$ is a packing of k spanning *s*-arborescences of $\vec{G} \iff$ **2** F is a packing of k spanning trees of G, $|\partial^{\vec{F}}(v)| = k \forall v \in V \iff$



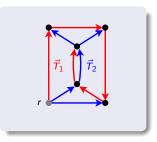
Z. Szigeti (G-SCOP, Grenoble)

Packing of arborescences

Remark

Let $\vec{G} = (V + s, A)$ and G be the underlying undirected graph of \vec{G} .

- $\vec{F} \subseteq A$ is a packing of k spanning s-arborescences of $\vec{G} \iff \vec{c}$
- **2** *F* is a packing of *k* spanning trees of *G*, $|\partial^{\vec{F}}(v)| = k \forall v \in V \iff$
- Solution 7 is a common base of $\mathcal{M}_1 = k$ -sum of the graphic matroid of G and $\mathcal{M}_2 = \bigoplus_{v \in V} U_{|\partial(v)|,k}$.



Z. Szigeti (G-SCOP, Grenoble)

Definition

Given a digraph $\vec{G} = (V + s, A)$ and a matroid $\mathcal{M} = (A, \mathcal{I})$, a packing of spanning *s*-arborescences $\mathcal{T}_1, \ldots, \mathcal{T}_k$ is matroid-restricted if $\bigcup_1^k A(\mathcal{T}_i) \in \mathcal{I}$.

Definition

Given a digraph $\vec{G} = (V + s, A)$ and a matroid $\mathcal{M} = (A, \mathcal{I})$, a packing of spanning *s*-arborescences T_1, \ldots, T_k is matroid-restricted if $\cup_1^k A(T_i) \in \mathcal{I}$.

Theorem

Given a digraph $\vec{G} = (V + s, A)$, $k \in \mathbb{Z}_+$ and a matroid $\mathcal{M} = (A, r)$ which is the direct sum of the matroids $\mathcal{M}_v = (\partial(v), r_v) \ \forall v \in V$.

Definition

Given a digraph $\vec{G} = (V + s, A)$ and a matroid $\mathcal{M} = (A, \mathcal{I})$, a packing of spanning *s*-arborescences T_1, \ldots, T_k is matroid-restricted if $\cup_1^k A(T_i) \in \mathcal{I}$.

Theorem

Given a digraph $\vec{G} = (V + s, A)$, $k \in \mathbb{Z}_+$ and a matroid $\mathcal{M} = (A, r)$ which is the direct sum of the matroids $\mathcal{M}_v = (\partial(v), r_v) \ \forall v \in V$.

• \vec{G} has an \mathcal{M} -restricted packing of k spanning s-arborescences \iff

Definition

Given a digraph $\vec{G} = (V + s, A)$ and a matroid $\mathcal{M} = (A, \mathcal{I})$, a packing of spanning *s*-arborescences T_1, \ldots, T_k is matroid-restricted if $\cup_1^k A(T_i) \in \mathcal{I}$.

Theorem

Given a digraph $\vec{G} = (V + s, A)$, $k \in \mathbb{Z}_+$ and a matroid $\mathcal{M} = (A, r)$ which is the direct sum of the matroids $\mathcal{M}_v = (\partial(v), r_v) \ \forall v \in V$.

- \vec{G} has an \mathcal{M} -restricted packing of k spanning s-arborescences \iff
- $r(\partial(X)) \geq k \quad \forall \ \emptyset \neq X \subseteq V.$

Definition

Given a digraph $\vec{G} = (V + s, A)$ and a matroid $\mathcal{M} = (A, \mathcal{I})$, a packing of spanning *s*-arborescences T_1, \ldots, T_k is matroid-restricted if $\cup_1^k A(T_i) \in \mathcal{I}$.

Theorem

Given a digraph $\vec{G} = (V + s, A)$, $k \in \mathbb{Z}_+$ and a matroid $\mathcal{M} = (A, r)$ which is the direct sum of the matroids $\mathcal{M}_v = (\partial(v), r_v) \ \forall v \in V$.

- \vec{G} has an \mathcal{M} -restricted packing of k spanning s-arborescences \iff
- $r(\partial(X)) \ge k \quad \forall \ \emptyset \neq X \subseteq V.$

Remarks

() For free matroid, we are back to packing of *k* spanning *s*-arborescen.

Definition

Given a digraph $\vec{G} = (V + s, A)$ and a matroid $\mathcal{M} = (A, \mathcal{I})$, a packing of spanning *s*-arborescences T_1, \ldots, T_k is matroid-restricted if $\cup_1^k A(T_i) \in \mathcal{I}$.

Theorem

Given a digraph $\vec{G} = (V + s, A)$, $k \in \mathbb{Z}_+$ and a matroid $\mathcal{M} = (A, r)$ which is the direct sum of the matroids $\mathcal{M}_v = (\partial(v), r_v) \ \forall v \in V$.

- \vec{G} has an \mathcal{M} -restricted packing of k spanning s-arborescences \iff
- $r(\partial(X)) \ge k \quad \forall \ \emptyset \neq X \subseteq V.$

Remarks

• For free matroid, we are back to packing of *k* spanning *s*-arborescen.

2 This problem can also be formulated as matroid intersection.

Definition

Given a digraph $\vec{G} = (V + s, A)$ and a matroid $\mathcal{M} = (A, \mathcal{I})$, a packing of spanning *s*-arborescences T_1, \ldots, T_k is matroid-restricted if $\cup_1^k A(T_i) \in \mathcal{I}$.

Theorem

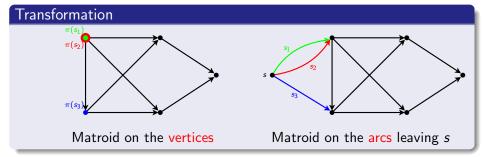
Given a digraph $\vec{G} = (V + s, A)$, $k \in \mathbb{Z}_+$ and a matroid $\mathcal{M} = (A, r)$ which is the direct sum of the matroids $\mathcal{M}_v = (\partial(v), r_v) \ \forall v \in V$.

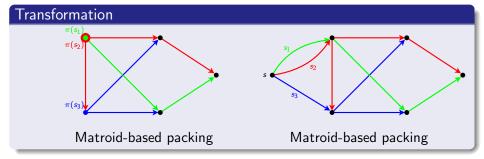
• \vec{G} has an \mathcal{M} -restricted packing of k spanning s-arborescences \iff

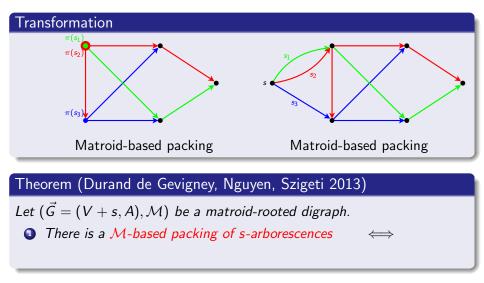
•
$$r(\partial(X)) \geq k \quad \forall \ \emptyset \neq X \subseteq V.$$

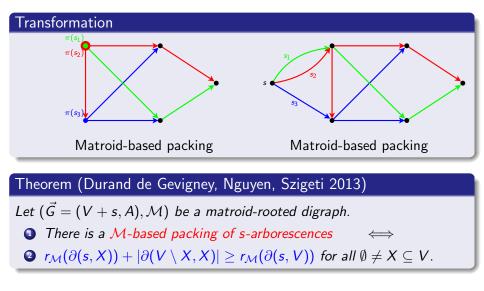
Remarks

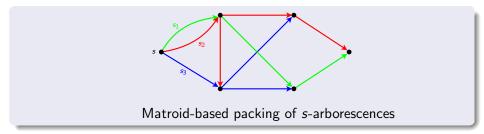
- For free matroid, we are back to packing of *k* spanning *s*-arborescen.
- ② This problem can also be formulated as matroid intersection.
- **③** For general matroid \mathcal{M} , the problem is NP-complete, even for k = 1.

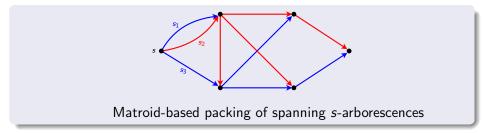












- Let $(\vec{G} = (V + s, A), M)$ be a matroid-rooted digraph.
 - \vec{G} has an \mathcal{M} -based packing of spanning *s*-arborescences \iff
 - $r_{\mathcal{M}}(\partial(s,X)) + |\partial(V \setminus X,X)| \ge r_{\mathcal{M}}(\partial(s,V)) \quad \forall X \subseteq V.$

- Let $(\vec{G} = (V + s, A), M)$ be a matroid-rooted digraph.
 - \vec{G} has an \mathcal{M} -based packing of spanning *s*-arborescences \iff
 - $r_{\mathcal{M}}(\partial(s,X)) + |\partial(V \setminus X,X)| \ge r_{\mathcal{M}}(\partial(s,V)) \quad \forall X \subseteq V.$

Let $(\vec{G} = (V + s, A), M)$ be a matroid-rooted digraph.

- \vec{G} has an \mathcal{M} -based packing of spanning *s*-arborescences \iff
- $r_{\mathcal{M}}(\partial(s,X)) + |\partial(V \setminus X,X)| \ge r_{\mathcal{M}}(\partial(s,V)) \quad \forall X \subseteq V.$

Theorem (Fortier, Cs. Király, Szigeti, Tanigawa 2016-)

Onjecture is not true in general.

- Let $(\vec{G} = (V + s, A), M)$ be a matroid-rooted digraph.
 - \vec{G} has an \mathcal{M} -based packing of spanning *s*-arborescences \iff
 - $r_{\mathcal{M}}(\partial(s,X)) + |\partial(V \setminus X,X)| \ge r_{\mathcal{M}}(\partial(s,V)) \quad \forall X \subseteq V.$

- Conjecture is not true in general.
- **②** Corresponding decision problem is NP-complet.

- Let $(\vec{G} = (V + s, A), M)$ be a matroid-rooted digraph.
 - \vec{G} has an \mathcal{M} -based packing of spanning *s*-arborescences \iff
 - $r_{\mathcal{M}}(\partial(s,X)) + |\partial(V \setminus X,X)| \ge r_{\mathcal{M}}(\partial(s,V)) \quad \forall X \subseteq V.$

- Onjecture is not true in general.
- Orresponding decision problem is NP-complet.
- Conjecture is true for

- Let $(\vec{G} = (V + s, A), M)$ be a matroid-rooted digraph.
 - \vec{G} has an \mathcal{M} -based packing of spanning *s*-arborescences \iff
 - $r_{\mathcal{M}}(\partial(s,X)) + |\partial(V \setminus X,X)| \ge r_{\mathcal{M}}(\partial(s,V)) \quad \forall X \subseteq V.$

- Onjecture is not true in general.
- Orresponding decision problem is NP-complet.
- Conjecture is true for
 - rank 2 matroids,

- Let $(\vec{G} = (V + s, A), M)$ be a matroid-rooted digraph.
 - \vec{G} has an \mathcal{M} -based packing of spanning *s*-arborescences \iff
 - $r_{\mathcal{M}}(\partial(s,X)) + |\partial(V \setminus X,X)| \ge r_{\mathcal{M}}(\partial(s,V)) \quad \forall X \subseteq V.$

- Conjecture is not true in general.
- Orresponding decision problem is NP-complet.
- Conjecture is true for
 - rank 2 matroids,
 - graphic matroids,

- Let $(\vec{G} = (V + s, A), M)$ be a matroid-rooted digraph.
 - \vec{G} has an \mathcal{M} -based packing of spanning *s*-arborescences \iff
 - $r_{\mathcal{M}}(\partial(s,X)) + |\partial(V \setminus X,X)| \ge r_{\mathcal{M}}(\partial(s,V)) \quad \forall X \subseteq V.$

- Onjecture is not true in general.
- Orresponding decision problem is NP-complet.
- Conjecture is true for
 - rank 2 matroids,
 - graphic matroids,
 - transversal matroids.

\mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of *s*-arborescences

Theorem (Cs. Király, Szigeti 2016-)

Let $\vec{G} = (V + s, A)$, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

\mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of *s*-arborescences

Theorem (Cs. Király, Szigeti 2016-)

Let
$$\vec{G} = (V + s, A)$$
, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

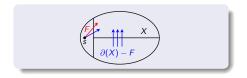
• \vec{G} has an \mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of *s*-arborescences \iff

\mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of *s*-arborescences

Theorem (Cs. Király, Szigeti 2016-)

Let
$$\vec{G} = (V + s, A)$$
, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

- \vec{G} has an \mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of *s*-arborescences \iff
- $r_1(F) + r_2(\partial(X) \setminus F) \ge r_1(\partial(s, V)) \quad \forall \emptyset \neq X \subseteq V, F \subseteq \partial(s, X).$



\mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of *s*-arborescences

Theorem (Cs. Király, Szigeti 2016-)

Let
$$\vec{G} = (V + s, A)$$
, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

- \vec{G} has an \mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of *s*-arborescences \iff
- $r_1(F) + r_2(\partial(X) \setminus F) \ge r_1(\partial(s, V)) \quad \forall \emptyset \neq X \subseteq V, F \subseteq \partial(s, X).$

Remarks

It contains matroid-restricted packing of spanning s-arborescences, even matroid intersection. For matroids M₁ and M₂ on S, our problem on (G = ({s, v}, {|S| × sv}), M₁, M₂) reduces to it.

\mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of *s*-arborescences

Theorem (Cs. Király, Szigeti 2016-)

Let
$$\vec{G} = (V + s, A)$$
, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

- \vec{G} has an \mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of *s*-arborescences \iff
- $r_1(F) + r_2(\partial(X) \setminus F) \ge r_1(\partial(s, V)) \quad \forall \emptyset \neq X \subseteq V, F \subseteq \partial(s, X).$

Remarks

- It contains matroid-restricted packing of spanning *s*-arborescences, even matroid intersection. For matroids \mathcal{M}_1 and \mathcal{M}_2 on *S*, our problem on $(\vec{G} = (\{s, v\}, \{|S| \times sv\}), \mathcal{M}_1, \mathcal{M}_2)$ reduces to it.
- **2** For free \mathcal{M}_2 , we are back to \mathcal{M}_1 -based packing of *s*-arborescences.

Theorem (Cs. Király, Szigeti 2016-)

Let
$$\vec{G} = (V + s, A)$$
, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

Theorem (Cs. Király, Szigeti 2016-)

Let
$$\vec{G} = (V + s, A)$$
, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

• $\exists \mathcal{M}_1$ -reachability-based \mathcal{M}_2 -restricted packing of *s*-arborescen. \iff

Theorem (Cs. Király, Szigeti 2016-)

Let $\vec{G} = (V + s, A)$, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

- $\exists \mathcal{M}_1$ -reachability-based \mathcal{M}_2 -restricted packing of *s*-arborescen. \iff
- $r_1(F) + r_2(\partial(X) \setminus F) \ge r_1(\partial(s, P(X))) \quad \forall X \subseteq V, F \subseteq \partial(s, X).$

Theorem (Cs. Király, Szigeti 2016-)

Let $\vec{G} = (V + s, A)$, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

• $\exists \mathcal{M}_1$ -reachability-based \mathcal{M}_2 -restricted packing of *s*-arborescen. \iff • $r_1(F) + r_2(\partial(X) \setminus F) \ge r_1(\partial(s, P(X))) \quad \forall X \subseteq V, F \subseteq \partial(s, X).$

Remarks

■ It implies the previous theorem, because $r_1(F) + r_2(\partial(X) \setminus F) \ge r_1(\partial(s, V)) \forall \emptyset \ne X \subseteq V, F \subseteq \partial(s, X)$ implies the above condition and that $r_1(\partial(s, P(v))) = r_1(\partial(s, V)) \forall v \in V.$

Theorem (Cs. Király, Szigeti 2016-)

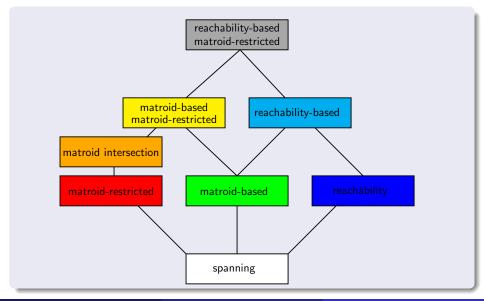
Let $\vec{G} = (V + s, A)$, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

• $\exists \mathcal{M}_1$ -reachability-based \mathcal{M}_2 -restricted packing of *s*-arborescen. \iff • $r_1(F) + r_2(\partial(X) \setminus F) \ge r_1(\partial(s, P(X))) \quad \forall X \subseteq V, F \subseteq \partial(s, X).$

Remarks

● It implies the previous theorem, because $r_1(F) + r_2(\partial(X) \setminus F) \ge r_1(\partial(s, V)) \quad \forall \emptyset \neq X \subseteq V, F \subseteq \partial(s, X) \text{ implies}$ the above condition and that $r_1(\partial(s, P(v))) = r_1(\partial(s, V)) \quad \forall v \in V.$

2 It implies Cs. Király's theorem, if \mathcal{M}_2 is free matroid.



Z. Szigeti (G-SCOP, Grenoble)

• (Matroid-restricted) Packing of spanning arborescences

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition :

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization,

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization, matroid intersection,

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization, matroid intersection, independent flows by lwata.

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization, matroid intersection, independent flows by lwata.
 - weighted case : polyhedral description, ellipsoid method.

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization, matroid intersection, independent flows by lwata.
 - weighted case : polyhedral description, ellipsoid method.
- Reachability-based packing of arborescences : algorithmic proof ...

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization, matroid intersection, independent flows by lwata.
 - weighted case : polyhedral description, ellipsoid method.
- Reachability-based packing of arborescences : algorithmic proof ...
 - weighted case by Bérczi, T. Király, Kobayashi.

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization, matroid intersection, independent flows by lwata.
 - weighted case : polyhedral description, ellipsoid method.
- Reachability-based packing of arborescences : algorithmic proof ...
 - weighted case by Bérczi, T. Király, Kobayashi.
- Matroid-based matroid-restricted packing of arborescences

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization, matroid intersection, independent flows by lwata.
 - weighted case : polyhedral description, ellipsoid method.
- Reachability-based packing of arborescences : algorithmic proof ...
 - weighted case by Bérczi, T. Király, Kobayashi.
- Matroid-based matroid-restricted packing of arborescences
 - algorithmic proof using submodular function minimization.

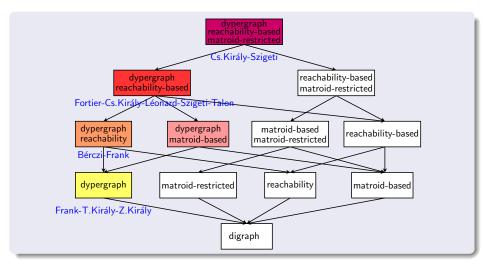
- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization, matroid intersection, independent flows by lwata.
 - weighted case : polyhedral description, ellipsoid method.
- Reachability-based packing of arborescences : algorithmic proof ...
 - weighted case by Bérczi, T. Király, Kobayashi.
- Matroid-based matroid-restricted packing of arborescences
 - algorithmic proof using submodular function minimization.
 - weighted case by weighted matroid intersection by Tanigawa.

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization, matroid intersection, independent flows by lwata.
 - weighted case : polyhedral description, ellipsoid method.
- Reachability-based packing of arborescences : algorithmic proof ...
 - weighted case by Bérczi, T. Király, Kobayashi.
- Matroid-based matroid-restricted packing of arborescences
 - algorithmic proof using submodular function minimization.
 - weighted case by weighted matroid intersection by Tanigawa.
- Reachability-based matroid-restricted packing of arborescences

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization, matroid intersection, independent flows by lwata.
 - weighted case : polyhedral description, ellipsoid method.
- Reachability-based packing of arborescences : algorithmic proof ...
 - weighted case by Bérczi, T. Király, Kobayashi.
- Matroid-based matroid-restricted packing of arborescences
 - algorithmic proof using submodular function minimization.
 - weighted case by weighted matroid intersection by Tanigawa.
- Reachability-based matroid-restricted packing of arborescences
 - algorithmic proof using submodular function minimization.

- (Matroid-restricted) Packing of spanning arborescences
 - (even the weighted case) by (weighted) matroid intersection
- Packing of reachability arborescences : algorithmic proof
- Matroid-based packing of arborescences : algorithmic proof
 - provided an oracle exists for verifying the condition : submodular function minimization, matroid intersection, independent flows by lwata.
 - weighted case : polyhedral description, ellipsoid method.
- Reachability-based packing of arborescences : algorithmic proof ...
 - weighted case by Bérczi, T. Király, Kobayashi.
- Matroid-based matroid-restricted packing of arborescences
 - algorithmic proof using submodular function minimization.
 - weighted case by weighted matroid intersection by Tanigawa.
- Reachability-based matroid-restricted packing of arborescences
 - algorithmic proof using submodular function minimization.
 - weighted case : Open problem.

Directed hypergraphs



Thank you for your attention !