Edge-connectivity of permutation hypergraphs

Zoltán Szigeti

Laboratoire G-SCOP INP Grenoble, France

29 september 2010

joint work with Neil Jami, Ensimag, INP Grenoble, France

- Permutation graphs
- Splitting off in graphs
- Permutation hypergraphs
- Splitting off in hypergraphs

Permutation graphs

Definition

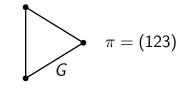
Given a graph G on n vertices and a permutation π of [n], we define the permutation graph G_{π} as follows :

① we take 2 disjoint copies $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ of G_1

2 for every vertex $v_i \in V_1$, we add an edge between v_i of G_1 and $v_{\pi(i)}$ of G_2 , this edge set is denoted by E_3 ,

 $G_{\pi} = (V_1 \cup V_2, E_1 \cup E_2 \cup E_3).$

 $\pi = (123)$



Permutation graphs

Definition

Given a graph G on n vertices and a permutation π of [n], we define the permutation graph G_{π} as follows :

• we take 2 disjoint copies $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ of G_1 ,

② for every vertex $v_i \in V_1$, we add an edge between v_i of G_1 and $v_{\pi(i)}$ of G_2 , this edge set is denoted by E_3 ,

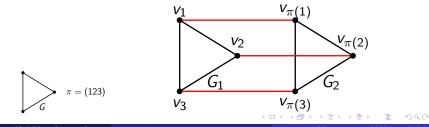
 $\pi = (123)$

Definition

Given a graph G on n vertices and a permutation π of [n], we define the permutation graph G_{π} as follows :

- () we take 2 disjoint copies $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ of G_1 ,
- ② for every vertex $v_i \in V_1$, we add an edge between v_i of G_1 and $v_{\pi(i)}$ of G_2 , this edge set is denoted by E_3 ,

 $G_{\pi} = (V_1 \cup V_2, E_1 \cup E_2 \cup E_3).$

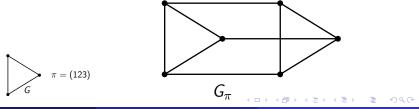


Definition

Given a graph G on n vertices and a permutation π of [n], we define the permutation graph G_{π} as follows :

- () we take 2 disjoint copies $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ of G_1 ,
- ② for every vertex $v_i \in V_1$, we add an edge between v_i of G_1 and $v_{\pi(i)}$ of G_2 , this edge set is denoted by E_3 ,

$$G_{\pi} = (V_1 \cup V_2, E_1 \cup E_2 \cup E_3).$$



Connectivity of permutation graphs

Definition

Edge-connectivity of $G : \lambda(\mathbf{G}) = \min\{d_G(X) : \emptyset \neq X \subset V\}$, Minimum degree of $G : \delta(\mathbf{G}) = \min\{d_G(v) : v \in V\}$.

Connectivity of permutation graphs

Definition

Edge-connectivity of $G : \lambda(\mathbf{G}) = \min\{d_G(X) : \emptyset \neq X \subset V\}$, Minimum degree of $G : \delta(\mathbf{G}) = \min\{d_G(v) : v \in V\}$.

Remark

$$\lambda(G_{\pi}) \leq \delta(G_{\pi}) = \delta(G) + 1.$$

Connectivity of permutation graphs

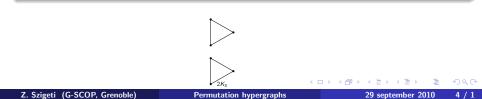
Definition

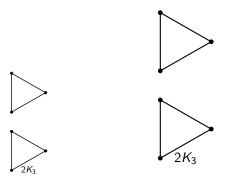
Edge-connectivity of $G : \lambda(\mathbf{G}) = \min\{d_G(X) : \emptyset \neq X \subset V\}$, Minimum degree of $G : \delta(\mathbf{G}) = \min\{d_G(v) : v \in V\}$.

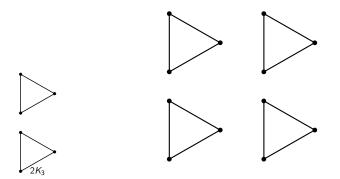
Remark

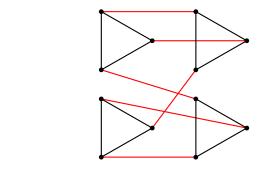
$$\lambda(G_{\pi}) \leq \delta(G_{\pi}) = \delta(G) + 1.$$

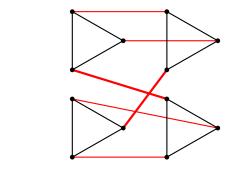
Theorem (Goddard, Raines, Slater)











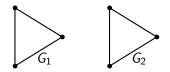
For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_{\pi}) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.

Extension : λ(H) = δ(G) + 1, Splitting off : between G₁ and G₂, maintaining edge-connectivity, 20

Z. Szigeti (G-SCOP, Grenoble)

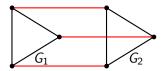
Permutation hypergraphs

For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_{\pi}) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.



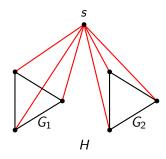
Extension : λ(H) = δ(G) + 1,
Splitting off : between G₁ and G₂, maintaining edge-connectivity ₂ on

For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_{\pi}) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.



Extension : λ(H) = δ(G) + 1,
Splitting off : between G₁ and G₂, maintaining edge-connectivity ₂ or 2

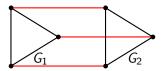
For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_{\pi}) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.



• Extension : $\lambda(H) = \delta(G) + 1$,

• Splitting off : between G_1 and G_2 , maintaining edge-connectivity

For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_{\pi}) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.



Extension : λ(H) = δ(G) + 1,
 Splitting off : between G₁ and G₂, maintaining edge-connectivity.

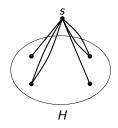
Z. Szigeti (G-SCOP, Grenoble)

Permutation hypergraphs

29 september 2010 6 / 1

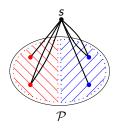
Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is k-admissible if H' s is k-edge-connected.
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .



Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

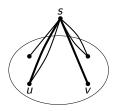
- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is k-admissible if H' s is k-edge-connected.
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .



Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

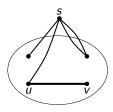
Definition

- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is k-admissible if H' s is k-edge-connected
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .



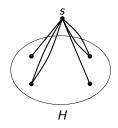
Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is k-admissible if H' s is k-edge-connected
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .



Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is k-admissible if H' − s is k-edge-connected.
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .



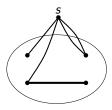
Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is k-admissible if H' − s is k-edge-connected.
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .

Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

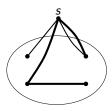
- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is k-admissible if H' s is k-edge-connected.
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .



Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

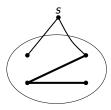
- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is k-admissible if H' s is k-edge-connected.
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .



Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

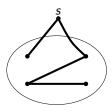
- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is k-admissible if H' s is k-edge-connected.
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .



Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

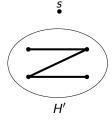
Definition

- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is k-admissible if H' − s is k-edge-connected.
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .



Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is k-admissible if H' s is k-edge-connected.
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .

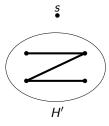


Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

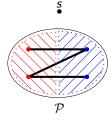
- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is *k*-admissible if H' s is *k*-edge-connected.

• it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .



Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

- Splitting off at s : replacing $\{su, sv\}$ by uv.
- Complete splitting off at s : a sequence of splitting off isolating s.
- it is *k*-admissible if H' s is *k*-edge-connected.
- it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .

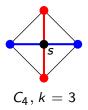


Result on splitting off in graphs

Theorem (Bang-Jensen, Gabow, Jordán, Szigeti)

Given : graph H = (V + s, E), partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer $k \ge 2$. There exists a k-admissible \mathcal{P} -allowed complete splitting off at s if and only if

- H is k-edge-connected in V,
- $d(s, P_1) = d(s, P_2)$,
- H contains no C₄-obstacle.

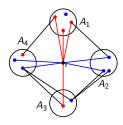


C_4 -obstacle

Definition

A partition $\{A_1, A_2, A_3, A_4\}$ of V is called a C₄-obstacle of H if

- k is odd,
- each A_i is of degree k,
- no edge exists between A_i and A_{i+2},
- half of the edges incident to s are incident to $P_1 \cap (A_1 \cup A_3)$,
- half of the edges incident to s are incident to $P_2 \cap (A_2 \cup A_4)$.

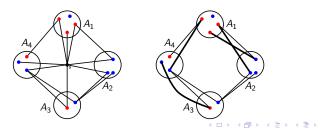


C₄-obstacle

Definition

A partition $\{A_1, A_2, A_3, A_4\}$ of V is called a C₄-obstacle of H if

- k is odd,
- each A_i is of degree k,
- no edge exists between A_i and A_{i+2} ,
- half of the edges incident to s are incident to $P_1 \cap (A_1 \cup A_3)$,
- half of the edges incident to s are incident to $P_2 \cap (A_2 \cup A_4)$.

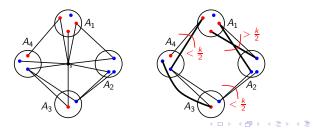


C₄-obstacle

Definition

A partition $\{A_1, A_2, A_3, A_4\}$ of V is called a C₄-obstacle of H if

- k is odd,
- each A_i is of degree k,
- no edge exists between A_i and A_{i+2} ,
- half of the edges incident to s are incident to $P_1 \cap (A_1 \cup A_3)$,
- half of the edges incident to s are incident to $P_2 \cap (A_2 \cup A_4)$.



Sufficiency

Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices,

- there exists a permutation π such that λ(G_π) = δ(G) + 1,
 if and only if
- there exists a k-admissible P-allowed complete splitting off at s in H, if and only if
- *H* contains no C₄-obstacle, if and only if
- $G \neq 2K_k$ for some odd k.

Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices,

- there exists a permutation π such that λ(G_π) = δ(G) + 1, if and only if
- there exists a k-admissible \mathcal{P} -allowed complete splitting off at s in H, if and only if
- H contains no C₄-obstacle,
- $G \neq 2K_k$ for some odd k.

Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices,

- there exists a permutation π such that λ(G_π) = δ(G) + 1, if and only if
- there exists a k-admissible \mathcal{P} -allowed complete splitting off at s in H, if and only if
- H contains no C₄-obstacle,

if and only if

• $G \neq 2K_k$ for some odd k.

Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices,

- there exists a permutation π such that λ(G_π) = δ(G) + 1, if and only if
- there exists a k-admissible *P*-allowed complete splitting off at s in H, if and only if
- H contains no C₄-obstacle, if and only if
- $G \neq 2K_k$ for some odd k.

Theorem (Goddard, Raines, Slater)

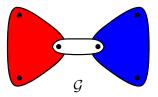
For a simple graph G without isolated vertices,

- there exists a permutation π such that λ(G_π) = δ(G) + 1,
 if and only if
- there exists a k-admissible P-allowed complete splitting off at s in H, if and only if
- *H* contains no C₄-obstacle, if and only if
- $G \neq 2K_k$ for some odd k.

Hypergraphs

Definition

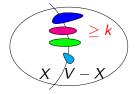
- hypergraph : G = (V, E), V = set of vertices, E = set of hyperedges, subsets of V.
- G is *k*-edge-connected if each cut contains at least *k* hyperedges.



Hypergraphs

Definition

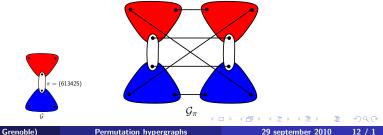
- hypergraph : G = (V, E), V = set of vertices, E = set of hyperedges, subsets of V.
- G is *k*-edge-connected if each cut contains at least *k* hyperedges.



Definition

Given a hypergraph \mathcal{G} on n vertices and a permutation π of [n], we define the permutation hypergraph \mathcal{G}_{π} as follows :

- () we take 2 disjoint copies $\mathcal{G}_1=(V_1,\mathcal{E}_1)$ and $\mathcal{G}_2=(V_2,\mathcal{E}_2)$ of \mathcal{G}_1 ,
- ② for every vertex $v_i \in V_1$, we add an edge between v_i of G_1 and $v_{\pi(i)}$ of G_2 , this edge set is denoted by E_3 ,



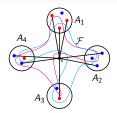
Z. Szigeti (G-SCOP, Grenoble)

Result on splitting off in hypergraphs

Theorem (Bernáth, Grappe, Szigeti)

Given : hypergraph $\mathcal{H} = (V + s, \mathcal{E})$, where s is incident only to graph edges, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k. There exists a k-admissible \mathcal{P} -allowed complete splitting off at s if and only if

- \mathcal{H} is k-edge-connected in V,
- $d_{\mathcal{H}}(s) \geq 2\omega(\mathcal{H}-s)$,
- $d_{\mathcal{H}}(s, P_1) = d_{\mathcal{H}}(s, P_2)$,
- *H* contains no *C*₄-obstacle.



Theorem (Jami, Szigeti)

For a hypergraph \mathcal{G} and an integer $k \ge 2$, there exists a permutation π such that $\lambda(\mathcal{G}_{\pi}) = k$ if and only if

- $\ \, \bullet \ \, \mathsf{d}_{\mathcal{G}}(X) \geq k |X| \ \, \mathsf{for all} \ \, \emptyset \neq X \subseteq V,$
- *G* is not composed of two connected components both of k vertices, k being odd.

Theorem (Jami, Szigeti)

For a hypergraph \mathcal{G} and an integer $k \ge 2$, there exists a permutation π such that $\lambda(\mathcal{G}_{\pi}) = k$ if and only if

- *G* is not composed of two connected components both of k vertices, k being odd.

Remark

- Implied by Theorem of Bernáth, Grappe, Szigeti.
- Implies Theorem of Goddard, Raines, Slater : if G is a simple graph G without isolated vertices and k = δ(G) + 1, then
 - $k \geq 2$,
 - 1 is satisfied,
 - 2 is implied by $G \neq 2K_k$ with k odd.

Theorem (Jami, Szigeti)

For a hypergraph \mathcal{G} and an integer $k \ge 2$, there exists a permutation π such that $\lambda(\mathcal{G}_{\pi}) = k$ if and only if

G is not composed of two connected components both of k vertices, k being odd.

Remark

- Implied by Theorem of Bernáth, Grappe, Szigeti.
- Implies Theorem of Goddard, Raines, Slater : if G is a simple graph G without isolated vertices and $k = \delta(G) + 1$, then
 - $k \geq 2$,
 - 1 is satisfied,
 - 2 is implied by $G \neq 2K_k$ with k odd.

Thank you for your attention !

< 一型

э