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1 Basic problem

Telephone network:

vertex = telephone center
edge = connection

edge-connectivity = reliability
edge-connectivity augmentation

a,ugmentatiorT of reliability

Description of the problem: Global edge-
connectivity augmentation in graphs:

e Given graph G, requirement k € Z,

e Minimize the number of new edges whose ad-
dition results a k-edge-connected graph:

v :=min{|F|: G+ F k-edge-connected}.



Lower bound

1 deficient set X;
defa(X;) =k — d(X;)
deficient subpartition:
X = {Xl,l...,Xg} ,
defo(X) =} (k- d(X;))
defare(X) > defa(X) -2

1 k=4

S(V):= {all subpartitions X = { Xy, ..., X;} of V'}.

22 Y (h-d(X) VX €S(V)
XieX :

Watanabe, Nakamura; Cai, Sun:

y=] % Xrg%){);l)(k — d(X3))].



2 Frank’s algorithm
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3 Definition

Global edge-connectivity I:

Given graph G = (U, E), k € Z7; equivalent:

e (7 is k-edge-connected,

o (¢ — ["is connected VF C I, |F| < k — 1,

e do(X)>k VD #X CU,

o Jk edge—disjoint (u,v)-paths in G Yu,v € U.
Local edge-connectivity: _

Given graph G = (U,’E), u,v € U

local edge-connectivity between © and v
Ac(u,v) = max. number of edge-disjoint (u, v)-paths

= min. card. of a cut separating v and v

Global edge-connectivity I1:

Given graph G = (U, E), k€ Z+,V C U,
G is k-e-c. in V if Ag(u,v) > k for all u,v € V.

u

G is 2-e-c.
Vg V1
g (vg,v3) = 2
g (vi,v4) =3
U3 Uy

G - (U, E) G 2-e-c. in 'V



4 Remarks

Remark 1G = (U, E), X CU,u,velU — X

/\G/XuU ) > Ag(u,v).

contractlon
93

Remark 2G = (U, E), se U, u,ve U — s

da(s)
2 J

)\G—S(UJU) > Ag(u,?)) - L




5 Splitting off
s s

G &
splitting o

i ——

Global edge-connectivity:
Theorem 1 (Lovasz) Given

oG =(V+s,FE) graph,
o d(s) even, j
o G k-edge-connected in'V (k > 2).

Then there exists a (complete) splitting off at s
that maintains k-edge-connectivity in V.

Local edge-connectivity:
Theorem 2 (Mader) Given =~
o G =(V +s,FE) graph,
e dg(s) # 3,
e no cul edge incident to s.

Then there exists a splitting off at s that main-
tains local edge-connectivities in V.

Theorem 2 implies Theorem 1.
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6 Detachment

e Graph: G = (V + s, F),
e Degree specification: f(s) = {dj, ---adp}}
di € Zy,%0d; = dg(s).

G’ is an f(s)-detachment of G, if s is split
into 31, voy B BO tha,t da(s;) = d; V1 <1 < p.
S

Remark 3 splitting off = (2, d(s)—2)-detachment
s

G

S1 82

s

splitting off — 2)-detachment



Global edge-connectivity
Theorem 3 (B. Fleiner) Given
oG =(V+s,FE) graph,
ok > 2, |
o f(s)={dy,...,d,} degree spec. d; > 2 Vi.
Then there exists a k-edge-connected in V
f(s)-detachment of G iff V0 #X CV
da(X) > k, _ (1)

doX) > k=312 @

Theorem 3 implies
e [Lovasz’ splitting off theorem,

e Nash-Williams’ simultanious detachment theo-
rem. |



Necessity:

f(s) ={2,3,3} 515253

S
conj;,%étion el \de{etion

G 1G—8:G,—81—82—83
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Special case: each d; is even in f(s).
(1) Then (1) implies (2) by Remarks 2.
da-s(X) > da(X) - |%G2) > k- 38| %),
(2) Thus this special case of Theorem 3 implies
Lovasz’ theorem.

(3) Lovasz’ theorem implies this special case of
Theorem 3.

{4 4}

complete
spﬁttlng oft

(Lovész)
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Local edge-connectivity I:

Theorem 4 (Jordan, Szigeti) Given
o G =(V+s,FE) 2-edge-connected graph,
o f(s)={dy,...,d,} degree spec. d; > 2 Vi.

Then there is an f(s)-detachment maintaining
local edge-connectivities in V iff Yu,v € V,

Attention!: It does NOT generalize Fleiner’s
theorem!

Ao—s(u,v) > k — 37 L%j does not imply that
Aa—s(u,v) > Ag(u,v) — 28| 4.
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Local edge-connectivity I11:

Forr . VxV —>Z,,G=(V+sFE)is
r-edge-connected in V, if

Ag(u,v) > r(u,v) Yu,v € V.

Theorem 5 (Jordan, Szigeti) Given
o G =(V+s,FE) graph,
o r(u,v) > 2 Yu,v €V requirem. function,
o f(s) ={dy,...,d,} degree spec. d; > 2 Vi.
Then there exists an r-edge-connected in V
f(s)-detachment of G iff Yu,v €V,
Ag(u,v) > r(u,v), (4)
L)
Aoawv) > r(wn) =YD (9

1

Necessity is the same as for the global case.
Sufficiency: short proof (Szigeti (2004)).
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Special case: at most one d; is odd in f(s).

(1) Then (4) implies (5) by Remark 2.

Ao—s(t,v) > Aa(u, v) — [ %)

> r(u,v) — 25| %).

(2) Thus this special case of Theorem 5 implies
Mader’s theorem.

(3) Mader’s theorem implies this special case of
Theorem 5. ’

Theorem 5 implies

e ['leiner’s theorem (r(u,v) =k Yu,v € V),
e Mader’s theorem (f(s) = (2,dg(s) — 2),
r(u,v) = A\g(u,v) u,v € V),

(
e Theorem 4 (r(u,v) = Ag(u,v) u,v € V).

~
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7 Edge-connectivity augmentation

The method to solve edge-connectivity augmenta-
tion problems developed by Andras Frank consists
of two phases:

(1) extension minimally,

(2) complete splitting off.

Theorem 6 (Frank) Given p:V — Z,
e symmetric, p(X) =p(V —X) VX CV.

e skew-supermodular, VX,Y C V,

p(X)+pY) < p(XNY)+p(XUY) or

p(X)+p(Y) < p(X —Y)+p(Y — X).
Then the empty graph (V,0) can be extended to
a graph H by adding a new vertex s and 7y edges

incident to s so that H covers p (dy(X) >
p(X)V0#XCV)if and only if

> p(Xi) <y VX eS(V).
X;eX
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Global edge-connectivity:

dewn(X) >k VO#XCV (6)
if and only if

dH(X)zﬁde(Xl V@%XCV.. (7)
p(X)

As p(X) is symmetric and skew-supermodular,
Theorems 6 and 1 imply the following theorem.

Theorem 7 (Watanabe, Nakamura; Cai, Sun)
Given

o G = (V, F) graph,

o k > 2 integer.

Then G can be made k-edge-connected by
adding al most v new edges if and only if

Y (k—d(X;) <2y VX € S(V).
X,eX
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Local edge-connectivity:
R(X) :=max{r(z,y):z e X,ye V — X}

is symmetric and skew-supermodular.

Aa+r(u,v) > r(u,v) Vu,vel,
=
dg+u(X) = R(X) VOi#£X CV,
s
dg(X) > R(X)-dg(X)VO#XCV.

p(X)
As p(X) is symmetric and skew-supermodular,
Theorems 6 and 2 imply the following theorem.

Theorem 8 (Frank) Given
o G = (V, E) graph,

o r(u,v) > 2 Yu,v €V local edge-connectivity
requirements.

Then G can be made r-edge-connected by
adding at most v new edges if and only if

Y (R(X:) —d(Xy) < 2y VX € S(V).
X,eX
Theorem 8 implies Theorem 7 of Watanabe and
Nakamura.
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(lobal edge-connectivity augmention by stars:

VT i

Theorems 6 and 3 imply the following theorem.

Theorem 9 (Fleiner B.) Given
o G = (V,F) graph,

e k > 2 inleger,

ody,..d, (di > 2 Vi

Then G can be made k-edge-connected in V
by adding p stars of degrees dy, ..., d, iff

p
d;
k — ZE < Xg(u,v) Yu,v €V,
1

Z (k—d(X;)) < idﬁ- VX € S(V).

Theorem 3 implies Theorem 7 of Watanabe and
Nakamura.
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Local edge-connectivity augmention by stars:

Theorems 6 and 5 imply the following theorem.
Theorem 10 (Jordan, Szigeti) Given

o G = (V,FE) graph,

e r(u,v) > 2 Yu,velV,

ody,..,d, (d; > 2 Vi).

Then G can be made r-edge-connected in V
by attaching p stars of degrees di, ..., d, iff

r(u,v) — ZL%J < Ag(u,v) Yu,v eV,

pi
SR - ) < Y VR e SW)
X;eX |

Theorem 10 implies
e Theorem 3 of Fleiner and
e Theorem 6 of Frank.
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8 Global edge-connectivity augmentation with partition
constraints

Theorem 11 (Bang-Jensen, Gabow, Jorddn, Szigeti)
Given

e G =(V,FE) graph,
o P ={Py,..., P} partition of V,
ok >.2.

Then G can be made k-edge-connected by
adding vy edges between different elements of P

if and only if

> (k—d(X)) < 2y VX € S(V),

X;eX |
Y (k—d(Yy) <y VYeS(PVIL <,
Y,ey

G contains no Cy or Cg-configuration. (8)

If G contains a Cy or Cg-configuration then we

need one more edge.
If k is even then (8) is always satisfied.

B=8 5
:
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Problems |.

local, hypergraph, edge
NP-=complete local, hypergraph, stat
(Cosh,Jackson,Z . Kiraly, NP- complet:

local, graph, edge

(Frank)

global, hypergraph, sta
open

obal, graph.
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Problems IlI.

graph, edge, partitior

- Jensen,Gabow




Problems IlI.

local, IE];‘\“J{;-V|{')'(;_‘,| ‘arapl local I%T‘I\(\Z)(-rllﬂié‘lﬂ.i|j>l'l,, |'lyf»f[j.1(>|’-
NP- complete edges of min. total size
(Cosh, Jackson, Z.Kiraly) (Szigeti

Sym. SKew- supermod sym. skew- supermod
cover by edge, cover by hyper
NP- complete

(2. Kiraly)
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