Edge-connectivity augmentations of graphs

Zoltán Szigeti

Equipe Combinatoire, Université Paris-6, France

Edge- connectivity augmentation of graphs

Outline of the talk

Aim

1 Basic problem

Telephone network:

vertex = telephone center
edge = connection
edge-connectivity = reliability
edge-connectivity augmentation
=
augmentation of reliability

Description of the problem: Global edge-connectivity augmentation in graphs:

- Given graph G, requirement $k \in \mathbb{Z}_+$,
- Minimize the number of new edges whose addition results a k-edge-connected graph:

 $\gamma := \min\{|F| : G + F \mid k\text{-edge-connected}\}.$

Lower bound

deficient set
$$X_i$$

 $def_G(X_i) = k - d(X_i)$
deficient subpartition:

$$\mathcal{X} = \{X_1, ..., X_l\}$$

$$def_G(\mathcal{X}) = \sum_{i=1}^{n} (k - d(X_i))$$

$$def_{G+e}(\mathcal{X}) \ge def_G(\mathcal{X}) - 2$$

$$\mathcal{S}(V) := \{ \text{all subpartitions } \mathcal{X} = \{X_1, ..., X_l \} \text{ of } V \}.$$

$$2\gamma \ge \sum_{X_i \in \mathcal{X}} (k - d(X_i)) \quad \forall \mathcal{X} \in \mathcal{S}(V)$$

Watanabe, Nakamura; Cai, Sun:

$$\gamma = \lceil \frac{1}{2} \max_{\mathcal{X} \in \mathcal{S}(V)} \{ \sum_{X_i \in \mathcal{X}} (k - d(X_i)) \rceil.$$

2 Frank's algorithm

Optimality:

$$k = d_{G''}(X_i) = d_G(X_i) + d_F(X_i),$$

$$\gamma = \lceil \frac{d_{G''}(s)}{2} \rceil = \lceil \frac{1}{2} \sum_{1}^{l} d_F(X_i) \rceil = \lceil \frac{1}{2} \sum_{1}^{l} (k - d_G(X_i)) \rceil.$$

3 Definition

Global edge-connectivity I:

Given graph $G = (U, E), k \in \mathbb{Z}^+$; equivalent:

- \bullet G is k-edge-connected,
- G F is connected $\forall F \subseteq E, |F| \le k 1$,
- $d_G(X) \ge k \ \forall \emptyset \ne X \subset U$,
- $\exists k \text{ edge-disjoint } (u, v)\text{-paths in } G \ \forall u, v \in U.$

Local edge-connectivity:

Given graph $G = (U, E), u, v \in U$

local edge-connectivity between u and v

 $\lambda_G(u, v) = \text{max. number of edge-disjoint } (u, v)$ -paths = min. card. of a cut separating u and v

Global edge-connectivity II:

Given graph $G = (U, E), k \in \mathbb{Z}^+, V \subseteq U,$ G is k-e-c. in V if $\lambda_G(u, v) \geq k$ for all $u, v \in V$.

G is 2-e-c.

 $\lambda_G(v_2, v_3) = 2$

 $\lambda_G(v_1, v_4) = 3$

G 2-e-c. in V

4 Remarks

Remark 1 $G = (U, E), X \subset U, u, v \in U - X$ $\lambda_{G/X}(u, v) \ge \lambda_G(u, v).$

Remark 2 $G = (U, E), s \in U, u, v \in U - s$ $\lambda_{G-s}(u, v) \ge \lambda_G(u, v) - \lfloor \frac{d_G(s)}{2} \rfloor.$

S Splitting off

Global edge-connectivity:

Theorem 1 (Lovász) Given

- G = (V + s, E) graph,
- $\bullet d(s)$ even,
- G k-edge-connected in V $(k \geq 2)$.

Then there exists a (complete) splitting off at s that maintains k-edge-connectivity in V.

Local edge-connectivity:

Theorem 2 (Mader) Given

- G = (V + s, E) graph,
- $d_G(s) \neq 3$,
- ullet no cut edge incident to s.

Then there exists a splitting off at s that maintains local edge-connectivities in V.

Theorem 2 implies Theorem 1.

- Graph: G = (V + s, E),
- Degree specification: $f(s) = \{d_1, ..., d_p\},$ $d_i \in \mathbb{Z}_+, \Sigma_1^p d_i = d_G(s).$

G' is an f(s)-detachment of G, if s is split into $s_1, ..., s_p$ so that $d_{G'}(s_i) = d_i \quad \forall 1 \leq i \leq p$.

Remark 3 splitting off = (2, d(s)-2)-detachment

Global edge-connectivity

Theorem 3 (B. Fleiner) Given

- G = (V + s, E) graph,
- $\bullet k \geq 2$,
- $f(s) = \{d_1, ..., d_p\}$ degree spec. $d_i \geq 2$ $\forall i$.

Then there exists a k-edge-connected in Vf(s)-detachment of G iff $\forall \emptyset \neq X \subset V$

$$d_G(X) \ge k, \tag{1}$$

$$d_{G}(X) \geq k, \tag{1}$$

$$d_{G-s}(X) \geq k - \sum_{1}^{p} \lfloor \frac{d_{i}}{2} \rfloor. \tag{2}$$

Theorem 3 implies

- Lovász' splitting off theorem,
- Nash-Williams' simultanious detachment theorem.

Necessity:

Special case: each d_i is **even** in f(s).

- (1) Then (1) implies (2) by Remarks 2. $d_{G-s}(X) \ge d_G(X) \lfloor \frac{d_G(s)}{2} \rfloor \ge k \sum_{1}^{p} \lfloor \frac{d_i}{2} \rfloor.$
- (2) Thus this special case of Theorem 3 implies Lovász' theorem.
- (3) Lovász' theorem implies this special case of Theorem 3.

Local edge-connectivity I:

Theorem 4 (Jordán, Szigeti) Given

- G = (V + s, E) 2-edge-connected graph,
- $f(s) = \{d_1, ..., d_p\}$ degree spec. $d_i \geq 2 \ \forall i$.

Then there is an f(s)-detachment maintaining local edge-connectivities in V iff $\forall u, v \in V$,

$$\lambda_{G-s}(u,v) \ge \lambda_G(u,v) - \sum_{1}^{p} \lfloor \frac{d_i}{2} \rfloor.$$
 (3)

Attention!: It does NOT generalize Fleiner's theorem!

$$\lambda_{G-s}(u,v) \ge k - \Sigma_1^p \lfloor \frac{d_i}{2} \rfloor$$
 does not imply that $\lambda_{G-s}(u,v) \ge \lambda_G(u,v) - \Sigma_1^p \lfloor \frac{d_i}{2} \rfloor$.

Local edge-connectivity II:

For $\underline{r}: V \times V \to \mathbb{Z}_+, G = (V + s, E)$ is \underline{r} -edge-connected in V, if

$$\lambda_G(u,v) \ge r(u,v) \ \forall u,v \in V.$$

Theorem 5 (Jordán, Szigeti) Given

- G = (V + s, E) graph,
- $r(u, v) \ge 2 \quad \forall u, v \in V \text{ requirem. function,}$
- $f(s) = \{d_1, ..., d_p\}$ degree spec. $d_i \geq 2 \ \forall i$.

Then there exists an \underline{r} -edge-connected in Vf(s)-detachment of G iff $\forall u, v \in V$,

$$\lambda_G(u,v) \ge r(u,v), \tag{4}$$

$$\lambda_{G}(u,v) \geq r(u,v), \tag{4}$$

$$\lambda_{G-s}(u,v) \geq r(u,v) - \sum_{1}^{p} \lfloor \frac{d_{i}}{2} \rfloor. \tag{5}$$

Necessity is the same as for the global case. Sufficiency: short proof (Szigeti (2004)).

Special case: at most one d_i is odd in f(s).

(1) Then (4) implies (5) by Remark 2.

$$\lambda_{G-s}(u,v) \ge \lambda_G(u,v) - \lfloor \frac{d_G(s)}{2} \rfloor$$

$$\ge r(u,v) - \Sigma_1^p \lfloor \frac{d_i}{2} \rfloor.$$

- (2) Thus this special case of Theorem 5 implies Mader's theorem.
- (3) Mader's theorem implies this special case of Theorem 5.

Theorem 5 implies

- Fleiner's theorem $(r(u, v) = k \ \forall u, v \in V)$,
- Mader's theorem $(f(s) = (2, d_G(s) 2),$ $r(u, v) = \lambda_G(u, v) \ u, v \in V),$
- Theorem 4 $(r(u, v) = \lambda_G(u, v) \ u, v \in V)$.

7 Edge-connectivity augmentation

The method to solve edge-connectivity augmentation problems developed by András Frank consists of two phases:

- (1) extension minimally,
- (2) complete splitting off.

Theorem 6 (Frank) Given $p: V \to \mathbb{Z}$,

- symmetric, $p(X) = p(V X) \ \forall X \subseteq V$.
- skew-supermodular, $\forall X, Y \subseteq V$,

$$p(X) + p(Y) \le p(X \cap Y) + p(X \cup Y) \text{ or }$$

$$p(X) + p(Y) \le p(X - Y) + p(Y - X).$$

Then the empty graph (V, \emptyset) can be extended to a graph H by adding a new vertex s and γ edges incident to s so that H covers p $(d_H(X) \ge$ $p(X) \forall \emptyset \ne X \subset V)$ if and only if

$$\sum_{X_i \in \mathcal{X}} p(X_i) \le \gamma \quad \forall \mathcal{X} \in \mathcal{S}(V).$$

Global edge-connectivity:

$$d_{G+H}(X) \ge k \quad \forall \emptyset \ne X \subset V \tag{6}$$

if and only if

$$d_H(X) \ge \underbrace{k - d_G(X)}_{p(X)} \quad \forall \emptyset \ne X \subset V. \tag{7}$$

As p(X) is symmetric and skew-supermodular, Theorems 6 and 1 imply the following theorem.

Theorem 7 (Watanabe, Nakamura; Cai, Sun) Given

- \bullet G = (V, E) graph,
- $k \geq 2$ integer.

Then G can be made k-edge-connected by adding at most γ new edges if and only if

$$\sum_{X_i \in \mathcal{X}} (k - d(X_i)) \le 2\gamma \quad \forall \mathcal{X} \in \mathcal{S}(V).$$

Local edge-connectivity:

$$R(X) := \max\{r(x,y) : x \in X, y \in V - X\}.$$

is symmetric and skew-supermodular.

$$\lambda_{G+H}(u,v) \geq r(u,v) \qquad \forall u,v \in V,$$

$$\iff d_{G+H}(X) \geq R(X) \qquad \forall \emptyset \neq X \subset V,$$

$$\iff d_{H}(X) \geq \underbrace{R(X) - d_{G}(X)}_{p(X)} \forall \emptyset \neq X \subset V.$$

As p(X) is symmetric and skew-supermodular, Theorems 6 and 2 imply the following theorem.

Theorem 8 (Frank) Given

- G = (V, E) graph,
- $r(u, v) \ge 2$ $\forall u, v \in V \ local \ edge\text{-}connectivity \ requirements.$

Then G can be made \underline{r} -edge-connected by adding at most γ new edges if and only if

$$\sum_{X_i \in \mathcal{X}} (R(X_i) - d(X_i)) \le 2\gamma \quad \forall \mathcal{X} \in \mathcal{S}(V).$$

Theorem 8 implies Theorem 7 of Watanabe and Nakamura.

Global edge-connectivity augmention by stars:

Theorems 6 and 3 imply the following theorem.

Theorem 9 (Fleiner B.) Given

- G = (V, E) graph,
- $k \geq 2$ integer,
- $d_1, ..., d_p \quad (d_i \geq 2 \quad \forall i)$

Then G can be made k-edge-connected in V by adding p stars of degrees $d_1, ..., d_p$ iff

$$k - \sum_{1}^{p} \lfloor \frac{d_i}{2} \rfloor \leq \lambda_G(u, v) \quad \forall u, v \in V,$$

by alaling
$$p$$
 stars of algrees $a_1, ..., a_p$ iff
$$k - \sum_{1}^{p} \lfloor \frac{d_i}{2} \rfloor \leq \lambda_G(u, v) \quad \forall u, v \in V,$$

$$\sum_{X_j \in \mathcal{X}} (k - d(X_j)) \leq \sum_{1}^{p} d_i \quad \forall \mathcal{X} \in \mathcal{S}(V).$$

Theorem 3 implies Theorem 7 of Watanabe and Nakamura.

Local edge-connectivity augmention by stars:

Theorems 6 and 5 imply the following theorem.

Theorem 10 (Jordán, Szigeti) Given

- \bullet G = (V, E) graph,
- $\bullet r(u, v) \ge 2 \quad \forall u, v \in V,$
- $d_1, ..., d_p \quad (d_i \geq 2 \quad \forall i).$

Then G can be made \underline{r} -edge-connected in V by attaching p stars of degrees $d_1, ..., d_p$ iff

$$r(u,v) - \sum_{1}^{p} \lfloor \frac{d_i}{2} \rfloor \leq \lambda_G(u,v) \quad \forall u,v \in V,$$

$$\sum_{X_j \in \mathcal{X}} (R(X_j) - d(X_j)) \le \sum_{1}^{p} d_i \quad \forall \mathcal{X} \in \mathcal{S}(V).$$

Theorem 10 implies

- Theorem 3 of Fleiner and
- Theorem 6 of Frank.

8 Global edge-connectivity augmentation with partition constraints

- G = (V, E) graph,
- $\mathcal{P} = \{P_1, ..., P_r\}$ partition of V,
- $\bullet k \geq 2$.

Then G can be made k-edge-connected by adding γ edges between different elements of \mathcal{P} if and only if

$$\sum_{X_i \in \mathcal{X}} (k - d(X_i)) \leq 2\gamma \quad \forall \mathcal{X} \in \mathcal{S}(V),$$

$$\sum_{Y_i \in \mathcal{Y}} (k - d(Y_i)) \leq \gamma \quad \forall \mathcal{Y} \in \mathcal{S}(P_j) \forall 1 \leq j \leq r,$$

G contains no C_4 or C_6 -configuration. (8)

If G contains a C_4 or C_6 -configuration then we need one more edge.

If k is even then (8) is always satisfied.

$$k = 3$$

$$C_{4}$$

Problems I.

Problems II.

Problems III.

