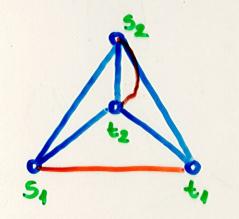
A NOTE ON PACKING PATHS IN PLANAR GRAPHS

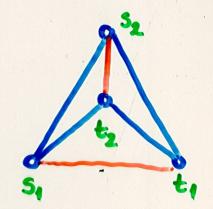
Andras Frank Zoltan Szigeti EÖTVÖS UNIVERSITY

EDGE-DISJOINT PATHS PROBLEM

GIVEN A GRAPH G AND si, tiev(6) i=1,..., l.

FIND & EDGE-DISJOINT PATHS CONNECTING
THE CORRESPONDING PARS si, ti.





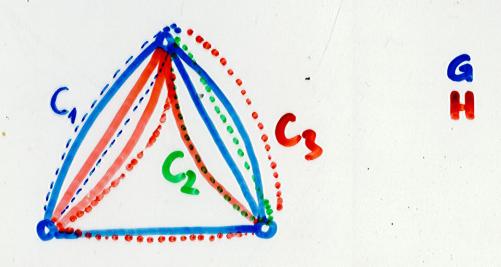
G SUPPLY GRAPH

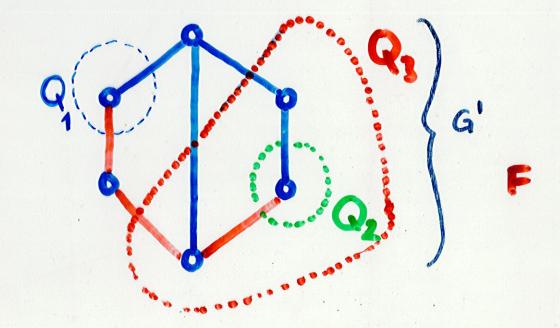
H DEMAND GRAPH

FIND & EDGE-DISJOINT CIRCUITS IN G+H SUCH THAT EACH OF THEM CONTAINS EXACTLY ONE DEMAND EDGE.

BY PLANAR DUALIZATION:

FIND L EDGE-DISJOINT CUTS IN G (DUAL OF G+H) SUCH THAT EACH OF THEM CONTAINS EXACTLY ONE EDGE OF F (CORRESPONDING TO H).





G+H IS PLANAR

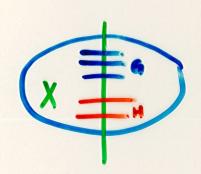
EVEN IN THIS CASE THE PROBLEM

IS NP-COMPLETE.

(MIDDENDORF, PFEIFFER)93)

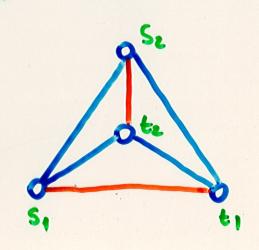
NECESSARY:

CUT CRITERION



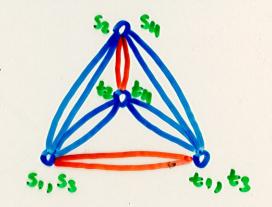
 $d_G(x) \ge d_H(x) \quad \forall x \le V(G)$

NOT SUFFICIENT:



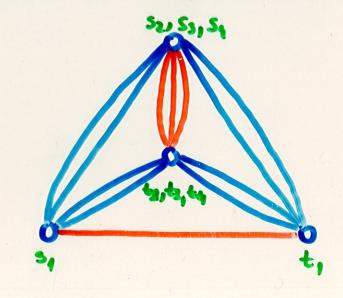
THEOREM (SEYMOUR '81)

WHEN G+H IS PLANAR AND EULERIAN,
THE EDGE-DISJOINT PATHS PROBLEM
HAS A SOLUTION IF AND ONLY IF THE
CUT CRITERION HOLDS.



THEOREM (KORACH, PENN '92)

SUPPOSE G+H IS PLANAR AND THE CUT CRITERION HOLDS. THEN THERE IS AT MOST ONE DEMAND EDGE ON EACH BOUNDED FACE OF G SO THAT LEAVING OUT THESE EDGES FROM H THE PROBLEM HAS A SOLUTION.



REMARKS: 1. NO DEMAND EDGE IS LEFT OUT FROM THE INFINITE FACE OF 6.

2. IF EACH BOUNDED FACE OF 6 CONTAINS AT MOST ONE DEMAND EDGE THEN THIS THEOREM SAYS NOTHING.

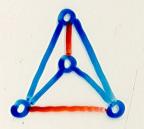
OUR AIM IS TO STRENGTHEN THE CUT CRITERION

a, TO BE A SUFFICIENT COMPITION FOR THE PROBLEM.

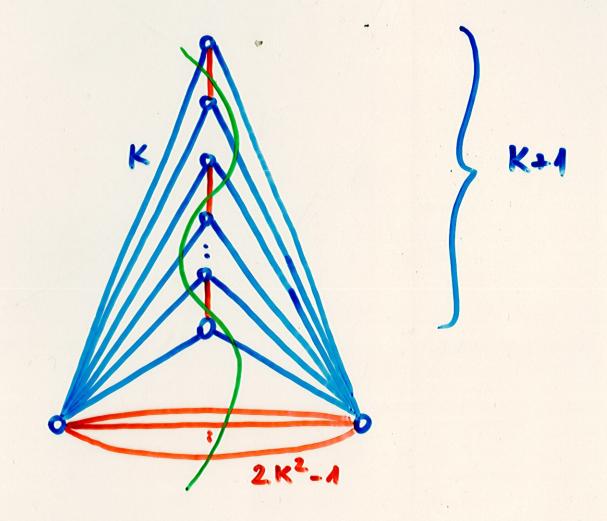
by TO HAVE A. FOR MORE FACES OF G.

a.

is not sufficient



is NOT SUFFICIENT



dg(x)-dH(x)=(k+1)2K-(2k2-1+k+1)=K

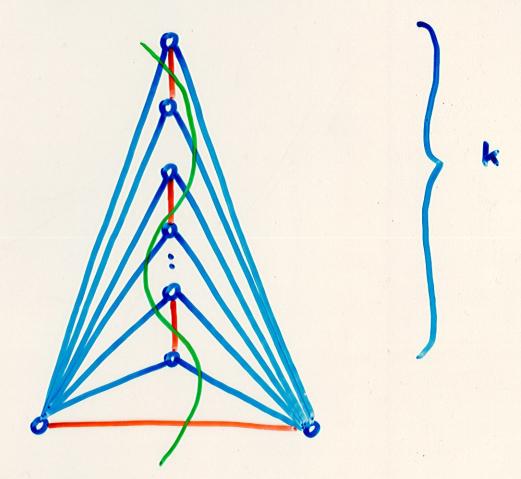
THEOREM (FRANK, SZ. '93)

IF G+H IS PLANAR AND

 $d_G(x) \geqslant 2 \cdot d_H(x) \quad \forall x \leq v$

THEN THE PROBLEM HAS A SOLUTION.

iv.) $d_G(x) \ge (2-\epsilon) \cdot d_H(x) \quad \forall x \le V, \epsilon > 0$ IS NOT SUFFICIENT



$$d_G(x) = 2 \cdot k$$

$$\Rightarrow d_G(x) = (2 - \frac{2}{kH}) d_H(x)$$

$$d_H(x) = k+1$$

b.) SUPPOSE, THAT THE FACES OF & CONTAINING DEMAND EDGES ARE PARTITIONED INTO TWO GROUPS:

$$C_0, C_1, ..., C_k$$
 $D_4, ..., D_\ell$
 $\binom{k \ge 0}{\ell \ge 0}$.

FOR A CUT $\delta_{G+H}(x)$ LET $\mu(x)$ BE
THE NUMBER OF THOSE FACES C_i (221!)
FROM WHICH $\delta_{G+H}(x)$ CONTAINS AT LEAST
ONE DEMAND EDGE.

THEOREM (FRANK, SZ. '93)

IF G+H IS PLANAR AND

 $d_G(x) \ge d_H(x) + u(x) \quad \forall x \in V$

THEN IT IS POSSIBLE TO LEAVE OUT AT MOST ONE DEMAND EDGE FROM EACH FACE D., ..., D. SUCH THAT THE RESULTING PROBLEM HAS A SOLUTION.

THEOREM: IF 6+H IS PLANAR AND $d_G(x) \ge d_H(x) + u_I(x)$ $\forall x \le v$ then the edge-disjoint paths problem has a solution.

REMARK: dg(x) > du(x) + u(x) -2 + x & v

IS NOT SUFFICIENT.

OPEN PROBLEM:

da(x) 2 dy(x) + u(x) -1 4x = V

IS SUFFICIENT OR NOT ?