Old and new results on packing arborescences

Zoltán Szigeti

Équipe Optimisation Combinatoire
Laboratoire G-SCOP
INP Grenoble, France

11 juin 2015
Outline

- **Old results**
 - **Digraphs**
 - Packing spanning arborescences
 - Packing maximal arborescences
 - **Dypergraphs**
 - Packing spanning hyper-arborescences
 - Packing maximal hyper-arborescences
 - **Matroid-based rooted-digraphs**
 - Matroid-based packing of rooted-arborescences
 - Maximal-rank packing of rooted-arborescences

- **New results**
 - **Matroid-based rooted-dypergraph**
 - Matroid-based packing of rooted-hyper-arborescences
 - Maximal-rank packing of rooted-hyper-arborescences
Reachability in digraph

Definition

Let $\vec{G} = (V, A)$ be a digraph and $X \subseteq V$.

1. $\rho_A(X)$ is the number of arcs entering X,
2. $P_A(X)$ is the set of vertices from which X can be reached in \vec{G},
3. $Q_A(X)$ is the set of vertices that can be reached from X in \vec{G}.

$$\rho_A(X) = 2$$
Arborescences

Definition

Let $\vec{G} = (V, A)$ be a digraph and $r \in V$.

1. A subgraph $\vec{T} = (U, B)$ of \vec{G} is an r-arborescence if
 1. $r \in U$ with $\rho_B(r) = 0$,
 2. $\rho_B(u) = 1$ for all $u \in U \setminus r$ and
 3. $\rho_B(X) \geq 1$ for all $X \subseteq V \setminus r$, $X \cap U \neq \emptyset$.

2. An r-arborescence \vec{T} is
 1. spanning if $U = V$,
 2. maximal if $U = Q_A(r)$.

3. Packing of arborescences is a set of pairwise arc-disjoint arborescences.
Theorem (Edmonds 1973)

Let $\vec{G} = (V, A)$ be a digraph, $r \in V$ and k a positive integer.

1. There exists a packing of k spanning r-arborescences

2. $\rho_A(X) \geq k$ for all $\emptyset \neq X \subseteq V \setminus r$.

\[\vec{G} = (V, A) \text{ be a digraph, } r \in V \text{ and } k \text{ a positive integer.} \]

\[\rho_A(X) \geq k \text{ for all } \emptyset \neq X \subseteq V \setminus r. \]
A packing of maximal arborescences is a set \(\{T_1, \ldots, T_t\} \) of pairwise arc-disjoint maximal \(r_i \)-arborescences \(T_i \) in \(\vec{G} \); that is for every \(v \in V \), \(\{r_i : v \in V(T_i)\} = \{r_i \in P_A(v)\} \).

For \(X \subseteq V \), \(p_A(X) = |\{r_i \in P_A(X) \setminus X\}| \).
Packing maximal arborescences

Theorem (Kamiyama, Katoh, Takizawa 2009)

Let $\vec{G} = (V, A)$ be a digraph and $(r_1, \ldots, r_t) \in V^t$.

1. There exists a packing of maximal arborescences \iff
2. $\rho_A(X) \geq p_A(X)$ for all $X \subseteq V$.

Remark

It implies Edmonds’ theorem.

1. Let $r_1 = \cdots = r_k = r$.
2. $\rho_A(X) \geq k$ for all $\emptyset \neq X \subseteq V \setminus r$ implies the above condition and that each vertex is reachable from r.
3. Hence there exists a packing of maximal r-arborescences that is a packing of spanning r-arborescences.
Directed hypergraph (shortly dypergraph) is $\vec{G} = (V, A)$, where
- V denotes the set of vertices and
- A denotes the set of hyperarcs of \vec{G}.

Hyperarc is a pair (Z, z) such that $z \in Z \subseteq V$, where
- z is the head of the hyperarc (Z, z) and
- the elements of $Z \setminus z \neq \emptyset$ are the tails of the hyperarc (Z, z).
Reachability in dypergraph

Definition

Let $\vec{G} = (V, A)$ be a dypergraph and $X \subseteq V$.

1. Hyperarc (Z, z) enters X if $z \in X$ and $(Z \setminus z) \cap (V \setminus X) \neq \emptyset$,
2. $\rho_A(X)$ is the number of hyperarcs entering X,
3. Path from u to x in \vec{G} is $v_1(=u), (Z_1, v_2), v_2, \ldots, v_i, (Z_i, v_{i+1}), v_{i+1}, \ldots, v_j(=x)$ such that v_i is a tail of (Z_i, v_{i+1}).
4. $P_A(X)$ is the set of vertices from which X can be reached in \vec{G},
5. $Q_A(X)$ is the set of vertices that can be reached from X in \vec{G}.
Definition

Trimming the dypergraph \vec{G} means replacing each hyperarc (K, v) of \vec{G} by an arc uv where u is one of the tails of the hyperarc (K, v).

Definition

h is supermodular: $h(X) + h(Y) \leq h(X \cap Y) + h(X \cup Y) \ \forall \ X, Y \subseteq V.$

Theorem (Frank 2011)

Let $\vec{G} = (V, A)$ be a dypergraph and h an integer-valued, intersecting supermodular function on V such that $h(\emptyset) = 0 = h(V)$.

If $\rho_{A}(X) \geq h(X)$ for all $X \subseteq V$, then \vec{G} can be trimmed to a digraph \vec{G} such that $\rho_{A}(X) \geq h(X)$ for all $X \subseteq V$.
Hyper-arborescences

Definition

Let $\vec{G} = (V, \mathcal{A})$ be a dypergraph and $r \in V$.

1. A subgraph $\vec{T} = (U, B)$ of \vec{G} is an r-hyper-arborescence if it can be trimmed to an r-arborescence on $U^* \cup r$, where $U^* = \{ u : \rho_B(u) \neq 0 \}$; that is
 1. $r \in U \setminus U^*$,
 2. $\rho_B(u) = 1$ for all $u \in U^*$ and
 3. $\rho_B(X) \geq 1$ for all $X \subseteq V \setminus r$, $X \cap U^* \neq \emptyset$.

2. The r-hyper-arborescence \vec{T} is
 1. spanning if $U^* = V \setminus r$,
 2. maximal if $U^* = Q_A(r) \setminus r$.

\[\text{Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences 11 juin 2015 11 / 26} \]
Theorem (Frank, T. Király, Kriesell 2003)

Let $\vec{G} = (V, A)$ be a dypergraph, $r \in V$ and k a positive integer.

1. There exists a packing of k spanning r-hyper-arborescences.
2. $\rho_A(X) \geq k$ for all $\emptyset \neq X \subseteq V \setminus r$.

Remark

1. It is proved easily by trimming and Edmonds’ theorem.
2. It implies Edmonds’ theorem if \vec{G} is a digraph.
Theorem (Bérczi, Frank 2008)

Let $\vec{G} = (V, A)$ be a dypergraph and $(r_1, \ldots, r_t) \in V^t$.

1. There exists a packing of maximal hyper-arborescences
2. $\rho_A(X) \geq p_A(X)$ for all $X \subseteq V$.

Remark

1. It is proved not easily by trimming and Kamiyama, Katoh, Takizawa’s theorem since $p_A(X)$ is not intersecting supermodular.
2. It implies
 1. Frank, T. Király, Kriesell’s theorem if $r_1 = \cdots = r_k = r$ and $\rho_A(X) \geq k$ for all $\emptyset \neq X \subseteq V \setminus r$,
 2. Kamiyama, Katoh, Takizawa’s theorem if \vec{G} is a digraph.
Matroids

Definition

For $\mathcal{I} \subseteq 2^S$, $\mathcal{M} = (S, \mathcal{I})$ is a matroid if

1. $\mathcal{I} \neq \emptyset$,
2. If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
3. If $X, Y \in \mathcal{I}$ with $|X| < |Y|$ then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Examples

1. Sets of linearly independent vectors in a vector space,
2. Edge-sets of forests of a graph,
3. $U_{n,k} = \{X \subseteq S : |X| \leq k\}$ where $|S| = n$, free matroid $= U_{n,n}$.
Matroids

Notion

1. **independent sets** = \mathcal{I},
 - any subset of an independent set is independent,

2. **base** = maximal independent set,
 - all basis are of the same size,

3. **rank function**: $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}$.
 - non-decreasing,
 - submodular (that is $-r$ is supermodular),
 - $X \in \mathcal{I}$ if and only if $r(X) = |X|$.
A matroid-based rooted-digraph is a quadruple $(\vec{G}, \mathcal{M}, S, \pi)$:

1. $\vec{G} = (V, A)$ is a digraph,
2. \mathcal{M} is a matroid on a set $S = \{s_1, \ldots, s_t\}$.
3. π is a placement of the elements of S at vertices of V such that $S_v \in \mathcal{I}$ for every $v \in V$, where $S_X = \pi^{-1}(X)$, the elements of S placed at X.

\vec{G}
$S = \{s_1, s_2, s_3\}$
$\mathcal{M} = U_{3,2}$
Matroid-based packing of rooted-arborescences

Definition

A **rooted-arborescence** is a pair \((\vec{T}, s)\) where

1. \(\vec{T}\) is an \(r\)-arborescence for some vertex \(r\),
2. \(s \in S\), placed at \(r\).

Definition

A packing \(\{(\vec{T}_1, s_1), \ldots, (\vec{T}_{|S|}, s_{|S|})\}\) of rooted-arborescences is **matroid-based** if \(\{s_i \in S : v \in V(\vec{T}_i)\}\) forms a base of \(S\) for every \(v \in V\).

Remark

For the **free matroid** \(\mathcal{M}\) with all \(k\) roots at a vertex \(r\),

1. matroid-based packing of rooted-arborescences
2. packing of \(k\) spanning \(r\)-arborescences.

\[
\begin{align*}
\pi(s_1) & \quad \pi(s_2) \\
\pi(s_3) & \quad T_1 \quad T_2 \\
& \quad T_3
\end{align*}
\]
Matroid-based packing of rooted-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(\tilde{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

1. There is a matroid-based packing of rooted-arborescences

2. $\rho_A(X) \geq r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)$ for all $\emptyset \neq X \subseteq V$.

Remark

It implies Edmonds’ theorem if \mathcal{M} is the free matroid with all k roots at the vertex r.

Z. Szigeti (G-SCOP, Grenoble)

On packing of arborescences

11 juin 2015 18 / 26
Maximal-rank packing of rooted-arborescences

Definition

A packing \(\{(\vec{T}_1, s_1), \ldots, (\vec{T}_{|S|}, s_{|S|})\} \) of rooted-arborescences is of maximal rank if \(\{s_i \in S : v \in V(\vec{T}_i)\} \) forms a base of \(S_{PA(v)} \) for every \(v \in V \).

Theorem (Cs. Király 2013)

Let \((\vec{G}, M, S, \pi) \) be a matroid-based rooted-digraph.

1. There exists a maximal-rank packing of rooted-arborescences \(\iff \)
2. \(\rho_A(X) \geq r_M(S_{PA(X)}) - r_M(S_X) \) for all \(X \subseteq V \).

Remark

1. It implies
 - DdG-N-Sz’ theorem if \(\rho_A(X) \geq r_M(S) - r_M(S_X) \) for all \(\emptyset \neq X \subseteq V \),
 - Kamiyama, Katoh, Takizawa’s theorem if \(M \) is the free matroid.
A matroid-based rooted-dypergraph is a quadruple $(\vec{G}, \mathcal{M}, S, \pi)$:

1. $\vec{G} = (V, A)$ is a dypergraph,
2. \mathcal{M} is a matroid on a set $S = \{s_1, \ldots, s_t\}$.
3. π is a placement of the elements of S at vertices of V such that $S_v \in \mathcal{I}$ for every $v \in V$.
Matroid-based packing of rooted-hyper-arborescences

Definition

1. A rooted-hyper-arborescence is a triple \((\vec{T}, r, s)\) where \(\vec{T}\) is an \(r\)-hyper-arborescence and \(s\) is an element of \(S\) placed at \(r\).

2. A packing \(\{(\vec{T}_1, r_1, s_1), \ldots, (\vec{T}_{|S|}, r_{|S|}, s_{|S|})\}\) of rooted-hyper-arborescences is matroid-based if \(\{s_i \in S : v \in Q_{A(\vec{T}_i)}(r_i)\}\) forms a base of \(S\) for every \(v \in V\).

Theorem (Léonard, Szigeti 2013)

Let \((\vec{G}, \mathcal{M}, S, \pi)\) be a matroid-based rooted-dypergraph.

1. There is a matroid-based packing of rooted-hyper-arborescences \(\iff\)

2. \(\rho_A(X) \geq r_M(S) - r_M(S_X)\) for all \(\emptyset \neq X \subseteq V\).

Remark

1. It is proved easily by trimming and DdG-N-Sz’ theorem.
Maximal-rank packing of rooted-hyper-arborescences

Definition

Packing \(\{(\vec{T}_1, r_1, s_1), \ldots, (\vec{T}_{|S|}, r_{|S|}, s_{|S|})\} \) of rooted-hyper-arborescences is of maximal rank if \(\{s_i \in S : v \in Q_{\mathcal{A}(\vec{T}_i)}(r_i)\} \) forms a base of \(S_{\mathcal{P}\mathcal{A}(v)} \) for all \(v \in V \).

Theorem (Szigeti 2015-)

Let \((\vec{G}, \mathcal{M}, S, \pi)\) be a matroid-based rooted-dypergraph.

1. There is a maximal-rank packing of rooted-hyper-arborescences \(\iff \)
2. \(\rho_{\mathcal{A}}(X) \geq r_{\mathcal{M}}(S_{\mathcal{P}\mathcal{A}(X)}) - r_{\mathcal{M}}(S_X) \) for all \(X \subseteq V \).

Remark

1. It is proved not easily by trimming and Cs. Király’s theorem since \(r_{\mathcal{M}}(S_{\mathcal{P}\mathcal{A}(X)}) - r_{\mathcal{M}}(S_X) \) is not intersecting supermodular.
2. It implies all the previous results.
Proof of necessity

Proof

1. Let \(\{ (\vec{T}_1, r_1, s_1), \ldots, (\vec{T}_{|S|}, r_{|S|}, s_{|S|}) \} \) be a maximal-rank packing of rooted-hyper-arborescences in \((\vec{G}, \mathcal{M}, S, \pi)\).

2. Let \(B_v = \{ s_i \in S : \nu \in Q_{\mathcal{A}}(\vec{T}_i)(r_i) \} \) (base of \(S_{\mathcal{P}_\mathcal{A}(\nu)} \)) and \(X \subseteq V \).

3. For each root \(s_i \in \bigcup_{\nu \in X} B_v \setminus S_X \), there exists a vertex \(\nu \in X \) such that \(s_i \in B_v \) and then since \(\vec{T}_i \) is an \(r_i \)-hyper-arborescence, \(r_i \notin X \) and \(\nu \in Q_{\mathcal{A}}(\vec{T}_i)(r_i) \cap X \), there exists a hyperarc of \(\vec{T}_i \) that enters \(X \).

4. Since the hyper-arborescences are arc-disjoint,

\[
\rho_{\mathcal{A}}(X) \geq |\bigcup_{\nu \in X} B_v \setminus S_X| \\
\geq r_{\mathcal{M}}(\bigcup_{\nu \in X} B_v \setminus S_X) \\
\geq r_{\mathcal{M}}(\bigcup_{\nu \in X} B_v) - r_{\mathcal{M}}(S_X) \\
\geq r_{\mathcal{M}}(\bigcup_{\nu \in X} S_{\mathcal{P}_{\mathcal{A}}(\nu)}) - r_{\mathcal{M}}(S_X) \\
= r_{\mathcal{M}}(S_{\mathcal{P}_{\mathcal{A}}(X)}) - r_{\mathcal{M}}(S_X).
\]
Thank you for your attention!
Motivation: Rigidity

Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Theorem (Katoh, Tanigawa 2013)

"Rigidity" of a Body-Bar Framework with Bar-Boundary can be characterized by the existence of a matroid-based rooted-tree decomposition.