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Edge-connectivity Augmentation

Definition

A (hyper)graph G is called k-edge-connected if each cut contains at least
k (hyper)edges.
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≥ k
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Problems to be considered
1 Edge-connectivity augmentation of a graph

2 Edge-connectivity augmentation of a hypergraph

3 Partition constrained edge-connectivity augmentation of a graph

4 Partition constrained edge-connectivity augmentation of a hypergraph
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Graphs

Edge-connectivity augmentation of a graph

Given a graph G and an integer k ≥ 2, what is the minimum number γ of
new edges whose addition results in a k-edge-connected graph ?

1 Minimax theorem (Watanabe, Nakamura (1987))

γ = αk(G ):= max{⌈1
2

∑

X∈X (k − d(X ))⌉ : X subpartition of V (G )}.

2 Polynomially solvable (Cai, Sun (1989))

Graph G , k = 4
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Hypergraphs

Edge-connectivity augmentation of a hypergraph

Given a hypergraph G and an integer k ≥ 1, what is the minimum number
γ of new graph edges whose addition results in a k-edge-connected
hypergraph ?

1 Minimax theorem (Bang-Jensen, Jackson (1999))

γ = max{αk(G), ck (G)},

where ck(G) := max{c(G −H) − 1 : H ⊆ E (G), |H| ≤ k − 1}.

2 Polynomially solvable (Bang-Jensen, Jackson (1999))

k = 2
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Graphs with partition constraints

Partition constrained edge-connectivity augmentation of a graph

Given a graph G , a partition P of V (G ) and an integer k ≥ 2, what is the
minimum number γ of new edges, between different members of P, whose
addition results in a k-edge-connected graph ?

1 Minimax theorem (Bang-Jensen, Gabow, Jordán, Szigeti (1999))

γ =

{

Φ if G contains no C4- and no C6-configuration,

Φ + 1 otherwise,

where Φ := max{αk(G ), βk(G ,P)} and
βk(G ,P) := max{

∑

Y∈Y(k − d(Y )) : Y subpartition of Pj ,Pj ∈ P}.

2 Polynomially solvable (Bang-Jensen, Gabow, Jordán, Szigeti (1999))

V1
V2

V3

Vr

Vr−1

Graph G = (V , E )

V1
V2

V3

Vr

Vr−1

G
′

k-E-C

-

Augmentation

Partition P of V
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Hypergraphs with partition constraints

Partition constrained edge-conn. augmentation of a hypergraph

Given a hypergraph G, a partition P of V (G) and an integer k ≥ 1, what
is the minimum number γ of new graph edges, between different members
of P, whose addition results in a k-edge-connected hypergraph ?

1 Minimax theorem (Bernáth, Grappe, Szigeti (2009))

γ =

{

Φ if G contains no C4- and no C6-configuration,

Φ + 1 otherwise,

where Φ := max{αk(G), ck (G), βk (G,P)}.

2 Polynomially solvable (Bernáth, Grappe, Szigeti (2009))
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Ben Cosh (2000) solved the special case of bipartition.
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General method

Frank’s algorithm

1 Minimal extension,

(i) Add a new vertex s,

(ii) Add a minimum number of new edges incident to s to satisfy the
edge-connectivity requirements,

(iii) If the degree of s is odd, then add an arbitrary edge incident to s.

2 Complete splitting off.

G = (V , E )

w
-

Extension

s

v
Minimal

u

z

G ′ k-e-c in V

-

Complete
Splitting off v

u w

z

G ′′ k-e-c
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Optimal extension

Definion : Given G = (V , E), partition P of V , integer k,

optimal extension : Ĝ= (V + s, E + δ(s)), P̂= {δ
Ĝ
(s) ∩ δ

Ĝ
(P) : P ∈ P}

1 Ĝ is k-edge-connected in V ,

2 δ
Ĝ
(s) consists of 2Φ graph edges,

3 |P̂ | ≤ 1
2d

Ĝ
(s) for all P̂ ∈ P̂ .

Optimal Extension

s

G,P Ĝ, P̂
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How to find an optimal extension

Algorithm :

1 Apply Frank’s minimal extension to find (V + s, E + δ(s))
k-edge-connected in V and d(s) is even. (d(s) = 2αk(G).)

2 Add edges incident to s so that d(s) = max{2αk(G), 2ck (G)}.

3 If some P ∈ P satisfies d(s,P) >
d(s)
2 , then

If ∃su ∈ δ(s), u ∈ P , Xu * P , replace su by su′, u′ ∈ Xu − P . Repeat 3.
Otherwise, add 2d(s, P) − d(s) edges between s and V − P .

4 Let Ĝ be the resulting hypergraph and P̂ = {δ
Ĝ
(s) ∩ δ

Ĝ
(P) : P ∈ P}.

G,P
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Ĝ, P̂
Z. Szigeti (G-SCOP, Grenoble) Hypergraph Edge-Connectivity November 2009 10 / 20



Splitting off

Definitions
s s

u u

v v

Ĝ Ĝuv

-

Splitting off

V V

s s

u u

v v

Ĝ Ĝ′

-

Splitting off
Complete

V V

w

z

w
z

Definitions

A splitting off is

1 k-admissible if Ĝuv is k edge-connected in V ,

2 rainbow if the edges are of different colors and |P̂ | ≤ 1
2d

Ĝ
(s) for all

P̂ ∈ P̂ remains valid,

3 k-allowed if it is k-admissible and rainbow.
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Splitting off theorem

Theorem (Bernáth, Grappe, Szigeti (2009))

Let Ĝ= (V + s, E + δ(s)) be a hypergraph, where δ(s) consists of graph
edges, and P̂ a partition of δ(s). There is a complete k-admissible rainbow
(k-allowed) splitting off in Ĝ if and only if

1 Ĝ is k-edge-connected in V ,

2 d
Ĝ
(s) ≥ 2ck(Ĝ − s) is even,

3 |P̂ | ≤ 1
2d

Ĝ
(s) for all P̂ ∈ P̂ and

4 Ĝ contains no obstacle.

C4, k = 3

s s

C6, k = 3
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C4-obstacles

Definition

A partition A = {A1, . . . ,A4} of V is called a C4-obstacle of Ĝ if

1 d(Ai) = k for i = 1, . . . , 4,

2 ∃F ⊆ E s.t. k − |F| 6= 1 is odd and F = δ(Ai ) ∩ δ(Ai+2) for i = 1, 2,

3 ∃l ∈ {1, 2}, P̂ ∈ P̂ s.t. δ(Al ∪ Al+2) ∩ δ(s) = P̂ and |P̂| = 1
2d(s).
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C4-obstacles

C4-obstacle rests C4-obstacle after a k-allowed splitting off

A partition A = {A1, . . . ,A4} of V is called a C4-obstacle of Ĝ if

1 d(Ai) = k for i = 1, . . . , 4,
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3 ∃l ∈ {1, 2}, P̂ ∈ P̂ s.t. δ(Al ∪ Al+2) ∩ δ(s) = P̂ and |P̂| = 1
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C6-obstacles

Definition

A partition A = {A1, . . . ,A6} of V is called a C6-obstacle of Ĝ if

1 d(Ai) = k, d(s,Ai) = 1, d(Ai ∪ Ai+1) = k + 1 for i = 1, . . . , 6,

2 ∃F ⊆ E s.t. k − |F| 6= 1 is odd and F = δ(Aj ) ∩ δ(Al ) for all distinct
non consecutive Aj and Al ,

3 ∃ distinct P̂j ∈ P̂ s.t. δ(Aj ∪ Aj+3) ∩ δ(s) = P̂j for j = 1, 2, 3.
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A4
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C6-obstacles

C6-obstacle becomes C4-obstacle after a k-allowed splitting off
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Proof of the splitting theorem

1 Let G be the hypergraph obtained from Ĝ by performing any longest
sequence of allowed splittings.

2 G contains an admissible pair (otherwise, d
Ĝ
(s) ≥ 2ck(Ĝ − s)).

3 G contains a C4-obstacle and dG (s) = 4 (otherwise, ∃st that belongs

to ≥ d(s)
2 distinct admissible pairs, so to an allowed pair).

4 For every split edge e, G e contains an obstacle.

5 There exist two split edges e and f in G and an allowed pair su, sv in
G e,f such that G

e,f
uv contains no obstacle.
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Proof of the splitting theorem

5 There exist two split edges e and f in G and an allowed pair su, sv in
G e,f such that G

e,f
uv contains no obstacle.

Case 1 : For every split edge e, G e contains a C4-obstacle.
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Proof of the splitting theorem

5 There exist two split edges e and f in G and an allowed pair su, sv in
G e,f such that G

e,f
uv contains no obstacle.

Case 2 : For a split edge e, G e contains a C6-obstacle.
Then G e contains a split edge f = wz .
Case a : w and z belongs to different Ai ’s.
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Proof of the augmentation theorem

Lemma
1 Every optimal extension of (G,P) contains an obstacle if and only if

G contains a configuration.

2 Φ ≤ OPT and if equality holds, then no configuration exists.

3 OPT ≤ Φ + 1 and if no configuration exists, then strict inequality

holds.
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Thank you for your attention !

Z. Szigeti (G-SCOP, Grenoble) Hypergraph Edge-Connectivity November 2009 20 / 20


	Edge-connectivity Augmentation
	Graphs
	Hypergraphs
	Graph with partition constraint
	Hypergraph with partition constraint
	General method
	Optimal extension
	How to find an optimal extension
	Splitting off
	Splitting off theorem
	Obstacles
	Proof of the splitting theorem
	Proof of the augmentation theorem

