Partition Constrained Edge-Connectivity Augmentation of a Hypergraph

Zoltán Szigeti

Laboratoire G-SCOP Grenoble INP, France

November 2009

Edge-connectivity Augmentation Problems

- 2 Results
- General Method
- Ideas of the Proof

Edge-connectivity Augmentation

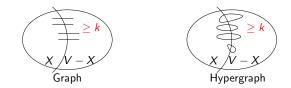
Definition

A (hyper)graph G is called k-edge-connected if each cut contains at least k (hyper)edges.

Edge-connectivity Augmentation

Definition

A (hyper)graph G is called k-edge-connected if each cut contains at least k (hyper)edges.



Problems to be considered

- Edge-connectivity augmentation of a graph
- Edge-connectivity augmentation of a hypergraph
- Partition constrained edge-connectivity augmentation of a graph
- Partition constrained edge-connectivity augmentation of a hypergraph

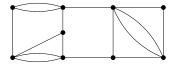
Edge-connectivity augmentation of a graph

Given a graph G and an integer $k \ge 2$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Minimax theorem (Watanabe, Nakamura (1987))

 $\gamma = \alpha_k(G) := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \text{ subpartition of } V(G) \}.$

Polynomially solvable (Cai, Sun (1989))



Graph
$$G, k = 4$$

(

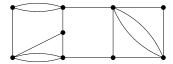
Edge-connectivity augmentation of a graph

Given a graph G and an integer $k \ge 2$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Minimax theorem (Watanabe, Nakamura (1987))

$$\gamma = \alpha_k(G) := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \text{ subpartition of } V(G) \}.$$

Polynomially solvable (Cai, Sun (1989))



Graph
$$G, k = 4$$

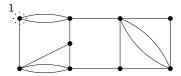
Edge-connectivity augmentation of a graph

Given a graph G and an integer $k \ge 2$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Minimax theorem (Watanabe, Nakamura (1987))

$$\gamma = \alpha_k(G) := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \text{ subpartition of } V(G) \}.$$

Polynomially solvable (Cai, Sun (1989))



Graph
$$G, k = 4$$

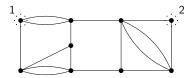
Edge-connectivity augmentation of a graph

Given a graph G and an integer $k \ge 2$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Minimax theorem (Watanabe, Nakamura (1987))

 $\boldsymbol{\gamma} = \alpha_k(G) := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \text{ subpartition of } V(G) \}.$

Polynomially solvable (Cai, Sun (1989))



Graph
$$G, k = 4$$

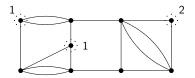
Edge-connectivity augmentation of a graph

Given a graph G and an integer $k \ge 2$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Minimax theorem (Watanabe, Nakamura (1987))

$$\gamma = \alpha_k(G) := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \text{ subpartition of } V(G) \}.$$

Polynomially solvable (Cai, Sun (1989))



Graph
$$G, k = 4$$

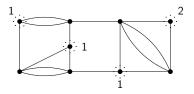
Edge-connectivity augmentation of a graph

Given a graph G and an integer $k \ge 2$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Minimax theorem (Watanabe, Nakamura (1987))

$$\gamma = \alpha_k(G) := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \text{ subpartition of } V(G) \}.$$

Polynomially solvable (Cai, Sun (1989))



Graph G, k = 4

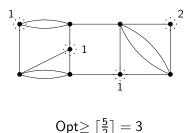
Edge-connectivity augmentation of a graph

Given a graph G and an integer $k \ge 2$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Minimax theorem (Watanabe, Nakamura (1987))

$$\boldsymbol{\gamma} = \alpha_k(G) := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \text{ subpartition of } V(G) \}.$$

Polynomially solvable (Cai, Sun (1989))



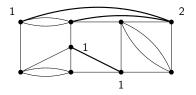
Edge-connectivity augmentation of a graph

Given a graph G and an integer $k \ge 2$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Minimax theorem (Watanabe, Nakamura (1987))

 $\gamma = \alpha_k(G) := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \text{ subpartition of } V(G) \}.$

Polynomially solvable (Cai, Sun (1989))



Graph G + F is 4-edge-connected and |F| = 3

Z. Szigeti (G-SCOP, Grenoble)

Hypergraph Edge-Connectivity

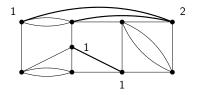
Edge-connectivity augmentation of a graph

Given a graph G and an integer $k \ge 2$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Minimax theorem (Watanabe, Nakamura (1987))

 $\gamma = \alpha_k(G) := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \text{ subpartition of } V(G) \}.$

Polynomially solvable (Cai, Sun (1989))



Graph G + F is 4-edge-connected and |F| = 3

Z. Szigeti (G-SCOP, Grenoble)

Hypergraph Edge-Connectivity

Edge-connectivity augmentation of a hypergraph

Given a hypergraph G and an integer $k \ge 1$, what is the minimum number γ of new graph edges whose addition results in a *k*-edge-connected hypergraph?

Minimax theorem (Bang-Jensen, Jackson (1999))

 $\boldsymbol{\gamma} = \max\{lpha_k(\mathcal{G}), \boldsymbol{c}_k(\mathcal{G})\},$

where $c_k(\mathcal{G}) := \max\{c(\mathcal{G} - \mathcal{H}) - 1 : \mathcal{H} \subseteq E(\mathcal{G}), |\mathcal{H}| \le k - 1\}.$

Edge-connectivity augmentation of a hypergraph

Given a hypergraph G and an integer $k \ge 1$, what is the minimum number γ of new graph edges whose addition results in a *k*-edge-connected hypergraph?

Minimax theorem (Bang-Jensen, Jackson (1999))

 $\boldsymbol{\gamma} = \max\{\alpha_k(\mathcal{G}), c_k(\mathcal{G})\},\$

where $c_k(\mathcal{G}) := \max\{c(\mathcal{G} - \mathcal{H}) - 1 : \mathcal{H} \subseteq E(\mathcal{G}), |\mathcal{H}| \le k - 1\}.$

Edge-connectivity augmentation of a hypergraph

Given a hypergraph G and an integer $k \ge 1$, what is the minimum number γ of new graph edges whose addition results in a *k*-edge-connected hypergraph?

Minimax theorem (Bang-Jensen, Jackson (1999))

 $\boldsymbol{\gamma} = \max\{\alpha_k(\mathcal{G}), c_k(\mathcal{G})\},\$

where $c_k(\mathcal{G}) := \max\{c(\mathcal{G} - \mathcal{H}) - 1 : \mathcal{H} \subseteq E(\mathcal{G}), |\mathcal{H}| \le k - 1\}.$

Edge-connectivity augmentation of a hypergraph

Given a hypergraph G and an integer $k \ge 1$, what is the minimum number γ of new graph edges whose addition results in a *k*-edge-connected hypergraph?

Minimax theorem (Bang-Jensen, Jackson (1999))

 $\boldsymbol{\gamma} = \max\{\alpha_k(\mathcal{G}), c_k(\mathcal{G})\},\$

where $c_k(\mathcal{G}) := \max\{c(\mathcal{G} - \mathcal{H}) - 1 : \mathcal{H} \subseteq E(\mathcal{G}), |\mathcal{H}| \le k - 1\}.$

Edge-connectivity augmentation of a hypergraph

Given a hypergraph G and an integer $k \ge 1$, what is the minimum number γ of new graph edges whose addition results in a *k*-edge-connected hypergraph?

Minimax theorem (Bang-Jensen, Jackson (1999))

 $\boldsymbol{\gamma} = \max\{\alpha_k(\mathcal{G}), c_k(\mathcal{G})\},\$

where $c_k(\mathcal{G}) := \max\{c(\mathcal{G} - \mathcal{H}) - 1 : \mathcal{H} \subseteq E(\mathcal{G}), |\mathcal{H}| \le k - 1\}.$

Edge-connectivity augmentation of a hypergraph

Given a hypergraph G and an integer $k \ge 1$, what is the minimum number γ of new graph edges whose addition results in a *k*-edge-connected hypergraph?

Minimax theorem (Bang-Jensen, Jackson (1999))

 $\boldsymbol{\gamma} = \max\{\alpha_k(\mathcal{G}), c_k(\mathcal{G})\},\$

where $c_k(\mathcal{G}) := \max\{c(\mathcal{G} - \mathcal{H}) - 1 : \mathcal{H} \subseteq E(\mathcal{G}), |\mathcal{H}| \le k - 1\}.$

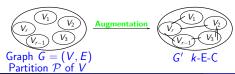
Partition constrained edge-connectivity augmentation of a graph

Given a graph G, a partition \mathcal{P} of V(G) and an integer $k \ge 2$, what is the minimum number γ of new edges, between different members of \mathcal{P} , whose addition results in a k-edge-connected graph?

Minimax theorem (Bang-Jensen, Gabow, Jordán, Szigeti (1999))

if G contains no C_4 - and no C_6 -configuration, $\phi + 1$ otherwise,

where $\Phi := \max\{\alpha_k(G), \beta_k(G, \mathcal{P})\}\$ and $\beta_k(G, \mathcal{P}) := \max\{\sum_{Y \in \mathcal{Y}} (k - d(Y)) : \mathcal{Y} \text{ subpartition of } P_j, P_j \in \mathcal{P}\}.$



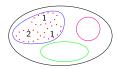
Partition constrained edge-connectivity augmentation of a graph

Given a graph G, a partition \mathcal{P} of V(G) and an integer $k \geq 2$, what is the minimum number γ of new edges, between different members of \mathcal{P} , whose addition results in a k-edge-connected graph?

Minimax theorem (Bang-Jensen, Gabow, Jordán, Szigeti (1999))

$$\begin{cases} \Phi & \text{if } G \text{ contains no } C_4\text{- and no } C_6\text{-configuration,} \\ \Phi + 1 & \text{otherwise,} \end{cases}$$

where $\Phi := \max\{\alpha_k(G), \beta_k(G, \mathcal{P})\}\)$ and $\beta_k(G, \mathcal{P}) := \max\{\sum_{Y \in \mathcal{Y}} (k - d(Y)) : \mathcal{Y} \text{ subpartition of } P_j, P_j \in \mathcal{P}\}.$



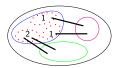
Partition constrained edge-connectivity augmentation of a graph

Given a graph G, a partition \mathcal{P} of V(G) and an integer $k \geq 2$, what is the minimum number γ of new edges, between different members of \mathcal{P} , whose addition results in a k-edge-connected graph?

Minimax theorem (Bang-Jensen, Gabow, Jordán, Szigeti (1999))

$$\begin{cases} \Phi & \text{if } G \text{ contains no } C_4\text{- and no } C_6\text{-configuration,} \\ \Phi + 1 & \text{otherwise,} \end{cases}$$

where $\Phi := \max\{\alpha_k(G), \beta_k(G, \mathcal{P})\}\)$ and $\beta_k(G, \mathcal{P}) := \max\{\sum_{Y \in \mathcal{Y}} (k - d(Y)) : \mathcal{Y} \text{ subpartition of } P_j, P_j \in \mathcal{P}\}.$



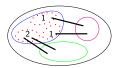
Partition constrained edge-connectivity augmentation of a graph

Given a graph G, a partition \mathcal{P} of V(G) and an integer $k \geq 2$, what is the minimum number γ of new edges, between different members of \mathcal{P} , whose addition results in a k-edge-connected graph?

Minimax theorem (Bang-Jensen, Gabow, Jordán, Szigeti (1999))

 $\boldsymbol{\gamma} = \begin{cases} \Phi & \text{if } G \text{ contains no } C_4\text{- and no } C_6\text{-configuration,} \\ \Phi + 1 & \text{otherwise,} \end{cases}$

where $\Phi := \max\{\alpha_k(G), \beta_k(G, \mathcal{P})\}\)$ and $\beta_k(G, \mathcal{P}) := \max\{\sum_{Y \in \mathcal{Y}} (k - d(Y)) : \mathcal{Y} \text{ subpartition of } P_j, P_j \in \mathcal{P}\}.$



Given a hypergraph \mathcal{G} , a partition \mathcal{P} of $V(\mathcal{G})$ and an integer $k \geq 1$, what is the minimum number γ of new graph edges, between different members of \mathcal{P} , whose addition results in a *k*-edge-connected hypergraph?

Minimax theorem (Bernáth, Grappe, Szigeti (2009))

 $= \begin{cases} \varPhi & \text{if } \mathcal{G} \text{ contains no } \mathcal{C}_{4}\text{- and no } \mathcal{C}_{6}\text{-configuration,} \\ \varPhi + 1 & \text{otherwise,} \end{cases}$

where $\Phi := \max\{\alpha_k(\mathcal{G}), c_k(\mathcal{G}), \beta_k(\mathcal{G}, \mathcal{P})\}.$

Polynomially solvable (Bernáth, Grappe, Szigeti (2009))

Given a hypergraph \mathcal{G} , a partition \mathcal{P} of $V(\mathcal{G})$ and an integer $k \geq 1$, what is the minimum number γ of new graph edges, between different members of \mathcal{P} , whose addition results in a *k*-edge-connected hypergraph?

Minimax theorem (Bernáth, Grappe, Szigeti (2009))

 $oldsymbol{\gamma} = egin{cases} \Phi & ext{if } \mathcal{G} ext{ contains no } \mathcal{C}_4 ext{- and no } \mathcal{C}_6 ext{-configuration,} \ \Phi + 1 & ext{otherwise,} \end{cases}$

where $\Phi := \max\{\alpha_k(\mathcal{G}), c_k(\mathcal{G}), \beta_k(\mathcal{G}, \mathcal{P})\}.$

Polynomially solvable (Bernáth, Grappe, Szigeti (2009))

Given a hypergraph \mathcal{G} , a partition \mathcal{P} of $V(\mathcal{G})$ and an integer $k \geq 1$, what is the minimum number γ of new graph edges, between different members of \mathcal{P} , whose addition results in a *k*-edge-connected hypergraph?

Minimax theorem (Bernáth, Grappe, Szigeti (2009))

 $oldsymbol{\gamma} = egin{cases} \Phi & ext{if } \mathcal{G} ext{ contains no } \mathcal{C}_4 ext{- and no } \mathcal{C}_6 ext{-configuration,} \ \Phi + 1 & ext{otherwise,} \end{cases}$

where $\Phi := \max\{\alpha_k(\mathcal{G}), c_k(\mathcal{G}), \beta_k(\mathcal{G}, \mathcal{P})\}.$

Polynomially solvable (Bernáth, Grappe, Szigeti (2009))

Given a hypergraph \mathcal{G} , a partition \mathcal{P} of $V(\mathcal{G})$ and an integer $k \geq 1$, what is the minimum number γ of new graph edges, between different members of \mathcal{P} , whose addition results in a *k*-edge-connected hypergraph?

Minimax theorem (Bernáth, Grappe, Szigeti (2009))

 $oldsymbol{\gamma} = egin{cases} \Phi & ext{if } \mathcal{G} ext{ contains no } \mathcal{C}_4 ext{- and no } \mathcal{C}_6 ext{-configuration,} \ \Phi + 1 & ext{otherwise,} \end{cases}$

where $\Phi := \max\{\alpha_k(\mathcal{G}), c_k(\mathcal{G}), \beta_k(\mathcal{G}, \mathcal{P})\}.$

Polynomially solvable (Bernáth, Grappe, Szigeti (2009))

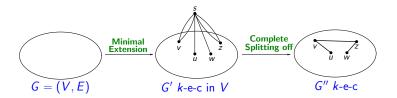
Ben Cosh (2000) solved the special case of bipartition.

Minimal extension,

(i) Add a new vertex *s*,

- Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
- iii) If the degree of s is odd, then add an arbitrary edge incident to s

Occupiete Splitting off.

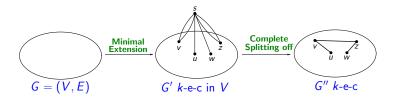


Minimal extension,

(i) Add a new vertex *s*,

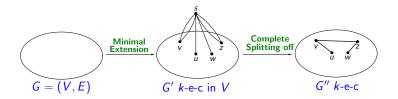
 (ii) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,

iii) If the degree of s is odd, then add an arbitrary edge incident to s.



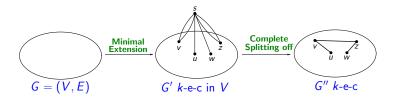
Minimal extension,

- (i) Add a new vertex s,
- ii) Add a minimum number of new edges incident to *s* to satisfy the edge-connectivity requirements,
- iii) If the degree of *s* is odd, then add an arbitrary edge incident to *s*.



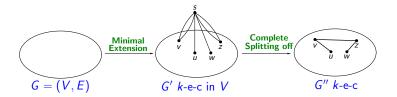
Minimal extension,

- (i) Add a new vertex s,
- (ii) Add a minimum number of new edges incident to *s* to satisfy the edge-connectivity requirements,
 - ii) If the degree of *s* is odd, then add an arbitrary edge incident to *s*.



Minimal extension,

- (i) Add a new vertex s,
- (ii) Add a minimum number of new edges incident to *s* to satisfy the edge-connectivity requirements,
- (iii) If the degree of s is odd, then add an arbitrary edge incident to s.

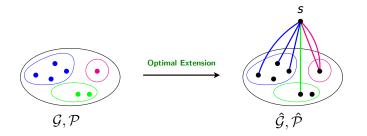


Optimal extension

Definion : Given $\mathcal{G} = (V, \mathcal{E})$, partition \mathcal{P} of V, integer k,

optimal extension : $\hat{\mathcal{G}} = (V + s, \mathcal{E} + \delta(s)), \ \hat{\mathcal{P}} = \{\delta_{\hat{\mathcal{G}}}(s) \cap \delta_{\hat{\mathcal{G}}}(P) : P \in \mathcal{P}\}$

- $\hat{\mathcal{G}}$ is *k*-edge-connected in *V*,
- **2** $\delta_{\hat{G}}(s)$ consists of 2Φ graph edges,
- $\ \ \, {\bf 3} \ \ \, |\hat{P}|\leq {\textstyle\frac{1}{2}}d_{\hat{\mathcal{G}}}(s) \ {\rm for \ all} \ \, \hat{P}\in \hat{\mathcal{P}}.$

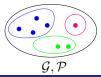


How to find an optimal extension

Algorithm :

- Apply Frank's minimal extension to find $(V + s, \mathcal{E} + \delta(s))$ k-edge-connected in V and d(s) is even. $(d(s) = 2\alpha_k(\mathcal{G}))$.
- 2 Add edges incident to s so that $d(s) = \max\{2\alpha_k(\mathcal{G}), 2c_k(\mathcal{G})\}$.
- Some P ∈ P satisfies $d(s, P) > \frac{d(s)}{2}$, then If $\exists su \in \delta(s), u \in P, X_u \nsubseteq P$, replace su by su', u' ∈ X_u − P. Repeat 3. Otherwise, add 2d(s, P) - d(s) edges between s and V − P.

• Let $\hat{\mathcal{G}}$ be the resulting hypergraph and $\hat{\mathcal{P}} = \{\delta_{\hat{\mathcal{G}}}(s) \cap \delta_{\hat{\mathcal{G}}}(P) : P \in \mathcal{P}\}.$

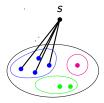


How to find an optimal extension

Algorithm :

- Apply Frank's minimal extension to find $(V + s, \mathcal{E} + \delta(s))$ k-edge-connected in V and d(s) is even. $(d(s) = 2\alpha_k(\mathcal{G}))$
- 2 Add edges incident to s so that $d(s) = \max\{2\alpha_k(\mathcal{G}), 2c_k(\mathcal{G})\}$.
- Some P ∈ P satisfies $d(s, P) > \frac{d(s)}{2}$, then If $\exists su \in \delta(s), u \in P, X_u \nsubseteq P$, replace su by su', u' ∈ X_u − P. Repeat 3. Otherwise, add 2d(s, P) - d(s) edges between s and V − P.

• Let $\hat{\mathcal{G}}$ be the resulting hypergraph and $\hat{\mathcal{P}} = \{\delta_{\hat{\mathcal{G}}}(s) \cap \delta_{\hat{\mathcal{G}}}(P) : P \in \mathcal{P}\}.$

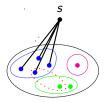


How to find an optimal extension

Algorithm :

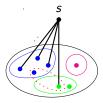
- Apply Frank's minimal extension to find $(V + s, \mathcal{E} + \delta(s))$ k-edge-connected in V and d(s) is even. $(d(s) = 2\alpha_k(\mathcal{G}))$
- 2 Add edges incident to s so that $d(s) = \max\{2\alpha_k(\mathcal{G}), 2c_k(\mathcal{G})\}$.
- Some P ∈ P satisfies $d(s, P) > \frac{d(s)}{2}$, then If $\exists su \in \delta(s), u \in P, X_u \nsubseteq P$, replace su by su', u' ∈ X_u − P. Repeat 3. Otherwise, add 2d(s, P) - d(s) edges between s and V − P.

• Let $\hat{\mathcal{G}}$ be the resulting hypergraph and $\hat{\mathcal{P}} = \{\delta_{\hat{\mathcal{G}}}(s) \cap \delta_{\hat{\mathcal{G}}}(P) : P \in \mathcal{P}\}.$



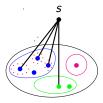
Algorithm :

- Apply Frank's minimal extension to find $(V + s, \mathcal{E} + \delta(s))$ k-edge-connected in V and d(s) is even. $(d(s) = 2\alpha_k(\mathcal{G}))$.
- 2 Add edges incident to s so that $d(s) = \max\{2\alpha_k(\mathcal{G}), 2c_k(\mathcal{G})\}$.
- Some P ∈ P satisfies $d(s, P) > \frac{d(s)}{2}$, then If $\exists su \in \delta(s), u \in P, X_u \nsubseteq P$, replace su by su', u' ∈ X_u − P. Repeat 3. Otherwise, add 2d(s, P) - d(s) edges between s and V − P.



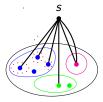
Algorithm :

- Apply Frank's minimal extension to find $(V + s, \mathcal{E} + \delta(s))$ k-edge-connected in V and d(s) is even. $(d(s) = 2\alpha_k(\mathcal{G}))$
- 2 Add edges incident to s so that $d(s) = \max\{2\alpha_k(\mathcal{G}), 2c_k(\mathcal{G})\}$.
- Some P ∈ P satisfies $d(s, P) > \frac{d(s)}{2}$, then If $\exists su \in \delta(s), u \in P, X_u \nsubseteq P$, replace su by su', u' ∈ X_u − P. Repeat 3. Otherwise, add 2d(s, P) - d(s) edges between s and V − P.



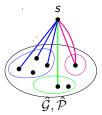
Algorithm :

- Apply Frank's minimal extension to find $(V + s, \mathcal{E} + \delta(s))$ k-edge-connected in V and d(s) is even. $(d(s) = 2\alpha_k(\mathcal{G}))$
- 2 Add edges incident to s so that $d(s) = \max\{2\alpha_k(\mathcal{G}), 2c_k(\mathcal{G})\}$.
- Some P ∈ P satisfies $d(s, P) > \frac{d(s)}{2}$, then If $\exists su \in \delta(s), u \in P, X_u \nsubseteq P$, replace su by su', u' ∈ X_u − P. Repeat 3. Otherwise, add 2d(s, P) - d(s) edges between s and V − P.



Algorithm :

- Apply Frank's minimal extension to find $(V + s, \mathcal{E} + \delta(s))$ k-edge-connected in V and d(s) is even. $(d(s) = 2\alpha_k(\mathcal{G}))$.
- 2 Add edges incident to s so that $d(s) = \max\{2\alpha_k(\mathcal{G}), 2c_k(\mathcal{G})\}$.
- Some P ∈ P satisfies $d(s, P) > \frac{d(s)}{2}$, then If $\exists su \in \delta(s), u \in P, X_u \nsubseteq P$, replace su by su', u' ∈ X_u − P. Repeat 3. Otherwise, add 2d(s, P) - d(s) edges between s and V − P.



Splitting off

Definitions

Definitions

A splitting off is

- **k**-admissible if $\hat{\mathcal{G}}_{uv}$ is k edge-connected in V,
- 2 rainbow if the edges are of different colors and $|\hat{P}| \leq \frac{1}{2}d_{\hat{\mathcal{G}}}(s)$ for all $\hat{P} \in \hat{\mathcal{P}}$ remains valid,
- k-allowed if it is k-admissible and rainbow.

Splitting off theorem

Theorem (Bernáth, Grappe, Szigeti (2009))

Let $\hat{\mathcal{G}} = (V + s, \mathcal{E} + \delta(s))$ be a hypergraph, where $\delta(s)$ consists of graph edges, and $\hat{\mathcal{P}}$ a partition of $\delta(s)$. There is a complete *k*-admissible rainbow (*k*-allowed) splitting off in $\hat{\mathcal{G}}$ if and only if

• $\hat{\mathcal{G}}$ is *k*-edge-connected in *V*,

②
$$d_{\hat{G}}(s) \geq 2c_k(\hat{\mathcal{G}}-s)$$
 is even,

$$ullet$$
 $|\hat{P}| \leq rac{1}{2} d_{\hat{\mathcal{G}}}(s)$ for all $\hat{P} \in \hat{\mathcal{P}}$ and

• $\hat{\mathcal{G}}$ contains no obstacle.

Splitting off theorem

Theorem (Bernáth, Grappe, Szigeti (2009))

Let $\hat{\mathcal{G}} = (V + s, \mathcal{E} + \delta(s))$ be a hypergraph, where $\delta(s)$ consists of graph edges, and $\hat{\mathcal{P}}$ a partition of $\delta(s)$. There is a complete *k*-admissible rainbow (*k*-allowed) splitting off in $\hat{\mathcal{G}}$ if and only if

• $\hat{\mathcal{G}}$ is *k*-edge-connected in *V*,

②
$$d_{\hat{\mathcal{G}}}(s) \geq 2c_k(\hat{\mathcal{G}}-s)$$
 is even,

$$old P \mid \hat{P} \mid \leq rac{1}{2} d_{\hat{\mathcal{G}}}(s)$$
 for all $\hat{P} \in \hat{\mathcal{P}}$ and

• $\hat{\mathcal{G}}$ contains no obstacle.

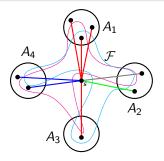
Definition

A partition
$$\mathcal{A} = \{A_1, \dots, A_4\}$$
 of V is called a \mathcal{C}_4 -obstacle of $\hat{\mathcal{G}}$ if

1
$$d(A_i) = k$$
 for $i = 1, ..., 4$,

2 $\exists \mathcal{F} \subseteq \mathcal{E} \text{ s.t. } k - |\mathcal{F}| \neq 1 \text{ is odd and } \mathcal{F} = \delta(A_i) \cap \delta(A_{i+2}) \text{ for } i = 1, 2,$

 $\ \ \, \Im \ \ \, \exists I\in\{1,2\}, \ \hat{P}\in\hat{\mathcal{P}} \ \, \text{s.t.} \ \, \delta(A_I\cup A_{I+2})\cap\delta(s)=\hat{P} \ \, \text{and} \ \, |\hat{P}|=\frac{1}{2}d(s).$



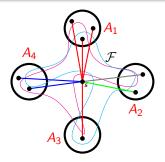
Definition

A partition
$$\mathcal{A} = \{A_1, \dots, A_4\}$$
 of V is called a \mathcal{C}_4 -obstacle of $\hat{\mathcal{G}}$ if

1
$$d(A_i) = k$$
 for $i = 1, ..., 4$,

2 $\exists \mathcal{F} \subseteq \mathcal{E} \text{ s.t. } k - |\mathcal{F}| \neq 1 \text{ is odd and } \mathcal{F} = \delta(A_i) \cap \delta(A_{i+2}) \text{ for } i = 1, 2,$

 $\ \ \, \Im \ \ \, \exists I\in\{1,2\}, \ \hat{P}\in\hat{\mathcal{P}} \ \, \text{s.t.} \ \, \delta(A_I\cup A_{I+2})\cap\delta(s)=\hat{P} \ \, \text{and} \ \, |\hat{P}|=\frac{1}{2}d(s).$



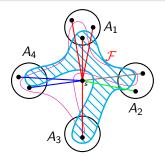
Definition

A partition
$$\mathcal{A} = \{A_1, \dots, A_4\}$$
 of V is called a \mathcal{C}_4 -obstacle of $\hat{\mathcal{G}}$ if

1
$$d(A_i) = k$$
 for $i = 1, ..., 4$,

2 $\exists \mathcal{F} \subseteq \mathcal{E} \text{ s.t. } k - |\mathcal{F}| \neq 1 \text{ is odd and } \mathcal{F} = \delta(A_i) \cap \delta(A_{i+2}) \text{ for } i = 1, 2,$

 $\Im \ \exists l \in \{1,2\}, \ \hat{P} \in \hat{\mathcal{P}} \text{ s.t. } \delta(A_l \cup A_{l+2}) \cap \delta(s) = \hat{P} \text{ and } |\hat{P}| = \frac{1}{2}d(s).$



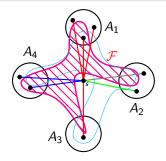
Definition

A partition
$$\mathcal{A} = \{A_1, \dots, A_4\}$$
 of V is called a \mathcal{C}_4 -obstacle of $\hat{\mathcal{G}}$ if

1
$$d(A_i) = k$$
 for $i = 1, ..., 4$,

2 $\exists \mathcal{F} \subseteq \mathcal{E} \text{ s.t. } k - |\mathcal{F}| \neq 1 \text{ is odd and } \mathcal{F} = \delta(A_i) \cap \delta(A_{i+2}) \text{ for } i = 1, 2,$

 $\Im \ \exists l \in \{1,2\}, \ \hat{P} \in \hat{\mathcal{P}} \text{ s.t. } \delta(A_l \cup A_{l+2}) \cap \delta(s) = \hat{P} \text{ and } |\hat{P}| = \frac{1}{2}d(s).$



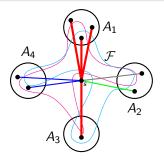
Definition

A partition $\mathcal{A} = \{A_1, \dots, A_4\}$ of V is called a \mathcal{C}_4 -obstacle of $\hat{\mathcal{G}}$ if

1
$$d(A_i) = k$$
 for $i = 1, ..., 4$,

2 $\exists \mathcal{F} \subseteq \mathcal{E} \text{ s.t. } k - |\mathcal{F}| \neq 1 \text{ is odd and } \mathcal{F} = \delta(A_i) \cap \delta(A_{i+2}) \text{ for } i = 1, 2,$

 $\Im \exists I \in \{1,2\}, \ \hat{P} \in \hat{\mathcal{P}} \text{ s.t. } \delta(A_I \cup A_{I+2}) \cap \delta(s) = \hat{P} \text{ and } |\hat{P}| = \frac{1}{2}d(s).$



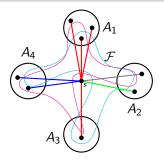
C_4 -obstacle rests C_4 -obstacle after a k-allowed splitting off

A partition $\mathcal{A} = \{A_1, \dots, A_4\}$ of V is called a \mathcal{C}_4 -obstacle of $\hat{\mathcal{G}}$ if

1
$$d(A_i) = k$$
 for $i = 1, ..., 4$,

2 $\exists \mathcal{F} \subseteq \mathcal{E} \text{ s.t. } k - |\mathcal{F}| \neq 1 \text{ is odd and } \mathcal{F} = \delta(A_i) \cap \delta(A_{i+2}) \text{ for } i = 1, 2,$

 $\Im \ \exists I \in \{1,2\}, \ \hat{P} \in \hat{\mathcal{P}} \text{ s.t. } \delta(A_I \cup A_{I+2}) \cap \delta(s) = \hat{P} \text{ and } |\hat{P}| = \frac{1}{2}d(s).$



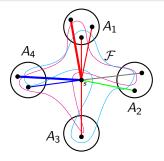
C_4 -obstacle rests C_4 -obstacle after a k-allowed splitting off

A partition $\mathcal{A} = \{A_1, \dots, A_4\}$ of V is called a \mathcal{C}_4 -obstacle of $\hat{\mathcal{G}}$ if

1
$$d(A_i) = k$$
 for $i = 1, ..., 4$,

2 $\exists \mathcal{F} \subseteq \mathcal{E} \text{ s.t. } k - |\mathcal{F}| \neq 1 \text{ is odd and } \mathcal{F} = \delta(A_i) \cap \delta(A_{i+2}) \text{ for } i = 1, 2,$

 $\Im \ \exists I \in \{1,2\}, \ \hat{P} \in \hat{\mathcal{P}} \text{ s.t. } \delta(A_I \cup A_{I+2}) \cap \delta(s) = \hat{P} \text{ and } |\hat{P}| = \frac{1}{2}d(s).$



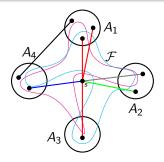
C_4 -obstacle rests C_4 -obstacle after a k-allowed splitting off

A partition $\mathcal{A} = \{A_1, \dots, A_4\}$ of V is called a \mathcal{C}_4 -obstacle of $\hat{\mathcal{G}}$ if

1
$$d(A_i) = k$$
 for $i = 1, ..., 4$,

2 $\exists \mathcal{F} \subseteq \mathcal{E} \text{ s.t. } k - |\mathcal{F}| \neq 1 \text{ is odd and } \mathcal{F} = \delta(A_i) \cap \delta(A_{i+2}) \text{ for } i = 1, 2,$

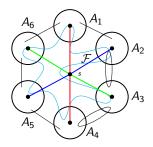
 $\Im \ \exists I \in \{1,2\}, \ \hat{P} \in \hat{\mathcal{P}} \text{ s.t. } \delta(A_I \cup A_{I+2}) \cap \delta(s) = \hat{P} \text{ and } |\hat{P}| = \frac{1}{2}d(s).$



Definition

$$\ \, \bullet \ \, d(A_i)=k, \ \, d(s,A_i)=1, \ \, d(A_i\cup A_{i+1})=k+1 \ \, {\rm for} \ \, i=1,\ldots,6,$$

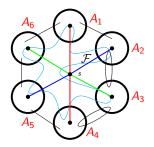
- ② $\exists \mathcal{F} \subseteq \mathcal{E} \text{ s.t. } k |\mathcal{F}| \neq 1 \text{ is odd and } \mathcal{F} = \delta(A_j) \cap \delta(A_l) \text{ for all distinct non consecutive } A_j \text{ and } A_l$,
- **③** ∃ distinct $\hat{P}_j \in \hat{\mathcal{P}}$ s.t. $\delta(A_j \cup A_{j+3}) \cap \delta(s) = \hat{P}_j$ for j = 1, 2, 3.



Definition

$$\ \, {\bf 0} \ \, d({\it A}_i)=k, \ \, d(s,{\it A}_i)=1, \ \, d({\it A}_i\cup{\it A}_{i+1})=k+1 \ \, {\rm for} \ \, i=1,\ldots,6,$$

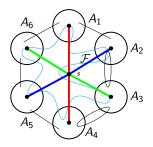
- ② ∃ $\mathcal{F} \subseteq \mathcal{E}$ s.t. $k |\mathcal{F}| \neq 1$ is odd and $\mathcal{F} = \delta(A_j) \cap \delta(A_l)$ for all distinct non consecutive A_j and A_l ,
- **③** ∃ distinct $\hat{P}_j \in \hat{\mathcal{P}}$ s.t. $\delta(A_j \cup A_{j+3}) \cap \delta(s) = \hat{P}_j$ for j = 1, 2, 3.



Definition

1
$$d(A_i) = k, d(s, A_i) = 1, d(A_i \cup A_{i+1}) = k+1$$
 for $i = 1, ..., 6$,

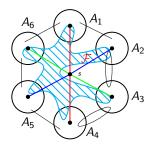
- ② ∃ $\mathcal{F} \subseteq \mathcal{E}$ s.t. $k |\mathcal{F}| \neq 1$ is odd and $\mathcal{F} = \delta(A_j) \cap \delta(A_l)$ for all distinct non consecutive A_j and A_l ,
- **③** ∃ distinct $\hat{P}_j \in \hat{\mathcal{P}}$ s.t. $\delta(A_j \cup A_{j+3}) \cap \delta(s) = \hat{P}_j$ for j = 1, 2, 3.



Definition

$$\ \, \bullet \ \, d(A_i)=k, \ \, d(s,A_i)=1, \ \, d(A_i\cup A_{i+1})=k+1 \ \, {\rm for} \ \, i=1,\ldots,6,$$

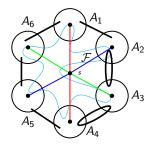
- ② ∃ $\mathcal{F} \subseteq \mathcal{E}$ s.t. $k |\mathcal{F}| \neq 1$ is odd and $\mathcal{F} = \delta(A_j) \cap \delta(A_l)$ for all distinct non consecutive A_j and A_l ,
- **③** ∃ distinct $\hat{P}_j \in \hat{\mathcal{P}}$ s.t. $\delta(A_j \cup A_{j+3}) \cap \delta(s) = \hat{P}_j$ for j = 1, 2, 3.



Definition

$$\ \, \bullet \ \, d(A_i)=k, \ \, d(s,A_i)=1, \ \, d(A_i\cup A_{i+1})=k+1 \ \, {\rm for} \ \, i=1,\ldots,6, \\$$

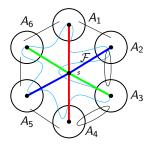
- ② ∃ $\mathcal{F} \subseteq \mathcal{E}$ s.t. $k |\mathcal{F}| \neq 1$ is odd and $\mathcal{F} = \delta(A_j) \cap \delta(A_l)$ for all distinct non consecutive A_j and A_l ,
- **③** ∃ distinct $\hat{P}_j \in \hat{\mathcal{P}}$ s.t. $\delta(A_j \cup A_{j+3}) \cap \delta(s) = \hat{P}_j$ for j = 1, 2, 3.



Definition

$$\ \, \bullet \ \, d(A_i)=k, \ \, d(s,A_i)=1, \ \, d(A_i\cup A_{i+1})=k+1 \ \, {\rm for} \ \, i=1,\ldots,6,$$

- ② $\exists \mathcal{F} \subseteq \mathcal{E} \text{ s.t. } k |\mathcal{F}| \neq 1 \text{ is odd and } \mathcal{F} = \delta(A_j) \cap \delta(A_l) \text{ for all distinct non consecutive } A_j \text{ and } A_l$,
- **③** ∃ distinct $\hat{P}_j \in \hat{\mathcal{P}}$ s.t. $\delta(A_j \cup A_{j+3}) \cap \delta(s) = \hat{P}_j$ for j = 1, 2, 3.



C_6 -obstacle becomes C_4 -obstacle after a k-allowed splitting off

1
$$d(A_i) = k, d(s, A_i) = 1, d(A_i \cup A_{i+1}) = k+1$$
 for $i = 1, ..., 6$,

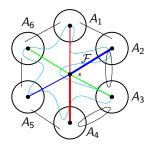
- ② ∃ $\mathcal{F} \subseteq \mathcal{E}$ s.t. $k |\mathcal{F}| \neq 1$ is odd and $\mathcal{F} = \delta(A_j) \cap \delta(A_l)$ for all distinct non consecutive A_j and A_l ,
- **③** ∃ distinct $\hat{P}_j \in \hat{\mathcal{P}}$ s.t. $\delta(A_j \cup A_{j+3}) \cap \delta(s) = \hat{P}_j$ for j = 1, 2, 3.



C_6 -obstacle becomes C_4 -obstacle after a k-allowed splitting off

1
$$d(A_i) = k, d(s, A_i) = 1, d(A_i \cup A_{i+1}) = k+1$$
 for $i = 1, ..., 6$,

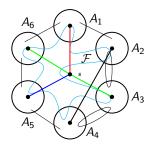
- ② ∃ $\mathcal{F} \subseteq \mathcal{E}$ s.t. $k |\mathcal{F}| \neq 1$ is odd and $\mathcal{F} = \delta(A_j) \cap \delta(A_l)$ for all distinct non consecutive A_j and A_l ,
- **③** ∃ distinct $\hat{P}_j \in \hat{\mathcal{P}}$ s.t. $\delta(A_j \cup A_{j+3}) \cap \delta(s) = \hat{P}_j$ for j = 1, 2, 3.



C_6 -obstacle becomes C_4 -obstacle after a k-allowed splitting off

1
$$d(A_i) = k, d(s, A_i) = 1, d(A_i \cup A_{i+1}) = k+1$$
 for $i = 1, ..., 6$,

- ② ∃ $\mathcal{F} \subseteq \mathcal{E}$ s.t. $k |\mathcal{F}| \neq 1$ is odd and $\mathcal{F} = \delta(A_j) \cap \delta(A_l)$ for all distinct non consecutive A_j and A_l ,
- **③** ∃ distinct $\hat{P}_j \in \hat{\mathcal{P}}$ s.t. $\delta(A_j \cup A_{j+3}) \cap \delta(s) = \hat{P}_j$ for j = 1, 2, 3.

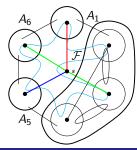


\mathcal{C}_6 -obstacle becomes \mathcal{C}_4 -obstacle after a k-allowed splitting off

A partition $\mathcal{A} = \{A_1, \dots, A_6\}$ of V is called a \mathcal{C}_6 -obstacle of $\hat{\mathcal{G}}$ if

1
$$d(A_i) = k, d(s, A_i) = 1, d(A_i \cup A_{i+1}) = k+1$$
 for $i = 1, ..., 6$,

- ② ∃ $\mathcal{F} \subseteq \mathcal{E}$ s.t. $k |\mathcal{F}| \neq 1$ is odd and $\mathcal{F} = \delta(A_j) \cap \delta(A_l)$ for all distinct non consecutive A_j and A_l ,
- **③** ∃ distinct $\hat{P}_j \in \hat{\mathcal{P}}$ s.t. $\delta(A_j \cup A_{j+3}) \cap \delta(s) = \hat{P}_j$ for j = 1, 2, 3.



Z. Szigeti (G-SCOP, Grenoble)

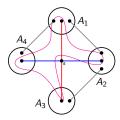
- Let G be the hypergraph obtained from $\hat{\mathcal{G}}$ by performing any longest sequence of allowed splittings.
- 3 G contains an admissible pair (otherwise, $d_{\hat{G}}(s) \ge 2c_k(\hat{G}-s)$).
- ③ *G* contains a C_4 -obstacle and $d_G(s) = 4$ (otherwise, $\exists st$ that belongs to $\geq \frac{d(s)}{2}$ distinct admissible pairs, so to an allowed pair).
- Is For every split edge e, G^e contains an obstacle.
- **③** There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.

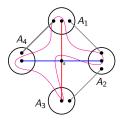
- Let G be the hypergraph obtained from $\hat{\mathcal{G}}$ by performing any longest sequence of allowed splittings.
- 2 G contains an admissible pair (otherwise, $d_{\hat{G}}(s) \ge 2c_k(\hat{\mathcal{G}}-s))$.
- ③ *G* contains a C_4 -obstacle and $d_G(s) = 4$ (otherwise, $\exists st$ that belongs to $\geq \frac{d(s)}{2}$ distinct admissible pairs, so to an allowed pair).
- Is For every split edge e, G^e contains an obstacle.
- **③** There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.

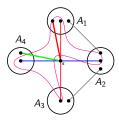
- Let G be the hypergraph obtained from $\hat{\mathcal{G}}$ by performing any longest sequence of allowed splittings.
- 2 G contains an admissible pair (otherwise, $d_{\hat{\mathcal{G}}}(s) \geq 2c_k(\hat{\mathcal{G}}-s))$.
- G contains a C_4 -obstacle and $d_G(s) = 4$ (otherwise, $\exists st$ that belongs to $\geq \frac{d(s)}{2}$ distinct admissible pairs, so to an allowed pair).
- For every split edge e, G^e contains an obstacle.
- There exist two split edges e and f in G and an allowed pair su, sv in G^{e,f} such that G^{e,f}_{uv} contains no obstacle.

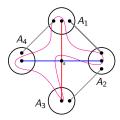
- Let G be the hypergraph obtained from $\hat{\mathcal{G}}$ by performing any longest sequence of allowed splittings.
- 2 G contains an admissible pair (otherwise, $d_{\hat{\mathcal{G}}}(s) \geq 2c_k(\hat{\mathcal{G}}-s))$.
- G contains a C_4 -obstacle and $d_G(s) = 4$ (otherwise, $\exists st$ that belongs to $\geq \frac{d(s)}{2}$ distinct admissible pairs, so to an allowed pair).
- For every split edge e, G^e contains an obstacle.
- **③** There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.

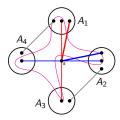
- Let G be the hypergraph obtained from $\hat{\mathcal{G}}$ by performing any longest sequence of allowed splittings.
- 2 G contains an admissible pair (otherwise, $d_{\hat{\mathcal{G}}}(s) \geq 2c_k(\hat{\mathcal{G}}-s))$.
- G contains a C_4 -obstacle and $d_G(s) = 4$ (otherwise, $\exists st$ that belongs to $\geq \frac{d(s)}{2}$ distinct admissible pairs, so to an allowed pair).
- For every split edge e, G^e contains an obstacle.
- So There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.

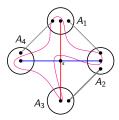


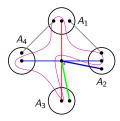


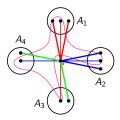


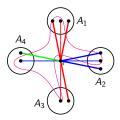


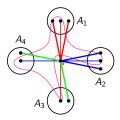


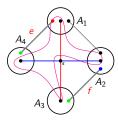


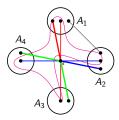


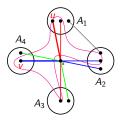


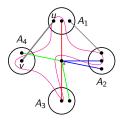




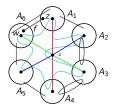




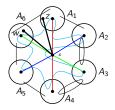




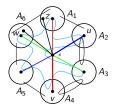
- 5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.
- Case 2 : For a split edge e, G^e contains a C_6 -obstacle. Then G^e contains a split edge f = wz. Case a : w and z belongs to different A_i 's.



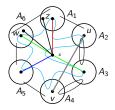
- 5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.
- Case 2 : For a split edge e, G^e contains a C_6 -obstacle. Then G^e contains a split edge f = wz. Case a : w and z belongs to different A_i 's.



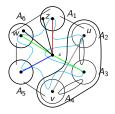
- 5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.
- Case 2 : For a split edge e, G^e contains a C_6 -obstacle. Then G^e contains a split edge f = wz. Case a : w and z belongs to different A_i 's.



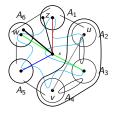
- 5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.
- Case 2 : For a split edge e, G^e contains a C_6 -obstacle. Then G^e contains a split edge f = wz. Case a : w and z belongs to different A_i 's.



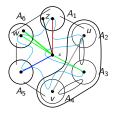
- 5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.
- Case 2 : For a split edge e, G^e contains a C_6 -obstacle. Then G^e contains a split edge f = wz. Case a : w and z belongs to different A_i 's.



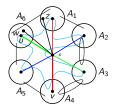
5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.



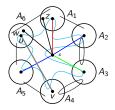
- 5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.
- Case 2 : For a split edge e, G^e contains a C_6 -obstacle. Then G^e contains a split edge f = wz. Case a : w and z belongs to different A_i 's.



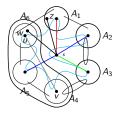
- 5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.
- Case 2 : For a split edge e, G^e contains a C_6 -obstacle. Then G^e contains a split edge f = wz. Case a : w and z belongs to different A_i 's.



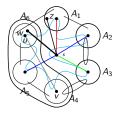
- 5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.
- Case 2 : For a split edge e, G^e contains a C_6 -obstacle. Then G^e contains a split edge f = wz. Case a : w and z belongs to different A_i 's.



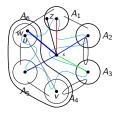
- 5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.
- Case 2 : For a split edge e, G^e contains a C_6 -obstacle. Then G^e contains a split edge f = wz. Case a : w and z belongs to different A_i 's.



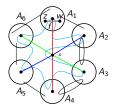
- 5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.
- Case 2 : For a split edge e, G^e contains a C_6 -obstacle. Then G^e contains a split edge f = wz. Case a : w and z belongs to different A_i 's.



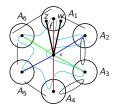
- 5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.
- Case 2 : For a split edge e, G^e contains a C_6 -obstacle. Then G^e contains a split edge f = wz. Case a : w and z belongs to different A_i 's.



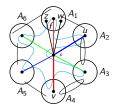
5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.



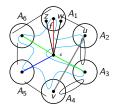
5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.



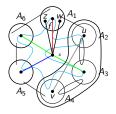
5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.



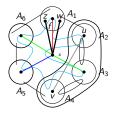
5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.



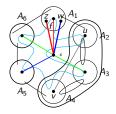
5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.



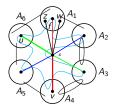
5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.



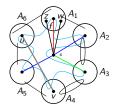
5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.



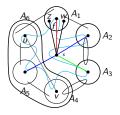
5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.



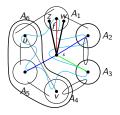
5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.



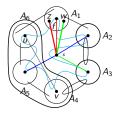
5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G_{uv}^{e,f}$ contains no obstacle.



5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.



5 There exist two split edges e and f in G and an allowed pair su, sv in $G^{e,f}$ such that $G^{e,f}_{uv}$ contains no obstacle.



Lemma

- Every optimal extension of (G, P) contains an obstacle if and only if G contains a configuration.
- **2** $\Phi \leq OPT$ and if equality holds, then no configuration exists.
- **③** $OPT \leq \Phi + 1$ and if no configuration exists, then strict inequality holds.

Thank you for your attention !