Edge-connectivity augmentations of graphs and hypergraphs

Zoltán Szigeti

Laboratoire G-SCOP
INP Grenoble, France

November 2008

Edge-connectivity augmentation problems

Graphs

- global edge-connectivity augmentation [Watanabe, Nakamura],
- global edge-connectivity augmentation over symmetric parity families [Sz],
- node to area global edge-connectivity augmentation [Ishii, Hagiwara],
- global edge-connectivity augmentation by attaching stars [B. Fleiner],
- global edge-connectivity augmentation with partition constraint [Bang-Jensen, Gabow, Jordán, Sz].
- local edge-connectivity augmentation [Frank],
- local edge-connectivity augmentation by attaching stars [Jordán, Sz],

Edge-connectivity augmentation problems

Hypergraphs

- global edge-connectivity augmentation in hypergraphs by adding graph edges [Bang-Jensen, Jackson],
- global edge-connectivity augmentation in hypergraphs by adding uniform hyperedges [T. Király],
- local edge-connectivity augmentation in hypergraphs by adding graph edges (NP-complete) [Cosh, Jackson, Z. Király],
- local edge-connectivity augmentation in hypergraphs by adding a hypergraph of minimum total size [Sz].

Edge-connectivity augmentation problems

Set functions

- covering a symmetric crossing supermodular set function by a graph [Benczúr, Frank],
- covering a symmetric crossing supermodular set function by a uniform hypergraph [T. Király],
- covering a symmetric crossing supermodular set function $p \neq 1$ by a graph with partition constraint [Grappe, Sz],
- covering a symmetric skew-supermodular set function by a graph (NP-complete) [Z. Király],
- covering a symmetric semi-monotone set function by a graph [Ishii ; Grappe, Sz],
- covering a symmetric skew-supermodular set function by a hypergraph of minimum total size [Sz].

Graphs : Basic Problem

Global edge-connectivity augmentation of a graph

- Given a graph $G=(V, E)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

- $p_{1}(X)=k$ and $p_{2}(X)=k-d_{G}(X)$ are symmetric, crossing supermodular.

Graphs : Basic Problem

Global edge-connectivity augmentation of a graph

- Given a graph $G=(V, E)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?
- $\gamma:=\min \left\{|F|: d_{G+F}(X) \geq k \forall \emptyset \neq X \subset V\right\}$

$$
=\min \left\{|F|: d_{(V, F)}(X) \geq k-d_{G}(X) \forall \emptyset \neq X \subset V\right\}
$$

- $p_{1}(X)=k$ and $p_{2}(X)=k-d_{G}(X)$ are symmetric, crossing supermodular.

Graphs : Basic Problem

Global edge-connectivity augmentation of a graph

- Given a graph $G=(V, E)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?
- $\gamma:=\min \left\{|F|: d_{G+F}(X) \geq k \forall \emptyset \neq X \subset V\right\}$
$=\min \left\{|F|: d_{(V, F)}(X) \geq k-d_{G}(X) \forall \emptyset \neq X \subset V\right\}$.
- $p_{1}(X)=k$ and $p_{2}(X)=k-d_{G}(X)$ are symmetric, crossing supermodular.

Graphs : Problem with partition constraint

Global edge-connectivity augmentation of a graph with partition constraint

- Given a bipartite graph $G=\left(V_{1}, V_{2} ; E\right)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected bipartite graph?
- Given a graph $G=(V, E)$, a partition \mathcal{P} of V and an integer k, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a k-edge-connected graph?

Graphs : Problem with partition constraint

Global edge-connectivity augmentation of a graph with partition constraint

- Given a bipartite graph $G=\left(V_{1}, V_{2} ; E\right)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected bipartite graph ?
 \mathcal{P} whose addition results in a k-edge-connected graph?

Graphs : Problem with partition constraint

Global edge-connectivity augmentation of a graph with partition constraint

- Given a bipartite graph $G=\left(V_{1}, V_{2} ; E\right)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected bipartite graph ?
- Given a graph $G=(V, E)$, a partition \mathcal{P} of V and an integer k, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a k-edge-connected graph ?

Graphs : Problem with partition constraint

Global edge-connectivity augmentation of a graph with partition constraint

- Given a bipartite graph $G=\left(V_{1}, V_{2} ; E\right)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected bipartite graph ?
- Given a graph $G=(V, E)$, a partition \mathcal{P} of V and an integer k, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a k-edge-connected graph ?
- $\left(G=\left(V_{1}, V_{2} ; E\right), \mathcal{P}=\left\{V_{1}, V_{2}\right\}\right) \quad$ Bipartite graph Problem

Graphs : Problem with partition constraint

Global edge-connectivity augmentation of a graph with partition constraint

- Given a bipartite graph $G=\left(V_{1}, V_{2} ; E\right)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected bipartite graph ?
- Given a graph $G=(V, E)$, a partition \mathcal{P} of V and an integer k, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a k-edge-connected graph ?

$$
\begin{array}{ll}
\left(G=\left(V_{1}, V_{2} ; E\right), \mathcal{P}=\left\{V_{1}, V_{2}\right\}\right) & \text { = Bipartite graph Problem } \\
\cdot(G=(V, E), & \mathcal{P}=\{\{v\}: v \in V\})
\end{array}
$$

Connectivity functions

Symmetric function

$p: 2^{V} \rightarrow \mathbb{Z}$ is called symmetric if $\forall X \subset V, p(X)=p(V-X)$.

Connectivity functions

Symmetric function

$p: 2^{V} \rightarrow \mathbb{Z}$ is called symmetric if $\forall X \subset V, p(X)=p(V-X)$.

Crossing supermodular function

$p: 2^{V} \rightarrow \mathbb{Z}$ is called crossing supermodular if $\forall X, Y \subset V$ with $X-Y, Y-X, X \cap Y, V-(X \cup Y) \neq \emptyset, p(X), p(Y)>0:$

$$
p(X)+p(Y) \leq p(X \cap Y)+p(X \cup Y)
$$

Connectivity functions

Symmetric function

$p: 2^{V} \rightarrow \mathbb{Z}$ is called symmetric if $\forall X \subset V, p(X)=p(V-X)$.

Crossing supermodular function

$p: 2^{V} \rightarrow \mathbb{Z}$ is called crossing supermodular if $\forall X, Y \subset V$ with $X-Y, Y-X, X \cap Y, V-(X \cup Y) \neq \emptyset, p(X), p(Y)>0:$

$$
p(X)+p(Y) \leq p(X \cap Y)+p(X \cup Y)
$$

Well-known examples

(1) $p(X)=k$,
(2) $p(X)=-d_{G}(X)$, (degree function of a graph)
(3) $p(X)=k-d_{G}(X)$,
(1) $p(X)=p^{\prime}(X)-d_{G}(X),\left(p^{\prime}(X)\right.$ is a symmetric crossing supermodular function).

Covering a function

Covering

A graph $H=(V, F)$ covers a function $p: 2^{V} \rightarrow \mathbb{Z}$ if

$$
d_{H}(X) \geq p(X) \quad \forall X \subset V .
$$

Covering a function

Covering

A graph $H=(V, F)$ covers a function $p: 2^{V} \rightarrow \mathbb{Z}$ if

$$
d_{H}(X) \geq p(X) \quad \forall X \subset V .
$$

Minimization problem 1

Given a symmetric crossing supermodular function p on V, what is the minimum number of edges of a graph $H=(V, F)$ that covers p ?

Covering a function

Covering

A graph $H=(V, F)$ covers a function $p: 2^{V} \rightarrow \mathbb{Z}$ if

$$
d_{H}(X) \geq p(X) \quad \forall X \subset V
$$

Minimization problem 1

Given a symmetric crossing supermodular function p on V, what is the minimum number of edges of a graph $H=(V, F)$ that covers p ?

Minimization problem 2

Given a symmetric crossing supermodular function p on V and a graph $G=(V, E)$, what is the minimum number of new edges such that the graph $H=(V, E+F)$ covers p ?

Relations among these problems

Covering a function : Problem with partition constraint

Covering a function by a graph with partition constraint

Given a graph $G=(V, E)$, a partition \mathcal{P} of V and a symmetric crossing supermodular function p, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a graph that covers p ?

Covering a function : Problem with partition constraint

Covering a function by a graph with partition constraint

Given a graph $G=(V, E)$, a partition \mathcal{P} of V and a symmetric crossing supermodular function p, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a graph that covers p ?

- $(G=(V, E), \mathcal{P}=\{\{v\}: v \in V\}$ and $p)=$ Covering of p
 of a graph with partition constraint

Covering a function : Problem with partition constraint

Covering a function by a graph with partition constraint

Given a graph $G=(V, E)$, a partition \mathcal{P} of V and a symmetric crossing supermodular function p, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a graph that covers p ?

- $(G=(V, E), \mathcal{P}=\{\{v\}: v \in V\}$ and $p)=$ Covering of p
- $(G=(V, E), \mathcal{P}$ and $p=k)=$ Global edge-connectivity augmentation of a graph with partition constraint

Results : Basic Problem

Notation

$\mathcal{S}(V)=$ all subpartitions of V.

Results : Basic Problem

Notation

$$
\mathcal{S}(V)=\text { all subpartitions of } V .
$$

Lowerbound

$$
\alpha:=\max \left\{\left\lceil\frac{1}{2} \sum_{X \in \mathcal{X}}(k-d(X))\right\rceil: \mathcal{X} \in \mathcal{S}(V)\right\}
$$

Results : Basic Problem

Notation

$$
\mathcal{S}(V)=\text { all subpartitions of } V .
$$

Lowerbound

$$
\alpha:=\max \left\{\left\lceil\frac{1}{2} \sum_{X \in \mathcal{X}}(k-d(X))\right\rceil: \mathcal{X} \in \mathcal{S}(V)\right\} .
$$

Theorem (Watanabe, Nakamura)

Let $G=(V, E)$ be a graph and $k \geq 2$. Then the minimum number γ of new edges whose addition results in a k-edge-connected graph is

$$
\gamma=\alpha
$$

Results : Graph problem with partition constraint

Lowerbound

Let $\Phi:=\max \left\{\alpha, \beta_{1}, \ldots, \beta_{r}\right\}$ where

$$
\begin{aligned}
\alpha & :=\max \left\{\left\lceil\frac{1}{2} \sum_{X \in \mathcal{X}}(k-d(X))\right\rceil: \mathcal{X} \in \mathcal{S}(V)\right\}, \\
\beta_{j} & :=\max \left\{\sum_{Y \in \mathcal{Y}}(k-d(Y)): \mathcal{Y} \in \mathcal{S}\left(V_{j}\right)\right\} \quad \forall 1 \leq j \leq r .
\end{aligned}
$$

Results : Graph problem with partition constraint

Lowerbound

Let $\Phi:=\max \left\{\alpha, \beta_{1}, \ldots, \beta_{r}\right\}$ where

$$
\begin{aligned}
\alpha & :=\max \left\{\left\lceil\frac{1}{2} \sum_{X \in \mathcal{X}}(k-d(X))\right\rceil: \mathcal{X} \in \mathcal{S}(V)\right\}, \\
\beta_{j} & :=\max \left\{\sum_{Y \in \mathcal{Y}}(k-d(Y)): \mathcal{Y} \in \mathcal{S}\left(V_{j}\right)\right\} \quad \forall 1 \leq j \leq r .
\end{aligned}
$$

Attention!

Results : Graph problem with partition constraint

C_{4}-configuration

A partition $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ of V is a C_{4}-configuration of G if k is odd and

$$
\begin{aligned}
k-d\left(A_{i}\right) & >0 & & \forall 1 \leq i \leq 4, \\
d\left(A_{i}, A_{i+2}\right) & =0 & & \forall 1 \leq i \leq 2, \\
\sum_{X \in \mathcal{X}_{i}}(k-d(X)) & =k-d\left(A_{i}\right) & & \exists \mathcal{X}_{i} \in \mathcal{S}\left(A_{i}\right) \forall 1 \leq i \leq 4, \\
\mathcal{X}_{j} \cup \mathcal{X}_{j+2} & \in \mathcal{S}\left(V_{l}\right) & & \exists 1 \leq I \leq r \exists 1 \leq j \leq 2, \\
k-d\left(A_{i}\right)+k-d\left(A_{i+2}\right) & =\Phi & & \forall 1 \leq i \leq 2 .
\end{aligned}
$$

C_{4}-configuration

Results : Graph problem with partition constraint

C_{4}-configuration

Results : Graph problem with partition constraint

C_{6}-configuration

A partition $\left\{A_{1}, A_{2}, \ldots, A_{6}\right\}$ of V is a C_{6}-configuration of G if k is odd,

$$
\begin{aligned}
k-d\left(A_{i}\right) & =1 \quad \forall 1 \leq i \leq 6 \\
k-d\left(A_{i} \cup A_{i+1}\right) & =1 \quad \forall 1 \leq i \leq 6,\left(A_{7}=A_{1}\right) \\
\Phi & =3 \\
k-d\left(A_{i}^{\prime}\right) & =1 \quad \exists 1 \leq j_{1}, j_{2}, j_{3} \leq r, \forall 1 \leq i \leq 6, \exists A_{i}^{\prime} \subseteq A_{i} \cap V_{j_{i-}}
\end{aligned}
$$

Results : Graph problem with partition constraint

C_{6}-configuration

Results : Graph problem with partition constraint

Theorem (Bang-Jensen, Gabow, Jordán, Sz)

Let $G=(V, E)$ be a graph, \mathcal{P} a partition of V and $k \geq 2$. Then the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a k-edge-connected graph is

$$
\gamma= \begin{cases}\Phi & \text { if } G \text { contains no } C_{4} \text { - and no } C_{6} \text {-configuration }, \\ \Phi+1 & \text { otherwise. }\end{cases}
$$

Results : Covering crossing supermodular functions

Lowerbound

Let $\psi:=\max \left\{\alpha_{p}, L-1\right\}$ where

$$
\begin{aligned}
\alpha_{p} & :=\max \left\{\left\lceil\frac{1}{2} \sum_{X \in \mathcal{X}} p(X)\right\rceil: \mathcal{X} \in \mathcal{S}(V)\right\}, \\
L: & =\max \left\{I:\left\{Q_{1}, \ldots, Q_{I}\right\} \text { partition of } V,\right. \\
& \left.p\left(\bigcup_{i \in I} Q_{i}\right) \geq 1 \forall I, p\left(Q_{j}\right)=1 \exists j\right\} .
\end{aligned}
$$

Results : Covering crossing supermodular functions

Lowerbound

Let $\psi:=\max \left\{\alpha_{p}, L-1\right\}$ where

$$
\begin{aligned}
& \alpha_{p}:: \max \left\{\left\lceil\frac{1}{2} \sum_{X \in \mathcal{X}} p(X)\right\rceil: \mathcal{X} \in \mathcal{S}(V)\right\}, \\
& L:=\max \left\{I:\left\{Q_{1}, \ldots, Q_{l}\right\} \text { partition of } V\right. \\
&\left.p\left(\bigcup_{i \in I} Q_{i}\right) \geq 1 \forall I, p\left(Q_{j}\right)=1 \exists j\right\} .
\end{aligned}
$$

Theorem (Benczúr, Frank)

Let $p: 2^{V} \rightarrow \mathbb{Z}_{+}$be a symmetric crossing supermodular set function. Then the minimum number γ of edges of a graph $H=(V, F)$ that covers p is

$$
\gamma=\psi .
$$

Results : Covering a symmetric crossing supermodular

 function by a graph with partition constraint
Lowerbound

Let $\Phi:=\max \left\{\alpha_{p}, \beta_{1}, \ldots, \beta_{r}\right\}$ where $q(X)=p(X)-d_{G}(X)$ and

$$
\begin{aligned}
\alpha_{p} & :=\max \left\{\left\lceil\frac{1}{2} \sum_{X \in \mathcal{X}} q(X)\right\rceil: \mathcal{X} \in \mathcal{S}(V)\right\}, \\
\beta_{j} & :=\max \left\{\sum_{Y \in \mathcal{Y}} q(Y): \mathcal{Y} \in \mathcal{S}\left(V_{j}\right)\right\} \quad \forall 1 \leq j \leq r .
\end{aligned}
$$

Results : Covering a symmetric crossing supermodular

 function by a graph with partition constraint
Lowerbound

Let $\Phi:=\max \left\{\alpha_{p}, \beta_{1}, \ldots, \beta_{r}\right\}$ where $q(X)=p(X)-d_{G}(X)$ and

$$
\begin{aligned}
\alpha_{p} & :=\max \left\{\left\lceil\frac{1}{2} \sum_{X \in \mathcal{X}} q(X)\right\rceil: \mathcal{X} \in \mathcal{S}(V)\right\}, \\
\beta_{j} & :=\max \left\{\sum_{Y \in \mathcal{Y}} q(Y): \mathcal{Y} \in \mathcal{S}\left(V_{j}\right)\right\} \quad \forall 1 \leq j \leq r .
\end{aligned}
$$

Attention!

Results : Covering a symmetric crossing supermodular

 function by a graph with partition constraint
C_{4}^{*}-configuration

A partition $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ of V is a C_{4}^{*}-configuration of G if $\forall 1 \leq i \leq 4$

$$
\begin{aligned}
q\left(A_{i}\right) & >0, \\
d\left(A_{i}, A_{i+2}\right) & =0, \\
\sum_{X \in \mathcal{X}_{i}} q(X) & =q\left(A_{i}\right) \quad \exists \mathcal{X}_{i} \in \mathcal{S}\left(A_{i}\right), \\
\mathcal{X}_{j} \cup \mathcal{X}_{j+2} & \in \mathcal{S}\left(V_{l}\right) \quad \exists 1 \leq I \leq r \exists 1 \leq j \leq 2, \\
q\left(A_{i}\right)+q\left(A_{i+2}\right) & =\Phi, \\
p\left(A_{i}\right)+p\left(A_{i+1}\right) & -p\left(A_{i} \cup A_{i+1}\right) \text { is odd, } \\
p\left(A_{i} \cup A_{i-1}\right)+p\left(A_{i} \cup A_{i+1}\right) & =p\left(A_{i-1}\right)+p\left(A_{i+1}\right) .
\end{aligned}
$$

Results : Covering a symmetric crossing supermodular

 function by a graph with partition constraint
C_{6}^{*}-configuration

A partition $\left\{A_{1}, A_{2}, \ldots, A_{6}\right\}$ of V is a C_{6}^{*}-configuration of G if $\forall 1 \leq i \leq 6$

$$
\begin{aligned}
q\left(A_{i}\right) & =1 \\
q\left(A_{i} \cup A_{i+1}\right) & =1,\left(A_{7}=A_{1}\right) \\
\Phi & =3, \\
q\left(A_{i}^{\prime}\right) & =1 \quad \exists 1 \leq j_{1}, j_{2}, j_{3} \leq r, \quad \exists A_{i}^{\prime} \subseteq A_{i} \cap V_{j_{i-3}\left(\frac{i-1)}{3}\right\rfloor}
\end{aligned}
$$

Results : Covering a symmetric crossing supermodular

 function by a graph with partition constraint
Theorem (Grappe, Sz)

Let $G=(V, E)$ be a graph, \mathcal{P} a partition of V and $p: 2^{V} \rightarrow \mathbb{Z}_{+} a$ symmetric crossing supermodular set function with $p \neq 1$.
Then the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a graph that covers p is

$$
\gamma= \begin{cases}\Phi & \text { if } G \text { contains no } C_{4}^{*} \text { - and no } C_{6}^{*} \text {-configuration }, \\ \Phi+1 & \text { otherwise. }\end{cases}
$$

